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Abstract

This paper presents a numerical algorithm using the pseudostress-velocity formula-
tion to solve incompressible Newtonian flows. The pseudostress-velocity formulation
is a variation of the stress-velocity formulation, which does not require symmetric
tensor spaces in the finite element discretization. Hence its discretization is greatly
simplified. The discrete system is further decoupled into a H(div) problem for the
pseudostress and a post-process resolving the velocity. This can be done conve-
niently by using the penalty method for steady-state flows or by using the time
discretization for nonsteady-state flows. We apply this formulation to the 2D lid
driven cavity problem and study its grid convergence rate. Also, computational re-
sults of the time-dependent driven cavity problem and the flow past rectangular
problem are reported.
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1 Introduction

For decades, much research has been done on the stress-velocity/stress-velocity-
pressure (σ-u/σ-u-p) formulations for Navier-Stokes equations [4,9,17]. These
formulations attract many attentions because: (1) they come from the orig-
inal physical laws and give a direct description of the stress, which in some
applications is the most interesting variable; (2) formally they resemble the
stress-displacement formulation of elasticity equations, which hopefully will
give a better understanding of the coupled solid-fluid problem.

To further explain these advantages, we first give the stress-velocity-pressure
formulation in below. Let Ω be a bounded domain in R

n, where n = 2, 3.
Consider the behavior of a viscous, incompressible Newtonian fluid occupying
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Ω over a time period t ∈ (0, T ). The basic equations for the incompressible
Newtonian flow can be stated as following: Find the stress σ, the velocity u

and the pressure p satisfying



















∂u/∂t + u · ∇u − div σ = f , (balance of momentum)

σ + pI − ν(∇u + (∇u)t) = 0, (constitutive law)

∇ · u = 0, (conservation of mass)

(1)

where ν is the kinematic viscosity, I is the identity tensor and f is the external
body force. Here u = (ui)1≤i≤n is an n-dimensional vector, σ = (σij)1≤i,j≤n is
an n × n symmetric tensor and the divergence of σ is defined by (div σ)i =
∑n

j=1 ∂jσij, for i = 1 . . . n. The term u · ∇u should be understood as a vector
whose ith component is

∑n
j=1 uj∂jui. To close the system, proper initial and

boundary conditions need to be applied. In a mixed system like problem (1),
either a Dirichlet boundary condition u|ΓD

= g or a Neumann boundary
condition σn|ΓN

= h, where n is the unit outward normal, can be imposed.
For simplicity, we only consider the formulation using pure Dirichlet boundary
condition. An extension to a certain Neumann type boundary condition and
its implementation will be discussed later in Section 3.3. For now we consider
the following initial and boundary conditions:

u|t=0 = u0, u|∂Ω = g.

System (1), which comes from the original physical laws, is usually called
the stress-velocity-pressure formulation of incompressible Newtonian flows. Its
formulation explains why it has the advantages mentioned in the beginning of
this section.

However, one difficulty in solving problem (1) directly is, that the discrete
spaces for σ and u have to satisfy the inf-sup condition (the LBB condition)
[8], in order to prevent spurious modes to enter the approximation through
the discrete gradient operator. We say the discrete space is stable if it satis-
fies the inf-sup condition. It is extremely difficult to construct finite element
spaces for the stress which are symmetric and stable at the same time [3,8].
The few currently available stable symmetric tensor spaces are very expen-
sive, for example, 24 dofs per triangle in 2D [3] and 162 dofs per tetrahedral
in 3D [1]. This has been one of the most prohibitive aspects of the stress-based
formulation. Many researchers have thus resorted to using augmented formu-
lations [2,29,30], in which the symmetry is weakly imposed, or Least-Squares
formulations [10,11,22,23], which do not require the LBB condition.

To avoid this difficulty while keeping advantages of the stress-based formula-
tions, a new pseudostress-velocity formulation was proposed [12,14] for Stokes
equations. In this paper, we present algorithms based on the pseudostress-
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velocity formulation for solving Navier-Stokes equations. For steady-state prob-
lems, a Picard iteration is used to linearize the equations and the resulting
linear system is decoupled by the penalty method. For nonsteady-state prob-
lems, the problem is linearized using a semi-implicit time-discretization and
the resulting linear system can be decoupled directly. In both cases, one ends
up with solving a convective H(div ) problem for the pseudostress.

A common criticism of stress-based formulation is that it seems to contain
more variables than a velocity-pressure formulation, and hence will result in
a larger problem. We will show in Section 2.4 that, by using the pseudostress-
velocity formulation and decoupling as mentioned above, the resulting lin-
ear algebraic system is not necessary larger than the system derived from a
velocity-pressure formulation.

The paper is organized as follows. In Section 2, we describe the pseudostress-
velocity formulation and its finite element discretization. Details about how to
decouple the system for both steady-state and nonsteady-state problems are
also explained. Section 3 is devoted to numerical experiments which demon-
strate the accuracy and the convergence behavior of the pseudostress-velocity
formulation. Finally, a conclusion is given in Section 4.

2 The pseudostress-velocity formulation and its finite element dis-

cretization

In this section, we discuss the pseudostress-velocity formulation for Navier-
Stokes equations together with its discretization and decoupling. Denote Mn,
n = 2, 3, to be the field of n×n tensors. Let A : Mn → Mn be a fourth order
tensor defined by Aτ = 1

ν

(

τ − ( 1

n
tr τ )I

)

for all τ ∈ Mn. Here tr τ is the trace

of τ . Recall that the symmetric stress in system (1) is defined as

σ = −pI + ν(∇u + (∇u)t).

We define the non-symmetric pseudostress as

σ̃ = −pI + ν∇u.

Since

div σ − div σ̃ = νdiv (∇u)t = ν∇(∇ · u) = 0,

clearly System (1) can be rewritten as:







∂u/∂t + u · ∇u − div σ̃ = f ,

Aσ̃ −∇u = 0.
(2)

3



Notice that Aσ̃ is trace-free, hence the incompressible constraint ∇ ·u = 0 is
satisfied through ∇ · u = tr (∇u) = 0. Also, the pressure

p = −
1

n
tr σ̃

is unique only up to a constant. Other physical quantities such as the velocity
gradient, stress, and vorticity can be expressed algebraically in terms of the
pseudostress:

∇u = Aσ̃, σ = σ̃ + ν(Aσ̃)t, ω =
1

2
(Aσ̃ − (Aσ̃)t).

Similar to the pressure, they can all be computed in a post-process in the
same accuracy as the approximation of σ̃. Here we conveniently represent the
vorticity ω = ∇× u as the skew symmetric part of the velocity gradient.

2.1 The spatial discretization

The discretization will be applied in a variational form. Let L2(Ω) be the space
of all square-integrable functions and H(div, Ω, Mn) be defined by

{τ ∈ Mn | τij ∈ L2(Ω) and div τ ∈ (L2(Ω))n}.

For convenience, denote (·, ·) to be the L2 inner-product of scalar, vector and
tensor functions on Ω, and < ·, · >∂Ω the L2 inner-product on ∂Ω. For example,
let u, v be n-dimensional vectors and σ, τ be n × n tensors on Ω, then

(u,v) =
∫

Ω

u · v dx, (σ, τ ) =
∫

Ω

n
∑

i,j=1

σijτij dx,

< u,v >∂Ω =
∫

∂Ω

u · v ds.

The finite element approximation for System (2) is much easier than the one for
System (1). Finite element spaces for σ̃ and u still need to satisfy the discrete
inf-sup condition, according to the mixed finite element theory. However, since
the pseudostress is not necessarily symmetric, simple mixed elements like the
RT(Raviart-Thomas [25]) or BDM(Brezzi-Douglas-Marini [7]) elements have
been proved stable for the discretization of System (2) [12]. In this paper, for
simplicity, we consider the lowest order RT element (RT0). Since the RT ele-
ment is designed to approximate coupled vector functions and scalar functions,
n copies of the RT element are used to approximate the coupled pseudostress
and velocity.

For the reader’s convenience, we describe the two-dimensional RT0 space for
the pseudostress-velocity formulation in detail. Let Th be a quasi-uniform tri-
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Fig. 1. Degrees of freedom for Σh and Vh on each triangle and rectangle. Every
double arrow and dot stand for two degrees of freedom corresponding to two com-
ponents of σn or v.

σ v vσ

angular mesh or a rectangular mesh in a polygonal domain Ω. Define discrete
spaces for the pseudostress and the velocity, respective, by

Σh = {σ =







a1 + c1x b1 + c1y

a2 + c2x b2 + c2y





 on each triangle in Th

or σ =







a1 + c1x b1 + d1y

a2 + c2x b2 + d2y





 on each rectangle in Th

and σn is continuous across the internal edges of Th},

Vh = {







v1

v2





 where v1, v2 are piecewise constants on Th}.

The degrees of freedom for the pseudostress are the values of σn at the center
of each edge in Th. Hence each edge has two basis functions attached to it. The
total number of basis functions is two times the total number of edges. The
degrees of freedom for the velocity are the values of v, which are piecewise
constants, in each triangle or rectangle. The total number of basis functions
is two times the total number of triangles/rectangles. In Figure 1, the degrees
of freedom are illustrated.

The spatial discretization for (2) can be written as: find σ̃ ∈ Σh/span{I} and
u ∈ Vh such that






(Aσ̃, τ ) + (div τ ,u) =< g, τn >∂Ω for τ ∈ Σh/span{I},

(div σ̃,v) − (u · (Aσ̃),v) − (∂u/∂t,v) = −(f ,v) for v ∈ Vh,

(3)
where span{I} = {cI | c ∈ R}. One has to exclude span{I} from the trial and
test spaces for the pseudostress, in order to make p = − 1

n
tr σ̃ unique.

There are two things that need to be explained in the discrete system (3).
First, notice that the velocity boundary condition u|∂Ω = g becomes natu-
rally imposed as a boundary integral on the right hand side. This is common
in the mixed finite element methods [8], in which Dirichlet boundary condi-
tions become natural and Neumann boundary conditions become essential. In
the pure Dirichlet boundary case, σ̃ should not admit any type of boundary
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constraints, otherwise the system will be over-determined. Discussion of how
to impose Neumann boundary conditions will be given in Section 3.3. The sec-
ond is about the space Σh/span{I}, which seems to make the discretization
complicated. However, in the implementation one can proceed using discrete
space Σh directly. This will result in a rank 1 deficiency in the discrete system,
which will not cause any trouble if the system is solved by a Krylov subspace
iterative solver such as the GMRES method. A carefully designed multigrid
solver can also deal with this rank deficiency. Further discussion on this issue
can be found in [12,14].

The mixed problem (3) will result in a large linear algebraic system. To re-
duce the problem size, we consider decoupling the system. The idea is to use
the penalty method for steady-state problems and the time-discretization for
nonsteady-state problems. Details will be given in the next two subsections.
The advantage of decoupling the system will be discussed in Section 2.4.

2.2 Steady-state case

To solve the time-independent problem, our strategy is to first use the Picard
iteration to linearize it, and then use the penalty method to decouple the
system.

Consider Equation (3) but without the time derivative term (∂u/∂t,v). Let
σ̃k and uk be the approximate solution from the kth step of the iteration. In
the (k + 1)st step, one makes a small increment so that σ̃k+1 = σ̃k + δσ̃k and
uk+1 = uk + δuk will be the next approximation. By substituting σ̃k+1 and
uk+1 into Equation (3) and dropping the higher order term δuk · (A δσ̃k), we
obtain















(Aσ̃k+1, τ ) + (div τ ,uk+1) =< g, τn >∂Ω,

(div σ̃k+1,v) − (uk · (Aσ̃k+1),v) − (uk+1 · (Aσ̃k),v)

= −(f ,v) − (uk · (Aσ̃k),v).

(4)

Problem (4) is the linearization of the steady-state Navier-Stokes Equations
by the well-known Newton’s iteration. In general, the Newton’s iteration has
quadratic convergence rate, if the initial guess lies in the basin of attraction.
However, decoupling of system (4) turns out to be difficult. Hence we will
explore an inexact linearization using the Picard iteration. In system (4), by
further assuming that δuk · Aσ̃k is small, we have

(uk+1 · (Aσ̃k),v) ≈ (uk · (Aσ̃k),v).
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Then the equation for the (k + 1)st step of approximation becomes







(Aσ̃k+1, τ ) + (div τ ,uk+1) =< g, τn >∂Ω,

(div σ̃k+1,v) − (uk · (Aσ̃k+1),v) = −(f ,v).
(5)

Problem (5) is exactly the pseudostress-velocity formulation of the Oseen prob-
lem, whose convergence was established in [19]. Picard iteration usually has
linear convergence but a larger basin of attraction compared to the Newton’s
iteration.

By using the penalty method, an extra term is added to the mixed system (5)
so that it becomes







(Aσ̃k+1, τ ) + (div τ ,uk+1) =< g, τn >∂Ω,

(div σ̃k+1,v) − (uk · (Aσ̃k+1),v) − ε(uk+1,v) = −(f ,v),
(6)

where the penalty constant ε is small. It has been proved in [12] that, for
Stokes problems, the penalty method does not deteriorate the accuracy of
approximation provided that ε is at least of the same order as the discretization
error. Therefore, when the RT0 element is used in the discretization, setting
ε = O(h) will guarantee optimal convergence in the Stokes case. For the
Navier-Stokes equations, we will examine numerically whether the same result
holds or not, later.

By setting v = div τ , the mixed problem (6) can be decoupled into

(Aσ̃k+1, τ )+
1

ε
(div σ̃k+1,div τ ) −

1

ε
(uk · Aσ̃k+1,div τ )

=< g, τn >∂Ω −
1

ε
(f ,div τ ),

(7)

uk+1 =
1

ε
(div σ̃k+1 − uk · Aσ̃k+1 + f). (8)

The main work of solving the decoupled system is to solve Equation (7), which
is a H(div) problem with a convection term. The velocity uk+1 can then be
explicitly computed from (8).

2.3 Nonsteady-state case

To solve the time-dependent problem, a semi-implicit Euler scheme is used for
time discretization. Given the solution of the kth time step, the solution of
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the (k + 1)st time step is calculated by







(Aσ̃k+1, τ ) + (div τ ,uk+1) =< g, τn >∂Ω

(div σ̃k+1,v) − (uk · (Aσ̃k+1),v) − 1

∆t
(uk+1,v) = −(fk+1,v) − 1

∆t
(uk,v).

(9)
Again by setting v = div τ , System (9) can easily be decoupled into

(Aσ̃k+1, τ )+∆t(div σ̃k+1,div τ ) − ∆t(uk · Aσ̃k+1,div τ )

=< g, τn >∂Ω −(∆tfk+1 + uk,div τ ),
(10)

uk+1 = uk + ∆t(div σ̃k+1 − uk · Aσ̃k+1 + fk+1). (11)

The majority work in the solution process is to solve Equation (10).

In practical simulation, one may want to use higher order schemes in order
to get better convergence rates. Again, it is essential to choose schemes that
allow the decoupling as well.

2.4 The convective H(div ) problem

Equations (7) and (10) have the common form:

(Λσ̃, τ ) , (Aσ̃, τ ) + γ(div σ̃,div τ ) − γ(uk · Aσ̃,div τ ) = F (τ ), (12)

where γ = 1/ε ≫ 1 for the steady-state problem and γ = ∆t ≪ 1 for the
nonsteady-state problem. Again, we mention that the boundary condition is
imposed by < g, τn >∂Ω in the right-hand side. For pure Dirichlet problem,
there should be no boundary condition for σ̃. Otherwise the problem will
become ill-posed.

The H(div) problem (12), in its Stokes limit, has been studied in [12,14],
where optimal error estimates and multigrid convergence rates were proved.
However, for the Navier-Stokes case and especially when the Reynolds number
is large, the equation becomes convection-dominated and its numerical sim-
ulation becomes difficult. To our knowledge, currently there is no theoretical
or numerical study of such convective H(div) type problems yet.

Decoupling of the system greatly reduces the size of the discrete problem. It
is worth comparing the size of pseudostress-velocity formulation discretized
using the RT0 element with the size of velocity-pressure formulation using
Crouzeix-Raviart elements [15,24], since both approaches have the same accu-
racy. In n dimension where n = 2, 3, the total number of degrees of freedom
for System (3) using the RT0 element is nNf + nNt, and the total number is
nNf +Nt for the velocity-pressure, where Nf , Nt are the number of faces/edges
and elements, respectively. However, after decoupling, the H(div ) Equation
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(12) has a total size nNf . In this case, the discrete pseudostress system is
even smaller than the discrete velocity-pressure system. We also note that the
velocity-pressure system, especially in the time-dependent case, can not be
naturally decoupled as in the case of pseudostress-velocity formulation.

3 Numerical results

Our numerical experiments are done for two-dimensional problems only, al-
though the formulation can be applied to three-dimensional cases. For now
we would like to avoid the complications that arise in three dimensions, and
focus the numerical study on the convergence and accuracy in 2D. Two types
of problems, the lid-driven cavity and the flow past a rectangular cylinder, are
considered.

3.1 Steady-state driven cavity flow

The 2D lid driven cavity problem, which describes the flow in a rectangu-
lar container driven by the uniform motion of one lid, is one of the most
popular benchmark problems. Consider the Navier-Stokes equations in Ω =
(0, 1) × (0, 1), with boundary data u = (1, 0)t on the top lid and u = (0, 0)t

everywhere else. One difficulty of this problem is, that the velocity bound-
ary data is discontinuous at the two top corners. Thus in the velocity-based
approximation, one needs to choose whether to use velocity (1, 0)t, leaky, or
(0, 0)t, non-leaky, at the two top corners. However, the pseudostress-velocity
formulation handles this discontinuous boundary data naturally. The bound-
ary term in equation (12) is posed weakly using < g, τn >∂Ω, which can be
calculated on each boundary segment separately. There is no need to choose
the velocity at the two top corners.

We solve this problem using the process described in Section 2. Uniform rect-
angular meshes and the RT0 element are used in the discretization. Since the
exact solution is not available, a grid convergence study will be employed.
In particular, the problem is solved on a sequence of meshes generated by a
refining process. The error between solutions on consequent meshes is exam-
ined. In general, this should give a good indicator of the actual convergence
rate. The calculated L2 norm of the velocity, under different Reynolds number
Re and penalty constant ε, is reported in Table 1. We observe a convergence
rate slightly less than O(h). This is because the velocity is approximated by
piecewise constants in the RT0 element. The best possible convergence rate of
piecewise constants is O(h). Also, since the exact solution to the driven cavity
problem has a corner singularity due to the discontinuous boundary data, it
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Table 1. Grid convergence rate for driven cavity.

h

‖uh − uh/2‖L2

Stokes Re= 100 Re = 100 Re = 200

ε = 1e − 4 ε = h ε = 1e − 4 ε = h

1/16 0.0513 0.0550 0.0540 0.0669

1/32 0.0290 0.0306 0.0302 0.0347

1/64 0.0160 0.0167 0.0165 0.0184

1/128 0.0087 0.0090 0.0089 0.0093

Asym. Order O(hk), k = 0.85 0.87 0.87 0.94

Fig. 2. Velocity profiles and streamline portraits for Re = 100 with h = 1/128 and
different ε. Circles in velocity profiles are solutions from [18].

0 0.5 1
0

0.2

0.4

0.6

0.8

1
Re=100, ε=h Re=100, ε=h

0 0.5 1
0

0.2

0.4

0.6

0.8

1
Re=100, ε=1e−4 Re=100, ε=1e−4

has been proved that the best possible convergence rate for this problem is
O(h(− ln h)) [13]. Results in Table 1 for Re = 100 with different choices of ε
also indicate that ε = h is enough to guarantee convergence of the scheme.
In all cases for Re = 100 and h ≥ 1/128, the Picard iteration starts with the
initial guess u0 = 0 and reaches ‖uk+1 − uk‖ ≤ 10−6 within 20 steps. For
Re = 100 on a 256× 256 mesh and Re = 200, the Picard iteration starts with
solutions computed from a coarse grid.

To check the accuracy of the solution with different penalty constants, we
compare the velocity with published results in [5,18]. Using a 128× 128 mesh,
velocity profiles on the vertical centerline for u1 and on the horizontal cen-
terline for u2, together with the streamline portraits, are plotted in Figure 2.
Circles in velocity profiles are solutions from [18]. From the graph, the differ-
ences between solutions from different ε settings are not visible by eye. So we
also compare the the extreme values of u1 on the vertical centerline and u2 on
the horizontal centerline in Table 2. Smaller ε gives better approximations.

Away from the two top corners, we also observe super-convergence of the
pseudostress-velocity formulation. The pseudostress is approximated using the
RT0 element, which has jumps on tangential components across internal edges.
A post-process is applied, which takes the average over jumps, to derive a con-
tinuous pseudostress. A similar post-process is applied to the discrete velocity
and a continuous piecewise linear velocity is computed. The value of the con-
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Table 2. Extremes of u1 on the vertical centerline and u2 on the horizontal centerline
for the time-independent Navier-Stokes driven cavity flow with Re = 100.

ε = 1e − 4 ε = h

h min(u1) max(u2) min(u2) min(u1) max(u2) min(u2)

1/16 -0.2059 0.1671 -0.2333 -0.1887 0.1493 -0.2077

1/32 -0.2121 0.1770 -0.2491 -0.2024 0.1665 -0.2343

1/64 -0.2136 0.1789 -0.2527 -0.2087 0.1734 -0.2450

1/128 -0.2139 0.1794 -0.2535 -0.2114 0.1766 -0.2496

1/256 -0.2140 0.1795 -0.2537 -0.2127 0.1781 -0.2518

[18] -0.2109 0.17527 -0.24533

[5] -0.2140424 0.1795728 -0.253830

Table 3. Super-convergence in Ω1 for Re = 100 and ε = 1e − 4.

‖ · ‖max

h u1 u2 σ̃11 σ̃12 σ̃21 σ̃22

1/16 1.25e-2 2.57e-2 3.47e-3 7.74e-4 2.08e-3 3.89e-3

1/32 3.80e-3 6.94e-3 1.20e-3 3.06e-4 6.54e-4 1.30e-3

1/64 1.38e-3 2.02e-3 4.46e-4 6.57e-5 1.88e-4 4.96e-4

1/128 2.74e-4 6.03e-4 1.90e-4 1.21e-5 5.43e-5 1.96e-4

Asym. order O(hk), k = 1.80 1.80 1.39 2.02 1.75 1.43

tinuous velocity at each node is the average of the piecewise constant velocity
on the surrounding rectangles. Define Ω1 = [(0, 1) × (0, 1/2)] ∪ [(1/8, 7/8) ×
(1/2, 7/8)]. Ω1 is a subset of Ω which excludes a strip of width 1/8 near each
top corner. When Re = 100 and ε = 1e − 4, the maximum norm

‖φh‖max = max
x∈Ω1

|φh(x) − φh/2(x)|

for the post-processed pseudostress and velocity components is reported in
Table 3. The convergence rates of u and the off-diagonal components of σ̃ are
near O(h2). The convergence rates of σ̃11 and σ̃22 suggest that the pressure p =
−1

2
tr σ̃ does not have super-convergence. Similar super-convergence results are

observed in the Stokes case with ε = 1e − 4, but not in the Re = 100 case
with ε = h. This is understandable, because the penalized system with ε = h
has an O(h) dependence on the mesh size and hence super-convergence is not
possible. When ε is small, but constant on all grids, the results given in Table
3 suggest certain level of super-convergence.
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We have examined the convergence behavior and accuracy of the pseudostress-
velocity formulation for the steady-state lid driven cavity problem. A smaller
ε is preferred, although ε = h gives a reasonable solution. However, one prob-
lem with using small ε is, that the system becomes ill-conditioned and hence
it takes more time to solve. For all examples presented in this paper, the con-
vective H(div ) equation (12), in each Picard iteration or each time step, is
solved with a multigrid algorithm as defined in [14]. This multigrid solver was
originally designed for symmetric H(div ) problems. Its performance dete-
riorates for the non-symmetric H(div ) problem (12), especially when γ or
the Reynolds number become large. The size of the coarsest mesh has to be
“fine” enough to ensure multigrid convergence [6]. In our experiments, when
Reynolds number is 100 and the penalty constant is h, the multigrid algorithm
converges with a 16×16 coarsest mesh. However, when the penalty constant is
set to be 1e−4, the multigrid only converges with a 32×32 coarsest mesh (or
64× 64 coarsest mesh when the finest mesh is 256× 256). For larger Reynolds
numbers, one needs an even larger coarsest mesh to ensure the multigrid con-
vergence. Our experiments show that multigrid completely fails to converge
when Re = 400. Although a plain GMRES solver with Picard iteration still
converges, it is very slow on large meshes. Because of the lack of an efficient
solver, we did not perform experiments on steady-state lid driven cavity with
higher Reynolds numbers.

There are many possible ways to improve the efficiency of the multigrid al-
gorithm for such kind of convection dominant problem. One can try special
convection-related restriction, prolongation operators and smoothers in the
multigrid algorithm. Another choice is to use an upwinding or streamline-
diffusion finite element scheme. It is a good topic for future research.

3.2 Time-dependent solution of the driven cavity flow

Next we look at numerical results for the time-dependent driven cavity prob-
lem, discretized and decoupled using the semi-implicit Euler method. For mod-
erate values of the Reynolds number, it is known that the solution to the
time-dependent driven cavity problem converges to the steady-state solution,
as time goes to infinity [5,27]. Therefore, in our experiments, the time march-
ing is stopped when ‖uh(t)−uh(t−∆t)‖L2 ≤ 10−6. Our numerical experiments
show that multigrid algorithm works well in this case, if the time step ∆t is
sufficiently small. All following computations are done with a multigrid solver
using a 2 × 2 coarsest mesh.

We first compute the time-dependent problem for Re = 100 and Re = 200,
and compare the solutions at the final time-step with corresponding steady-
state solutions computed by the penalty-method, as shown in Section 3.1. A
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Table 4. Difference between the time-stepping solution and the steady-state solution.
Here tN is the time when the stopping criteria ‖uh(t) − uh(t − ∆t)‖L2 ≤ 10−6 is
reached, and uh,ε is the steady-state solution computed using the penalty method
with the penalty constant ε, as shown in Section 3.1.

h
‖uh(tN ) − uh,ε‖L2 (Re=100) ‖uh(tN ) − uh,ε‖L2 (Re=200)

tN ε = h ε = 1e − 4 tN ε = h

1/16 6 0.0106 0.0059 10.2 0.0223

1/32 7.4 0.0060 0.0031 12.8 0.0149

1/64 8.8 0.0032 0.0015 15 0.0081

1/128 10 0.0016 0.00075 17 0.0042

Asym. Order
0.9091 0.9961 0.8105

O(hk), k =

time step size ∆t = 0.02 is used in the computation. The results given in
Table 4 verify that the time-stepping solution converges to the steady-state
solution. Both the penalty constant and Reynolds number slightly affect the
asymptotic behavior of the comparison.

We next examine the startup flows for Re = 400 and Re = 1000. Both prob-
lems are computed on a 128 × 128 mesh, with a 7-level multigrid solver. A
time step size ∆t = 0.01 is used in the computation. Such a small time step is
needed to guarantee multigrid convergence. We suspect that if plain GMRES
is used in each time step, larger time step size can be used in the computa-
tion. However, since multigrid converges much faster than plain GMRES, we
decided to sacrifice the time step size for being able to use multigrid. Again,
developing a more robust and efficient solver for the convective H(div ) prob-
lem will be very helpful here.

The streamline portraits at several different times are given in Figure 3. The
time marching terminates at t = 21.2 for Re = 400, and at t = 28.6 for Re =
1000. It is interesting to observe the obviously different behavior of startup
flows at Re = 400 and Re = 1000. We also computed the solution for Re =
3200 with mesh size 128 × 128. Although the solution converges, numerical
oscillations can be observed near two upper corners in the vorticity contour
(see Figure 4). The oscillation disappears when using a 256×256 mesh and time
step ∆t = 0.005, as shown in Figure 4. We especially point this out because it
has been reported in many circumstances [5,18] that a 128× 128 mesh is fine
enough for the simulation of Re = 3200. However, since the velocity in the
pseudostress-velocity formulation is only approximated by piecewise constants,
whose accuracy is an order lower than most other numerical methods, our
experiments show that a mesh finer than 128×128 is needed to resolve all the
boundary layers in this case. To get better approximation results, one can also
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use the RT1 element which has a first-order approximation for the velocity, or
an upwinding scheme.

Fig. 3. Startup flow for Re = 400 and Re = 1000 at different times.
Re=400, time=2 Re=400, time=4 Re=400, time=6 Re=400, time=8 Re=400, time=21.2

Re=1000, time=2 Re=1000, time=4 Re=1000, time=6 Re=1000, time=8 Re=1000, time=28.6

Fig. 4. Vorticity portraits on a 128×128 mesh (left) and on a 256×256 mesh (right).

Re=3200 Re=3200, grid = 256× 256

Finally, to verify the accuracy of our numerical solution, in Figure 5 we report
the velocity profile at a time when steady-state is reached and compare it with
results from [18].

Fig. 5. Velocity profiles on the centerlines on a 128×128 mesh. Circles denote results
from [18].
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Fig. 6. Flow past rectangular cylinder.
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3.3 Flow past a rectangular cylinder

The flow past a rectangular cylinder is known to generate dynamic patterns
for low to moderate Reynolds numbers. To apply the pseudostress-velocity
formulation to this problem, one has to carefully set the outflow boundary
condition. In this paper, we set the problem as in Figure 6. The computational
domain has dimension L × H = 22 × 11. A square cylinder with edge length
B = 1 is positioned in the horizontal center and with the upstream extent
d = 5. The boundary condition on the surface of blockage is set to be u = 0.
The boundary condition on the outer boundary is set as

Left wall: u = (1, 0)t

Top and bottom walls: (σ̃n)1 = 0, u2 = 0

Right wall : σ̃n = −ν

(

∂u

∂t

)

prev

Here
(

∂u

∂t

)

prev
is the time-derivative of u calculated from previous time steps.

Notice that on the top and bottom walls, the first component of σ̃n is actually
(σ̃n)1 = σ12 = ν ∂u1

∂y
. So this boundary condition is equivalent to ∂u1/∂y = 0

and u2 = 0. On the right wall (the outflow boundary), the boundary condition
can be understood as an approximation to

∂u

∂t
+

1

ν
σ̃n = 0,

which is derived from the nonreflexive advective condition in [21] with the
average convective velocity on the outflow boundary set to 1.

This boundary condition is of a mixed type, which contains both Dirichlet and
Neumann parts. The Dirichlet part, or the velocity boundary data, is imposed
as a boundary integral on the right-hand side. However, the Neumann part,
or the pseudostress boundary data, should be set explicitly on σ̃. Take the
right wall as an example. Let h = −ν

(

∂u

∂t

)

prev
, which is a vector of piecewise

constants computed from the previous time step. Since the degrees of freedom
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Fig. 7. Drag coefficient and lift coefficient history for Re = 100 and Re = 200.
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of the RT0 element is σ̃n on each edge, one can simply set its value to be
equal to h on each boundary edge in the mesh Th.

We use the semi-implicit Euler scheme with time step size 0.02 for the time
discretization, and a 5-level multigrid solver for the linear system in each time
step. The problem is solved on uniform rectangular meshes and the finest level
in multigrid is of size 352 × 176. Flows with Reynolds numbers 100 and 200
are tested. In Figure 7, the drag and list history are given. It can be seen that
the drag coefficient oscillates twice as fast as the lift coefficient.

The calculated drag coefficients and Strouhal numbers are listed in Table 5,
and are compared with other published results [16,20,26,28]. Due to the large
blockage rate limited by the size of the computational domain and the fact that
the real flow is by nature a 3D phenomenon while the numerical simulation
here is done in 2D, it is known that the numerical Strouhal number is usually
slightly larger than the actual number.

Numerical oscillations can be observed in the vorticity portrait for Re = 200
solved on a 352 × 176 mesh. However, the oscillation disappears when the
problem is solved on a 704× 352 mesh. In Figure 8, vorticity profiles on these
two meshes are given, both at time when the lift force is 0 and the drag force is
at its minimum. The difference can be seen clearly. The entire computational
domain is plotted in Figure 8. Notice that there seems to be little or no
reflection on the outflow boundary.
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Table 5. Comparison of drag coefficient (cd) and Strouhal number (St).

Re Source B/H d cd St

100 present 9% 5 1.6291 0.1442

100 Sohankar et al.[28] 7% 11.1 1.483 0.149

100 Sohankar et al.[28] 7% 18.3 1.466 0.142

100 Saha et al.[26] 10% 6.5 1.51 0.159

100 Okajima (experimental)[20] 0% – – 0.141 − 0.145

200 present 9% 5 1.6528 0.1507

200 Franke et al.[16] 8.3% 4.5 1.65 0.157

200 Sohankar et al.[28] 5% 11.1 1.424 0.165

200 Saha et al.[26] 10% 6.5 1.67 0.163

200 Okajima (experimental)[20] 0% – – 0.138 − 0.145

Fig. 8. Vorticity contours for Re = 200 on different meshes. Both at time when the
lift force is 0 and the drag force is at its minimum.

Re=200, grid=352× 176 Re=200, grid=704× 352

4 Conclusion

We have presented a numerical algorithm using the pseudostress-velocity for-
mulation for solving Navier-Stokes equations. By introducing a new variable,
the non-symmetric pseudostress, this formulation avoids the common diffi-
culty of discretizing the symmetric stress in other stress-based formulations,
while it maintains the nice property of the direct calculation of stress. The
resulting discrete system can be easily decoupled in both the steady-state and
the nonsteady-state cases. A detailed comparison shows that the decoupled
problem, discretized with the lowest order Raviart-Thomas element, has less
degrees of freedom than the discretization of the velocity-pressure formulation,
using the Crouzeix-Raviart element.

Numerical examples for steady-state and nonsteady-state problems are re-
ported. The grid convergence analysis and the comparison to published results
validate the accuracy of the pseudostress-velocity formulation. The pseudostress-
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velocity formulation copes with the discontinuous velocity boundary data nat-
urally, as explained in the case of the driven cavity flow.

The problem we are facing now is to develop an efficient solver for the con-
vective H(div ) problem. The current multigrid solver has many limits, for
example, the penalty constant can not be too small or the time step size can
not be large. Also, in some cases it requires the coarsest mesh to be “fine”
enough. All these needs to be improved, which provides a good topic for fu-
ture research. An upwinding scheme might be able to boost the multigrid
performance.
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