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Abstract. A computational method based on a divergence-free H(div) approach is presented
for the Stokes equations in this article. This method is designed to find velocity approximation
in an exact divergence-free subspace of the corresponding H(div) finite element space. That is, the
continuity equation is strongly enforced a priori and the pressure is eliminated from the linear system
in calculation. A strength of this approach is that the saddle-point problem for Stokes equations is
reduced to a symmetric positive definite problem in a subspace for which basis functions are readily
available. The resulting discrete system can then be solved by using existing sophisticated solvers.
The aim of this article is to demonstrate the efficiency and robustness of H(div) finite element
methods for Stokes equations. The results not only confirm the existing theoretical results, but also
reveal additional advantages of the method in dealing with discontinuous boundary conditions.
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1. Introduction. One of the challenges in solving Navier-Stokes equations is
that the velocity and the pressure variables are coupled in a mixed system with a
difficult saddle-point property. Recent study has resulted in several efficient meth-
ods (e.g., projection methods and Uzawa type iterative methods) to overcome this
difficulty. In this article, we are concerned with a divergence-free approach which
essentially decouples the variables by computing an approximate velocity solution of
the Stokes equations in a divergence-free subspace, weakly or exactly. The main ob-
jective of this article is to demonstrate the efficiency and numerical robustness for a
newly developed H(div) finite element methods [30, 31].

In standard finite element methods for Navier-Stokes equations, both the pres-
sure and the velocity variables are approximated simultaneously [15] by using finite
element functions satisfying a stability condition – known as the inf-sup condition.
This method, known as primitive variable approach, results in a large saddle-point
problem for which most existing numerical solvers are less effective and robust than
for definite systems. While such saddle-point systems can be reduced to definite
problems for the velocity unknown defined in weakly divergence-free subspaces, it is
generally challenging, if not impossible, to construct computationally feasible bases
for the resulting (weakly) divergence-free subspaces. This difficulty significantly lim-
ited the advantages of divergence-free approach in solving Stokes and Navier-Stokes
equations.

In addition to the primitive variable approach with standard Galerkin methods,
attention was recently paid to numerical methods by using discontinuous finite ele-
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ments [6, 7, 16, 24, 25, 26, 34]. But, once again, most of them result in a numerical
scheme in which the velocity is approximated in a weakly divergence-free subspace.
Furthermore, the construction of computationally feasible basis functions was only
possible for some special elements with certain particular orders [17, 18, 19, 21, 22,
32, 33, 35]. To the author’s knowledge, there is no systematic approach for con-
structing basis functions for (weakly) divergence-free finite element subspaces in the
literature.

An alternative way in approximating the Stokes equations is to use H(div) con-
forming finite elements [7, 30, 31]. The main motivation and advantage of using
H(div) conforming elements for fluid flow problems is that the discrete velocity field
will be globally exactly divergence-free, assuming that the fluid is incompressible.
Since divergence-free exact functions can be written as the curl of a potential/stream
function, divergence-free subspaces can then be constructed from taking curl of corre-
sponding potential spaces. In two dimensional space, the potential functional space,
also called stream functions, is well understood with basis functions readily available
for computational purposes. In three dimensional spaces, vector potentials need to be
considered and a large kernel of the curl operator adds to the complexity of the prob-
lem. In this paper, we focus on two-dimensional problems, with possible extension to
three-dimensional cases.

Another important feature of using H(div) conforming elements is that the method
offers a more dynamic treatment of boundary conditions than the standard Garlekin
methods. For example, in the H(div) method, the normal component of the velocity
is set as an essential boundary condition and is strongly enforced, but the tangential
component of the velocity is treated as a natural boundary condition and is weakly
imposed. Thus, this approach empowers the H(div) method for problems with discon-
tinuous boundary conditions. This nice feature is numerically illustrated in Section 5
for a lid driven cavity flow problem where the boundary condition is discontinuous.

This paper is organized as follows. In section 2, we introduce some standard
notation for Sobolev spaces. A variational formulation is also outlined for the Stokes
problem. In section 3, we present a divergence-free H(div) finite element method by
using the variational formulation developed previously. A detailed description of the
divergence-free subspaces for H(div) conforming elements in two and three dimensions
is also given. In Section 4, we present some numerical results for three test problems,
each with a different configuration of boundary condition for the velocity. Finally in
Section 5, we conduct some numerical tests for a lid driven cavity problem.

2. Preliminaries. Let us consider the Stokes equations with Dirichlet boundary
conditions for the velocity variable. The problem seeks the velocity u and the pressure
p in a certain functional spaces such that

−∆u + ∇p = f in Ω,(2.1)

∇ · u = 0 in Ω,(2.2)

u = 0 on ∂Ω,(2.3)

where ∆, ∇, and ∇· denote the Laplacian, gradient, and divergence operators, re-
spectively; Ω ⊂ R

d is the region occupied by the fluid; f = f(x) ∈ (L2(Ω))d is the
unit external volumetric force acting on the fluid at x ∈ Ω. A detailed discussion for
inhomogeneous boundary value problems will be given in Section 3.

For simplicity, the method will be presented for two-dimensional problems. Fur-
thermore, we assume that Ω is a plane polygonal domain without cracks.
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2.1. Notation. Let D be a bounded domain in R
2. We use standard definitions

for the Sobolev spaces Hs(D) and their associated inner-products (·, ·)s,D, norms
‖ · ‖s,D, and semi-norms | · |s,D for s ≥ 0 [1]. The space H0(D) coincides with L2(D),
for which the norm and the inner product are denoted by ‖·‖D and (·, ·)D, respectively.
When D = Ω, we shall drop the subscript D in the norm and inner product notation.
We also use L2

0(Ω) to denote the subspace of L2(Ω) consisting of functions with mean
value zero.

Throughout the paper, we adopt the convention that a bold-face character denotes
a vector. Define H(div; Ω) as the space of vector-valued functions by

H(div; Ω) =
{

v : v ∈ (L2(Ω))2,∇ · v ∈ L2(Ω)
}

,

and with the norm

‖v‖H(div;Ω) =
(

‖v‖2 + ‖∇ · v‖2
)

1

2 .

Let K ⊂ Ω be a triangle or quadrilateral. For any smooth vector-valued functions
w and v, it follows from the divergence theorem that

(2.4)

∫

K

(−∆w) · vdK = (∇w,∇v)K −

∫

∂K

∂w

∂nK
· v ds,

where ds represents the boundary element, nK is the outward normal direction on
∂K, and

(∇w,∇v)K =
2
∑

i,j=1

∫

K

∂wi

∂xj

∂vi

∂xj
dK.

Let τK be the tangential direction to ∂K so that nK and τK form a right-hand
coordinate system. It follows from the representation

v = (v · nK)nK + (v · τK)τK

that

(2.5)
∂w

∂nK
· v =

∂(w · nK)

∂nK
(v · nK) +

∂(w · τK)

∂nK
(v · τK).

2.2. A variational formulation. To solve the Stokes system (2.1)-(2.3), A dis-
continuous Galerkin type formulation and finite element discretization was introduced
in [30]. Following the idea of [30], and for the reader’s convenience, we outline the
finite element formulations in this subsection.

Let Th be a quasi-uniform triangulation of Ω with characteristic mesh size h.
Define finite element spaces Vh and Wh for the velocity and pressure, respectively, by

Vh = {v ∈ H(div; Ω) : v|K ∈ Vk(K) ∀K ∈ Th; v · n|∂Ω = 0},

Wh = {q ∈ L2
0(Ω) : q|K ∈ Wk(K) ∀K ∈ Th},

where n is the outward normal direction on the boundary of Ω, (Vk(K), Wk(K))
can be any existing H(div) conforming finite element pairs with order k ≥ 1. For
example, the Raviart-Thomas element of order k (RTk) [27] or the Brezzi-Douglas-
Marini element of order k (BDMk) [3]. Three new H(div) conforming elements have
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Fig. 2.1. Normal and tangential vectors for neighbouring triangles.

been obtained by Wang and Ye [30]. They were created specially to solve the Stokes
and Navier-Stokes equations. In this paper, we focus on the RTk and BDMk elements.
Both of them satisfy the discrete inf-sup condition (also known as the LBB condition)
[4]. Details of these elements are skipped since they can be found in numerous sources.

Multiplying equation (2.1) by any test function v ∈ Vh, then using integration by
parts and equation (2.4), we get

∑

K∈Th

(

(∇u,∇v)K −

∫

∂K

∂u

∂nK
· v ds

)

− (p,∇ · v) = (f ,v).(2.6)

Since v ∈ Vh, its normal component v · nK is continuous across each interior edge.
Therefore, it follows from (2.5) that

∑

K∈Th

∫

∂K

∂u

∂nK
· v ds =

∑

K∈Th

∫

∂K

∂(u · τK)

∂nK
v · τK ds.

By defining (∇hu,∇hv) =
∑

K∈Th
(∇u,∇v)K and substituting the above equation

into (2.6), we obtain

(2.7) (∇hu,∇hv) − (p,∇ · v) −
∑

K∈Th

∫

∂K

∂(u · τK)

∂nK
v · τKds = (f ,v).

We now reformulate the boundary integrals in (2.7). Let e be an interior edge
shared by two elements K1 and K2. Denote unit normal vectors n1, n2 and tangential
directions τ1, τ2, respectively, on e for K1 and K2 (as shown in Figure 2.1). Define
the average {{ · }} and jump [[ · ]] on e for vector-valued functions w as follows:

{{ε(w)}} =
1

2
(n1 · ∇(w · τ1)|∂K1

+ n2 · ∇(w · τ2)|∂K2
) ,

[[w]] = w|∂K1
· τ1 + w|∂K2

· τ2.

For boundary edge e = ∂K1 ∩ ∂Ω, the above two operations must be modified by

{{ε(w)}} = n1 · ∇(w · τ1)|∂K1
, [[w]] = w|∂K1

· τ1.

Let Eh be the set of all edges, including boundary edges, in Th. For sufficiently
smooth u (e.g., u ∈ H

3

2
+ǫ(Ω) for some ǫ > 0), it is not hard to see that

∑

K∈Th

∫

∂K

∂(u · τK)

∂nK
v · τKds =

∑

e∈Eh

∫

e

{{ε(u)}}[[v]]ds.
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Substituting the above into (2.7), we get

(2.8) (∇hu,∇hv) − (∇ · v, p) −
∑

e∈Eh

∫

e

{{ε(u)}}[[v]]ds = (f ,v).

This gives the first equation in the variational form. For the second, testing (2.2)
against any q ∈ Wh yields

(2.9) (∇ · u, q) = 0.

Finally, let V (h) = Vh + (Hs(Ω) ∩ H1
0 (Ω))2, with s > 3

2 . Denote by

ao(u,v) = (∇hu,∇hv) −
∑

e∈Eh

∫

e

{{ε(u)}}[[v]]ds,(2.10)

b(v, q) = (∇ · v, q),(2.11)

two bilinear forms on V (h) × V (h) and V (h) × L2
0(Ω). With the conditions specified

in this paper, it can be proved that the exact solution (u; p) of the Stokes problem in
2D belongs to V (h) for some s > 3

2 . Readers are referred to [8, 9, 20, 25] for details.
As a result, it follows from (2.8) and (2.9) that the exact solution of the 2D Stokes
problem satisfies the following variational equations:

ao(u,v) − b(v, p) = (f ,v) ∀v ∈ Vh,(2.12)

b(u, q) = 0 ∀q ∈ Wh.(2.13)

3. A divergence-free finite element method. The goal of this section is
to describe a divergence-free finite element scheme based on the weak formulation
(2.12)–(2.13). The div-free scheme will be numerically investigated with various test
problems.

3.1. Finite element discretization and error estimates. First, we intro-
duce a symmetric and a skew symmetric bilinear forms on V (h) × V (h) as follows:

as(w,v) = ao(w,v) +
∑

e∈Eh

∫

e

(

αh−1
e [[w]][[v]] − {{ε(v)}}[[w]]

)

ds,

ans(w,v) = ao(w,v) +
∑

e∈Eh

∫

e

(

αh−1
e [[w]][[v]] + {{ε(v)}}[[w]]

)

ds.

where α > 0 is a parameter, and he is the length of the edge e. Then the discrete
problem can be written as follows (see [30] for detail):

Algorithm 1. Find (uh; ph) ∈ Vh × Wh such that

a(uh,v) − b(v, ph) = (f ,v) ∀v ∈ Vh,(3.1)

b(uh, q) = 0 ∀q ∈ Wh,(3.2)

where a(v,w) = as(v,w) or a(v,w) = ans(v,w)

Remark 1. As is usual in the practice of discontinuous Galerkin methods, in

a(·, ·), the term
∫

e
αh−1

e [[w]][[v]] ds is designed to ensure stability of the formulation.
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The parameter α should be large enough to guarantee a good convergence rate, and as

small as possible in order to keep the condition number of the discrete system low.

The well-posedness of Algorithm 1 comes from the well-known discrete inf-sup

condition [4] and the following lemma [30]:
Lemma 3.1. The symmetric bilinear form as(·, ·) is coercive for sufficiently large

α, and the skew symmetric bilinear form ans(·, ·) is coercive for any α > 0.
Error estimates for Algorithm 1 are also given in [30]. We first introduce two

norms ||| · |||1 and ||| · ||| on V (h) as follows:

|||v|||
2
1 = |v|21,h +

∑

e∈Eh

h−1
e ‖[[v]]‖2

e,(3.3)

|||v|||
2

= |||v|||
2
1 +

∑

e∈Eh

he‖{{ε(v)}}‖2
e,(3.4)

where |v|21,h =
∑

K∈Th
|v|21,K and ‖v‖2

e =

∫

e

v · vds.

Theorem 3.2. Let (u; p) be the solution of (2.1)–(2.3) and (uh; ph) ∈ Vh × Wh

be obtained from (3.1)–(3.2). Assume α large enough if a(v,w) = as(v,w). Then,

there exists a constant C independent of h such that

(3.5) |||u − uh||| + ‖p − ph‖ ≤ Chk(‖u‖k+1 + ‖p‖k).

Furthermore, if the Stokes problem has the (H2)2 × H1-regularity property, then

(3.6) ‖u − uh‖ ≤ Chk+1(‖u‖k+1 + ‖p‖k)

provided that (u; p) ∈ (Hk+1(Ω))2 × Hk(Ω) with k ≥ 1.

3.2. Divergence-free scheme. Algorithm 1, as described in the previous sec-
tion, introduces a coupled saddle point system. In order to solve this system efficiently,
next, we will focus on decoupling it by using the divergence-free finite element method.
Define the divergence-free subspace Dh of Vh by

Dh ≡ {v ∈ Vh; b(v, q) = 0, ∀q ∈ Wh}.

By properties of the BDMk and RTk finite element spaces, we have ∇ · Vh = Wh [4].
Therefore, it is easy to see that

Dh = {v ∈ Vh; ∇ · v = 0}.

In other words, Dh is globally exactly divergence-free. We point out that this is
usually not true for H1 conforming velocity discretizations, and functions in Dh will
then only be weakly divergence-free.

By taking the test function in Dh, the discrete formulation (3.1)-(3.2) can be
reduced into the following divergence-free finite element scheme:

Algorithm 2. Find uh ∈ Dh such that for all v ∈ Dh

(3.7) a(uh,v) = (f ,v).

Problem (3.7) is symmetric positive definite if we choose a(v,w) = as(v,w),
which brings great advantage in numerical simulation since it can be solved by the
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efficient conjugate gradient method. Also, developing preconditioners for symmetric
positive definite equations is considerably easier than for other systems.

Next, we give a computable basis for the divergence-free subspace Dh by using the
potential from Helmholtz decomposition. In two-dimension, a divergence-free vector
v admits a potential function φ and

v = curlφ :=

(

−∂yφ
∂xφ

)

.

The 2D potential φ is usually called the stream-function in literature.
The Helmholtz decomposition also holds for most 2D H(div) conforming finite

element spaces [4, 12, 13]. For the Raviart-Thomas (RT) and Brezzi-Douglas-Marini
(BDM) elements, the following result is well-known [4, 12, 13]:

Theorem 3.3. There exists a one-to-one map curl : Sh → Dh where the stream-

function space Sh is defined as following:

1. for triangular RT element of order k ≥ 0 or BDM element of order k ≥ 1,

Sh = {φ ∈ H1
0 (Ω); φ|K ∈ Pk+1(K), K ∈ Th};

2. for rectangular RT element of order k ≥ 0,

Sh = {φ ∈ H1
0 (Ω); φ|K ∈ Qk+1(K), K ∈ Th};

where Pk(K) = span{xiyj | 0 ≤ i + j ≤ k} and Qk(K) = span{xiyj | 0 ≤ i, j ≤ k}.
According to the above Theorem, one can simply take curl of the nodal basis of

Pk+1 or Qk+1 conforming spaces, and derive a computable basis for Dh.
In three-dimension, the divergence-free vector field can similarly be identified as

the curl of a vector potential. Here curl is the usual vector curl which maps 3D vectors
into 3D vectors. Let Vh be the Raviart-Thomas discretization of H(div) with order
k and Sh be the Nedelec edge discretization of H(curl) with order k. The following
result is well known [2]:

Theorem 3.4. Let Dh be the globally divergence-free subspace of Vh, then

Dh = curlSh.

The three-dimensional case is significantly more complicated than the two-dimensional
case since the 3D curl operator has a fairly large kernel containing all gradient vectors.
Hence it is usually not practical to derive a basis of Dh from a basis of Sh in three
dimension. Although there are some results in this direction [5, 28], they are either
complicated or carrying many limitations.

For three-dimensional problem, another possible approach is to solve the problem
directly on curl{φh}, where {φh} is a basis for Sh. Notice that curl{φh} is linearly
dependent and hence is not a basis for Dh. Discretization using a linearly dependent
spanning set leads to a singular linear algebraic system. However, we know that many
Krylov subspace iterative solvers can handle singular systems well as long as the right-
hand side and the initial guess are orthogonal to the null space of the matrix. With
careful design, the problem may still be solvable using Krylov subspace solvers.

3.3. Inhomogeneous boundary conditions. In practical computation, many
Stokes problems are imposed with inhomogeneous boundary conditions for the ve-
locity. Here we generalize the divergence-free finite element method to the following

7



problem:

−∆u + ∇p = f in Ω,

∇ · u = 0 in Ω,

u = g on ∂Ω.

The boundary data can be decomposed into two parts:

u · n = g · n and u · τ = g · τ.

The normal component u · n will be imposed as an essential boundary condition. In
other words, we seek for discrete solutions from the following finite element space

Ṽh = {v ∈ H(div; Ω) : v|K ∈ Vk(K) ∀K ∈ Th; v · n|∂Ω = Ih(g · n)},

where Ih(g · n) is a suitable nodal value interpolation on ∂Ω, based on the degrees of
freedom of the discrete space for v · n on ∂Ω. The tangential component u · τ will be
treated as a natural boundary condition, that is, it will be imposed weakly through
boundary integrals. Let EB

h be the set of all boundary edges in Th, then Algorithm 1

should be modified as follows. Find (uh; ph) ∈ Ṽh × Wh such that

a(u,v) − b(v, p) = (f ,v) +
∑

e∈EB

h

∫

e

(g · τ)(αh−1
e v · τ ∓

∂(v · τ)

∂n
) ds ∀v ∈ Vh,

b(u, q) = 0 ∀q ∈ Wh,

where the minus is taken when using the symmetric form as(·, ·) and the plus for
ans(·, ·). As usual in treating inhomogeneous boundary problems, the test space
should still carry the homogeneous boundary condition, which means v is in Vh instead
of Ṽh.

Similar changes need to be made when using the divergence-free scheme. The
right-hand side in algorithm 2 should be modified consequently. Furthermore, since
the computational basis of Dh is derived from Sh, we need to be careful when imposing
the essential boundary condition u·n = g·n. Indeed, we impose the essential boundary
condition on Sh. To this end, let u ∈ Dh and φ ∈ Sh satisfies u = curlφ. Then

∂φ

∂τ
= u · n = g · n on ∂Ω.

Therefore, one only needs to impose the following essential boundary condition on Sh

and compute the basis accordingly:

φ(x) = φ(x0) +

∫ x

x0

g · n ds x ∈ ∂Ω.

Here x0 is an arbitrary point on ∂Ω and the integral is taken counter-clockwisely along
∂Ω. This boundary condition for φ is unique only up to a constant φ(x0). However,
the constant will go away after taking curl. In other words, one is free to choose any
x0 and φ(x0) in the implementation.
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4. Numerical experiments for the Stokes equations. Numerical results for
two dimensional Stokes equations are presented in this section. The divergence-free
finite element scheme introduced in Algorithm 2 is used. The main objective here is
to numerically examine the accuracy and efficiency of the H(div) scheme.

For simplicity, a rectangular computational domain with uniform rectangular
grids are used in this numerical study. The Raviart-Thomas finite element of or-
der k = 1 (RT1) is employed in the finite element discretization. For the symmetric
bilinear formulation as(·, ·), the discrete system is solved by using the conjugate gradi-
ent method. The discretization from the non-symmetric formulation ans(·, ·) is solved
by using the GMRES method. In both cases, a relative residual of ε = 1.0e − 8 is
used as the stopping criteria.

Let u be the exact velocity and uh be its divergence-free finite element approx-
imation obtained from Algorithm 2. The error is calculated by computing various
norms or semi-norms of Phu − uh, where Ph is the nodal value interpolation into
Q2 conforming finite element spaces. This provides an accurate and effective method
for computing the error under various norms. To be more precise, we introduce the
following notations

E1 =

(

∑

K∈Th

(∇(Phu − uh),∇(Phu − uh))K

)1/2

,

E2 =

(

∑

e∈Eh

h−1
e ‖[[(Phu − uh)]]‖2

e

)1/2

, E3 =

(

∑

e∈Eh

he‖{{ε(Phu − uh)}}‖2
e

)1/2

.

Clearly, we have

|Phu − uh|
2
1 = E2

1 , |||Phu − uh|||
2
1 = E2

1 + E2
2 , |||Phu − uh|||

2
= E2

1 + E2
2 + E2

3 .

The domain is given by Ω = (0, 1) × (0, 1), which is partitioned into uniform
rectangular grids along the x- and y- axes. We examine the error for both the sym-
metric formulation and the non-symmetric formulation with various values for the
stabilization parameter α. In particular, we would like to see the sensitivity of each
formulation against the parameter values of α.

4.1. Some numerical results for test problem 1. The test problem 1 is a
Stokes equation with exact solution given as follows:

u = 2xy(x − 1)(y − 1)

(

−x(x − 1)(2y − 1)
y(y − 1)(2x − 1)

)

, p = 0.

It is clear that homogeneous boundary condition is satisfied by this velocity.

Table 4.1

Numerical performance for test problem 1, using the symmetric formulation as with parameter

value α = 100.

mesh iteration E1 E2 E3 ‖ · ‖L2 ‖ · ‖L∞

8 × 8 147 1.41e-02 2.03e-04 1.95e-02 5.05e-04 1.16e-03
16 × 16 633 7.04e-03 7.33e-05 7.18e-03 1.27e-04 3.19e-04
32 × 32 2214 3.52e-03 2.63e-05 2.60e-03 3.19e-05 8.43e-05
64 × 64 8432 1.76e-03 9.35e-06 9.31e-04 7.99e-06 2.17e-05

128 × 128 32252 8.82e-04 3.32e-06 3.31e-04 2.00e-06 5.52e-06
asym. order O(hk), k = 1.00 1.48 1.47 1.99 1.93
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Table 4.2

Error information for test problem 1, using the symmetric formulation as with α = 10.

mesh iteration E1 E2 E3 ‖ · ‖L2 ‖ · ‖L∞

8 × 8 43 1.41e-02 2.19e-03 2.13e-02 4.17e-04 8.93e-04
16 × 16 195 7.07e-03 8.03e-04 7.91e-03 1.14e-04 2.57e-04
32 × 32 894 3.53e-03 2.89e-04 2.86e-03 3.02e-05 7.58e-05
64 × 64 3863 1.76e-03 1.03e-04 1.02e-03 7.77e-06 2.07e-05

128 × 128 15977 8.83e-04 3.66e-05 3.65e-04 1.97e-06 5.42e-06
asym. order O(hk), k = 1.00 1.48 1.47 1.93 1.84

Fig. 4.1. Rate of convergence for test problem 1, using the symmetric formulation as with α = 10.
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The numerical results in tables 4.1 and 4.2 show an O(h) convergence for the ||| · |||
norm and O(h2) convergence for the L2 norm, which agrees well with the theoretical
results in Theorem 3.2. The rate of convergence is illustrated in figure 4.1. It also
shows that E2 and E3, which are related to the jump on internal edges, are usually
of higher order accuracy than the discrete semi H1-norm E1. This phenomena was
not predicted by any existing convergence theory. Furthermore, the L∞ norm of the
error seems to be of order O(h2) accuracy, though no theoretical proof can be seen in
any existing literature.

Table 4.3

Numerical performance for test problem 1, using the non-symmetric formulation ans, with

parameter value α = 100.

mesh iteration E1 E2 E3 ‖ · ‖L2 ‖ · ‖L∞

8 × 8 1/53 1.40e-02 1.99e-04 1.92e-02 4.77e-04 1.12e-03
16 × 16 1/418 7.04e-03 7.18e-05 7.06e-03 1.17e-04 3.08e-04
24 × 24 190/482 4.69e-03 3.94e-05 3.90e-03 5.21e-05 1.41e-04
32 × 32 501/501 3.52e-03 2.57e-05 2.55e-03 2.92e-05 8.12e-05
asym. order O(hk), k = 1.0004 1.4765 1.4548 2.0138 1.8936
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Table 4.4

Numerical performance for test problem 1, using the non-symmetric formulation ans, with

parameter value α = 10.

mesh iteration E1 E2 E3 ‖ · ‖L2 ‖ · ‖L∞

8 × 8 1/44 1.41e-02 1.82e-03 1.85e-02 2.53e-04 8.15e-04
16 × 16 1/205 7.06e-03 6.61e-04 6.69e-03 6.01e-05 2.32e-04
24 × 24 2/19 4.70e-03 3.63e-04 3.66e-03 2.62e-05 1.07e-04
32 × 32 116/52 3.52e-03 2.37e-04 2.38e-03 1.46e-05 6.17e-05
asym. order O(hk), k = 0.9998 1.4716 1.4787 2.0591 1.8591

The numerical results in tables 4.3 and 4.4 were for the non-symmetric formu-
lation with the bilinear form ans(·; ·). Like in the symmetric case, it shows an O(h)
convergence in the ||| · |||-norm (or energy norm) and O(h2) convergence in the L2 norm,
which are all of optimal-order. It should be pointed out that no optimal-order error
estimate was known for the velocity approximation in the L2 norm.

The restarted GMRES solver was employed when solving the linear system re-
sulted from the non-symmetric formulation. This solver restarts in every 500 steps.
The “iteration” is expressed as a pair of numbers m/n where m is the restart rounds
and n is the number of steps in the current restart round. The total iteration num-
ber should be 500(m − 1) + n. For example, 1/53 indicates that 53 iterations were
performed, and 2/19 would give 519 iterations. The maximum iteration number is
501/501, which is 250, 501 iterations. The restarted GMRES uses much less computer
memory than the original GMRES since the original GMRES needs to save all or-
thogonal vectors generated in the Lanczos process. However, the restarted GMRES
may have a slower convergence rate than the original one. In addition, it is not clear
to the authors how the convergence of the restarted GMRES is characterized by the
condition number of the underlying matrix.

4.2. Some numerical results for test problem 2. The test problem 2 is a
Stokes equation with exact solution given as follows:

u =

(

sin (2π x) cos (2π y)
− cos (2 π x) sin (2π y)

)

, p = x2 + y2.

It is not hard to see that the following natural boundary conditions are satisfied by
this velocity:

u · n|∂Ω = 0, u · τ |∂Ω 6= 0.

Note that the second boundary condition (along the tangential direction) only indi-
cates that a natural boundary condition should be imposed for this problem when
using the H(div) finite element methods. One would need to compute u · τ |∂Ω from
the representation of the velocity u in the numerical test.

The error information and rate of convergence for the numerical scheme are illus-
trated in Tables 4.5 and 4.6 for the symmetric formulation, and Tables 4.7 and 4.8
for the non-symmetric formulation.
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Table 4.5

Numerical performance for test problem 2, using the symmetric formulation as with α = 100.

mesh iteration E1 E2 E3 ‖ · ‖L2 ‖ · ‖L∞

8 × 8 139 1.02e+00 1.40e-02 1.21e+00 3.25e-02 6.41e-02
16 × 16 602 5.05e-01 4.59e-03 4.34e-01 7.97e-03 1.72e-02
32 × 32 1780 2.52e-01 1.59e-03 1.54e-01 1.99e-03 4.49e-03
64 × 64 5190 1.26e-01 5.55e-04 5.48e-02 4.98e-04 1.15e-03

128 × 128 15064 6.31e-02 1.96e-04 1.94e-02 1.25e-04 2.92e-04
asym. order O(hk), k = 1.00 1.54 1.49 2.00 1.95

Table 4.6

Error information for test problem 2, using as, α = 10.

mesh iteration E1 E2 E3 ‖ · ‖L2 ‖ · ‖L∞

8 × 8 32 1.01e+00 1.40e-01 1.33e+00 2.62e-02 5.25e-02
16 × 16 159 5.05e-01 4.97e-02 4.79e-01 7.11e-03 1.42e-02
32 × 32 751 2.52e-01 1.74e-02 1.70e-01 1.87e-03 4.07e-03
64 × 64 3364 1.26e-01 6.13e-03 6.05e-02 4.83e-04 1.10e-03

128 × 128 14305 6.31e-02 2.15e-03 2.14e-02 1.22e-04 2.87e-04
asym. order O(hk), k = 1.00 1.51 1.49 1.94 1.87

Table 4.7

Numerical performance for test problem 2, using the non-symmetric formulation ans, with

parameter value α = 100.

mesh iteration E1 E2 E3 ‖ · ‖L2 ‖ · ‖L∞

8 × 8 1/39 1.01e+00 1.37e-02 1.20e+00 3.16e-02 6.28e-02
16 × 16 1/318 5.04e-01 4.49e-03 4.27e-01 7.60e-03 1.67e-02
24 × 24 13/30 3.36e-01 2.41e-03 2.33e-01 3.35e-03 7.63e-03
32 × 32 46/188 2.51e-01 1.55e-03 1.52e-01 1.90e-03 4.35e-03
asym. order O(hk), k = 1.0074 1.5763 1.4908 2.0290 1.9244

Table 4.8

Numerical performance for test problem 2, using the non-symmetric formulation ans, with

parameter value α = 10.

mesh iteration E1 E2 E3 ‖ · ‖L2 ‖ · ‖L∞

8 × 8 1/33 1.01e+00 1.18e-01 1.21e+00 2.02e-02 4.04e-02
16 × 16 1/167 5.04e-01 4.09e-02 4.17e-01 4.62e-03 1.11e-02
24 × 24 1/427 3.36e-01 2.21e-02 2.24e-01 2.00e-03 5.35e-03
32 × 32 9/36 2.52e-01 1.42e-02 1.44e-01 1.11e-03 3.12e-03
asym. order O(hk), k = 1.0017 1.5290 1.5334 2.0938 1.8449

4.3. Some numerical results for test problem 3. In test problem 3, the
exact solution of the Stokes equations is given by

u =

(

cos (2 π x) sin (2π y)
− sin (2π x) cos (2π y)

)

, p = x2 + y2.
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The following essential boundary conditions are satisfied by this velocity:

u · n|∂Ω 6= 0, u · τ |∂Ω = 0.

Again, one would need to compute u ·n|∂Ω from the representation of this velocity in
doing numerical computation.

The convergence and error profile for different mesh configuration are illustrated
in Tables 4.9–4.12.

Table 4.9

Numerical performance for test problem 3, using the symmetric formation as with α = 100.

mesh iter. E1 E2 E3 ‖ · ‖L2 ‖ · ‖L∞

8 × 8 152 1.02e+00 4.16e-02 4.29e-01 2.40e-02 5.24e-02
16 × 16 593 5.05e-01 7.77e-03 9.81e-02 5.73e-03 1.32e-02
32 × 32 1921 2.52e-01 1.42e-03 2.35e-02 1.42e-03 3.38e-03
64 × 64 8367 1.26e-01 2.60e-04 5.76e-03 3.52e-04 8.27e-04

128 × 128 27917 6.31e-02 4.79e-05 1.43e-03 8.87e-05 2.10e-04
asym. order O(hk), k = 1.00 2.44 2.05 2.02 1.99

Table 4.10

Error information for test problem 3, using the symmetric formulation as with α = 10.

mesh iter. E1 E2 E3 ‖ · ‖L2 ‖ · ‖L∞

8 × 8 48 1.00e+00 7.44e-02 4.66e-01 2.27e-02 5.08e-02
16 × 16 218 5.04e-01 1.60e-02 1.08e-01 5.65e-03 1.31e-02
32 × 32 951 2.51e-01 3.61e-03 2.60e-02 1.41e-03 3.29e-03
64 × 64 3964 1.25e-01 8.50e-04 6.37e-03 3.52e-04 8.24e-04

128 × 128 16122 6.31e-02 2.05e-04 1.58e-03 8.83e-05 2.08e-04
asym. order O(hk), k = 1.00 2.12 2.05 2.00 1.99

Table 4.11

Numerical performance for test problem 3, using the non-symmetric formulation ans, with

parameter value α = 100.

mesh iteration E1 E2 E3 ‖ · ‖L2 ‖ · ‖L∞

8 × 8 1/101 1.02e+00 4.15e-02 4.26e-01 2.34e-02 5.23e-02
16 × 16 2/21 5.05e-01 7.76e-03 9.76e-02 5.60e-03 1.29e-02
24 × 24 111/414 3.36e-01 2.87e-03 4.22e-02 2.48e-03 5.77e-03
32 × 32 350/304 2.52e-01 1.42e-03 2.35e-02 1.41e-03 3.30e-03
asym. order O(hk), k = 1.0095 2.4340 2.0928 2.0293 1.9965
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Table 4.12

Numerical performance for test problem 3, using the non-symmetric formulation ans, with

parameter value α = 10.

mesh iteration E1 E2 E3 ‖ · ‖L2 ‖ · ‖L∞

8 × 8 1/50 1.01e+00 6.38e-02 4.37e-01 1.92e-02 4.90e-02
16 × 16 1/236 5.04e-01 1.35e-02 1.01e-01 4.74e-03 1.26e-02
24 × 24 3/265 3.38e-01 2.60e-02 5.04e-02 2.21e-03 5.67e-03
32 × 32 40/290 2.51e-01 3.02e-03 2.58e-02 1.51e-03 3.45e-03
asym. order O(hk), k = 1.0005 1.7712 2.0145 1.8642 1.9272

4.4. Condition number and error dependency on α. We also tested how
the condition number of the discrete system and the error depend on various values of
the stabilization parameter α. The existing theory predicted that, for the symmetric
formulation, the numerical method is stable and accurate for sufficiently large values of
α. Since the discrete system is symmetric and positive definite, the condition number
of the discrete system can be conveniently calculated using estimates for extreme
eigenvalues from the conjugate gradient (Lanczos-type) process. To this end, we solve
the test problem 1 with different values of α, and compare the results in Tables 4.13
and 4.14. The condition number for the symmetric case seems to depend linearly
on α. As α becomes larger, the tangential jump across internal edges will become
smaller. Hence it is expected that E2 gets smaller as α increases. From Tables 4.13
and 4.14, it seems that the error in other norms are not affected much by α when α is
large enough. It can also be seen that the non-symmetric formulation is not sensitive
to the change of α, especially with small values.

Table 4.13

Condition number and error for different values of α for test problem 1 on the 16 × 16 grid,

with symmetric formulation as.

α iteration condition E1 E2 E3 ‖ · ‖L2 ‖ · ‖∞
1 252 – 7.01e-02 6.74e-02 7.23e-02 1.27e-03 3.28e-03
2 166 5.91e+04 1.19e-02 8.68e-03 1.76e-02 2.43e-04 1.60e-03
4 172 8.78e+04 7.46e-03 2.44e-03 9.72e-03 1.08e-04 4.74e-04
8 183 1.55e+05 7.10e-03 1.03e-03 8.15e-03 1.12e-04 2.57e-04
16 230 2.97e+05 7.05e-03 4.82e-04 7.58e-03 1.19e-04 2.80e-04
32 310 5.87e+05 7.04e-03 2.37e-04 7.34e-03 1.24e-04 3.03e-04
64 398 1.17e+06 7.04e-03 1.15e-04 7.22e-03 1.26e-04 3.15e-04
128 488 2.33e+06 7.04e-03 5.71e-05 7.17e-03 1.27e-04 3.20e-04

5. Numerical experiments for a lid driven cavity problem. In this sec-
tion, we report some numerical results on a lid driven cavity problem, for which the
exact solution is not known. The 2D lid driven cavity problem describes the flow in
a rectangular container which is driven by the uniform motion of one lid [29]. The
lid driven cavity problem is one of the most popular benchmark problems for test-
ing numerical schemes in fluid flow. One of the main difficulties of this problem is
that it has a discontinuous velocity boundary condition and the standard primitive
Galerkin methods have difficulty in dealing with such discontinuities without a fur-
ther approximation of the boundary data. In two dimensional case, this boundary
condition results in corner singularities for the solution.
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Fig. 5.1. Streamline portrait of the lid driven cavity problem, obtained from the symmetric

formulation as with various values of the stabilization parameter α.
stream contour, alpha=1
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Fig. 5.2. Streamline portrait for the lid driven cavity problem, obtained from the non-symmetric,

but absolutely stable formulation ans with various values of the stabilization parameter α.
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Table 4.14

Numerical results for different values of α for test problem 1 on the 16 × 16 grid, with non-

symmetric formulation ans.

α iteration E1 E2 E3 ‖ · ‖L2 ‖ · ‖L∞

1 1/187 7.73e-03 4.18e-03 5.28e-03 4.10e-04 1.16e-03
2 1/182 7.35e-03 2.55e-03 5.76e-03 2.55e-04 7.64e-04
4 1/183 7.15e-03 1.47e-03 6.24e-03 1.27e-04 4.68e-04
8 1/195 7.07e-03 8.10e-04 6.60e-03 6.18e-05 2.75e-04
16 1/237 7.04e-03 4.27e-04 6.83e-03 7.40e-05 2.20e-04
32 1/303 7.04e-03 2.20e-04 6.96e-03 9.76e-05 2.71e-04
64 1/374 7.04e-03 1.11e-04 7.03e-03 1.12e-04 2.98e-04
128 1/440 7.04e-03 5.62e-05 7.07e-03 1.20e-04 3.12e-04

The 2D lid driven cavity problem was formulated in Ω = (0, 1)2, with boundary
condition u = (1, 0)t on the top lid and u = (0, 0)t elsewhere. In most direct numer-
ical simulations of this problem, one has to choose explicitly the essential boundary
data on two top corners. Popular choices are the “leaky” type, where u = (1, 0)t; the
“non-leaky” type, where u = (0, 0)t; and the “regularized” type, where the boundary
data on the top lid is replaced by a smooth function which vanishes at two corners.
We emphasize that, in our divergence-free H(div) method, the boundary data dis-
continuity no longer cause any difficulty in the numerical scheme. This is so because,
as pointed out earlier, only the normal component of the boundary data u · n (which
equals zero and is thus continuous) is imposed as the essential boundary condition.
The tangential component u · τ , which carries the discontinuity, is imposed weakly
through boundary integrals. Therefore, the H(div) finite element method is a natural
fit to the lid driven cavity problem (of cause the method was not motivated by the
lid driven cavity problem).

The computational results for the two-dimensional lid driven cavity problem are
obtained by using a uniform 32× 32 rectangular mesh with both symmetric and non-
symmetric finite element formulations. We are especially interested in seeing how the
numerical solutions are affected by the change of α values. The streamline portraits
are shown in Figures 5.1 and 5.2, and the velocity profiles are illustrated in Figures
5.3, 5.4, 5.5, 5.6, and 5.7. While we would like to leave readers to draw conclusions,
we do like to point out the following obvious phenomena:

• The symmetric scheme is non-stable when values of α are not sufficiently
large. For example, the CG method did not converge for the linear system
with α = 1. This means that the required positive definiteness of the linear
system may fail to be valid for this case.

• The non-symmetric scheme is stable regardless the value of α. Of course, the
system’s coercivity gets weaker and weaker when the parameter α is getting
closer to zero from positive. For small values of α, the continuity of the
velocity approximation is less enforced. This can be seen from the numerical
solution in Figures 5.5 and 5.6. But the discontinuity is suppressed when the
value of α gets large as shown in Figure 5.7.

• In the streamline portrait, the primary eddy and two corner eddies are clearly
visible.

• The non-symmetric finite element formulation is quite stable with respect
to the parameter value of α. But extra care might be needed for solving
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Fig. 5.3. The first velocity component profile for the lid driven cavity problem, obtained by

using the symmetric formulation with various values of α.
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the resulting non-symmetric matrix problem. GMRES was employed in our
numerical experiments and the method has an acceptable convergence for the
size of problem illustrated in this article.

• The condition number for the resulting matrix is proportional to h−4 where
h is the mesh size of the finite element partition. Therefore, neither CG nor
GMRES provides a fast solver for the matrix problem. A good preconditioner
is clearly needed in order to speedup the performance of CG and GMRES.
Preconditioning issues will be further explored in forthcoming papers.

Fig. 5.6. The velocity profile for the lid driven cavity problem, obtained by using the non-

symmetric formulation with α = 0.1.
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Fig. 5.4. The second velocity component profile for the lid driven cavity problem, obtained by

using the symmetric formulation with various values of α.
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Fig. 5.5. The velocity profile for the lid driven cavity problem, obtained by using the non-

symmetric formulation with α = 0.01.
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Fig. 5.7. The velocity profile for the lid driven cavity problem, obtained by using the non-

symmetric formulation with α = 1.
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