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CASCADIC MULTIGRID METHODS FOR
MORTAR WILSON FINITE ELEMENT METHODS
ON PLANAR LINEAR ELASTICITY"

Chen Wenbin{[JE 3 HK) Wang Yangiu(¥EFEFK) (] r 74.

Abstract Cascadic multigrid technique for mortar Wilson finite element method of
homogeneous boundary value planar linear elasticity is described and analyzed, First
the mortar Wilson finite element method for planar linear elasticity will be analyzed,
and the error estimate under L® and H' norm is optimal. Then a cascadic multigrid
method for the mortar finite element discrete problem is described. Suitable grid trans-
fer operator and smoother are developed which lead to an optimal cascadic multigrid
method. Finally, the computational results are presented.
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1 Introduction

The mortar finite element method is a non-conforming domain decomposition technique
(2,3,9]. It handles discrete finite element approximations on independently partitioned sub-
domains and is designed to be optimal by using the matching conditions to restrain the jump
across sub-domain interfaces. The flexibility of this method is well recognized. Bernardi, Maday
and Patera {3] proved the existence and uniqueness of discrete problem of Poisson equation, and
also showed that the mortar finite element method is of the same accuration to the usual finite
element method. In order to solve large scale problems, some preconditioning technique have
been successfully adapted. For example, the ”Dirichlet-Neumann” or ” Neumann-Neumann” al-
gorithms (2,20,20], substructuring preconditioner [1] and multigrid method (4,15,20,26], in which
the preconditioners in [4,20,26] require a use of Lagrange multipliers under a primal hybrid for-
mulation. Recently the cascadic multigrid method [5,6,23,25] for finite element is considered.
Cascadic multigrid differs from usual multigrid method in that it requires no coarse grid correc-
tions and it performs more iterations on coarser levels to obtain less iterations on finer levels.
In this paper we will consider the cascadic multigrid method for mortar finite element approxi-
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mations of the pure displacement boundary problems in plane linear elasticity associated with a
homogeneous isotropic elastic material. Next is the description of some notations and the varia-
tional form of our problem. In section 2 the mortar finite element discretion is introduced with
the error estimate (the existence and uniqueness of solutions to the discrete problems are proved
in appendix). In section 3 the cascadic multigrid for the discrete problem will be analyzed and an
algorithm is given and it is proved to be optimal. Finally some results of numerical experiments
are given in section 4.

Let {2 be & bounded convex polygon in the z — y plane with a Lipschitz-continuous boundary
1. We shall only consider the case of homogeneous boundary conditions in the pure displace-
ment boundary problems because the results can be easily extended to the more general cases.
For a given integer m > 0, we introduce the norm and seminorm over the Sobolev space H™(Q)

1/2 1/2
olim,a = ( [ﬂ 3 |8°uf? dm) , |olma = ( f Y (0% dw) -
1

la|<m |ofj=m

By interpolation theory and dual theory the m can be extended to all real number. In what
follows, we shall be interested in the space

Hy (@) = (H5 ().

For any & = (v1,v2) € H} (1), the expressions (lv1f2, o + [v2l?, 0)Y/? and (e llZ, o + lwall?, q)*/2
will be denoted by |8, and ||#]|;m.n. We let the stresses oi; and the strains ¢;; be

1/ Hv v
i 3
0 (V) = A(div)dy; + 2pei(7), 1<4,j <2, (1.2

where the constants A > 0 and g > 0 are the coeflicients of Lamé of the continuum, and where
6;',' = 0(% ;EJ), 65.‘, = 1.

The bilinear form a(:,-) is defined on H() x H (D) by

o(@, ) = /ﬁ (2 €() : (@) + A div @ div 7) de.

The homogeneous boundary value problem can be formulated as follows: to find the displace-
ments 7 € A} () such that

a(i, ) = (f,9), vie H\). (1.3)

Andif fe L2 (€2), by {11] the problem (1.3) has a unique solution @ € ﬁ“(ﬂ) and there exists a
positive constant Cp such that

2.2 + AlldiviZlls,e < Callfllo. (1.4)

Definition 1.1 Define the space of rigid motions

)

RM(Q) := {#: ﬂ’=é’+b(
|

),Ee R%* b€ R} (1.5)
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and the space
-'_‘:ﬂl-

g () :={te H*(Q): [ﬁ'dz=ﬁ,fr0tifd:c=0}. (1.6)
L. Q

It is easy to see that RAM(Q2) is the kernel of ¢,

~m S
and the space H (f2) is the subset of H™(f).
2 Mortar Wilson FEM

Assume that §! is a rectangle. Divide §) into several non-overlapping rectangles O (k =
1---N). We consider here only the geometrically conforming version, which means that 8%; {7 99,
(Vi # j) is either an empty set, an edge or & vertex. The interface I' = Uiy, 89Q; is broken into
a set of disjoint open straight line segments 5, each of which is the common side of 89Q; N 80 ;
for some 1 and j. Set mortar side and nonmortar side on each v € T, represent them by ¥™ and
vN¥M and assume that ¥y € I,

™ e Qe Y™ € Qnpqy-

We associate with each €, a regular quasi-uniform triangulation T(2) made of elements
that are rectangles. By Ay we denote the maximum diameter of the rectangles. The triangulations
generally do not align at the sub-domain interfaces.

We first introduce the @, element, Q:(K) = span{1, z,y, zy}, over the rectangle K, and then
the Wilson element, W(K) = span{1,z,y,zy,2? ¢?}, over K. Each v € @1(K) is determined
by its values at the vertices of K. Each v € W(X) is determined by the values at the vertices of

1 1
K and " ils).
and by the values meas(K) ‘/;{ O..v and meas(K) '/;{ 0,y v(see [13,19] for details). Define

Xn(00) = {Te,n : e n|x € W(K)and continuous at the vertices of K},

Xf(ﬂg) = {De,nlx € Q1(K),and continuous at the vertices of K},

N N
Zh@) = [[ Zu(), X2(0) = 1 X7 ).
k=1 k=1
Such spaces as X () and X ,? (£2) generally do not align on the interface I'. We introduce some
spaces on interface segments y. Every ¥¥™ is divided into sub-intervals by the vertices of mesh
in the non-mortar domain of . Denote the sub-intervals by w,,, s =1,--- .S, where w1 and
W, g are the sub-intervals at the ends of 4. Then we have

Why) = {¥ = (¥n,¥2): ¢ = 1,2)is linear on eagh w,,,and continuous on v},
MMy) = (@ =(h1,92) € Wh(y): o (i = 1,2)vanishes at the end-points of v},
Shy) = (Y=, v) e Wh(y) i (i =1, 2}is constant on w, jand w, s},

VU € fh(ﬂ), let 9% be the bilinear part of #. Then #9 is continuous in Q, 1<k <N.
Define the mortar finite element spaces as the following;

Vo = {fheXn(@): VyCT, Ve ), /(ﬁfh -3, - ddr =0},
%Y

Ve = {5eX9Q): vy, v e §h(y), f(ﬁ,-,;, ~ ¥ 1) - dr = D).
Y
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It is easy to see that f;hQ C Vs
Define the spaces Xg,(§2) C Xp(€), fﬁh(ﬂ) C f,?(ﬂ), Vo C Vi, V’fh C 1731 the func-
e - >0
tions in which vanishing at the vertices on 8Q. And the spaces Xp(f2) C X4(Q2), X, () C

X,?(ﬂ), Vo C Vi,V C Vf , the functions in which satisfying the condition that /;1 vdz =

0, f rot ¥dz = 0. Then we can write the discrete problem of (1.3) as: find 4}, € 1751;1 that
Q

anl(@n, On) = (f,98), Vi € You, (2.1)

in which
€

N
' A o . e
ap{h, n) = 7 T / (2ue(tdy p) @ €(Tep) + Adivig p divey ) dz.
k=1 KeTy () ' K

Define the discrete norm over {2; as

N
Fulmen = > WenlZi)®s  |Palms = O 1l sn)t, m=1,2,
k=1

KcTh(f1y)
N %
— 1 —p
Wallmpen = (> Tesll, 7, ||6h||m.h=(z||uh||;,k,h) , m=0,1,2
KeTy (1) k=1

N 2 %
mﬁhmw(Z > Zue:-j(ﬁ'k.hnﬁ,x) :

k=1 K€T){Q4)1.j=1

Lemma 2.1 |4, || is the norm over Vp 4, |[1l1.4 is equivalent to 1,5 over V.

According to the mortar condition we define the following projection. ¥y € T, define the
projection IL, : L%(y) = M"*(~) as

[ @0 Fas= [5-Fds,  vie ), de S,
i ¥

In {3] the projection is proved proper and stable in L?(7y) and ﬁ(}f (7}, ie.,

1,30,y < Clilloys YT € L2(y), (2.2)
L, W ooy < Clldligssag,y  YTE HE (). (2.3)

Let {yf._} denote the nodes of T,(Qx) and the operator ¢, : L2(v) — .ff(ﬂ) be defined by

-

—p j * 1 —~
E‘Yﬁ(yi) — ﬁ‘}'v(yk):l if yi €7 N QNM['}')'.-
0, otherwise.

It is easy to see that if ¥ € }_f,?(ﬂ), v+ Ze.,ﬁ’e 17'&‘?, and if 7 € Xp(Q), 7 + 2 e €47 € Vi
y€T
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And for v € T, we introduce the orthogonal projection 11, : L2(y) = M*(v), which have [3]

llo = vl gy + b7 2 o= Tyvll =12y < ehfWollaogy), Yo € HO(9), (2.4)

where 0 < g < 1. |
Before analyzing the error estimate of mortar finite element solution, we give two lemmas

on interpolation error.

Lemma 2.2 Assume that @ € X,(Qx), the bilinear part ﬂf , Satisfies that
And, if 7% Uy 5, €quals to 0 at all the nodes which are not on the side v of sub-domain {2, we have
|ﬁﬁhhak1h < chjﬁhlﬂéé2(7)‘ (2.6)

The inequality(2.5) is the Lemma 3.2 in [27], and the proof of inequality(2.6) follows [17].

N
Definition 2.3 Assume that 7 € » H(Q) N H'(Q), denote =}, to be the Wilson
k=1
1nterpolat10n operator over {};. Define separately the interpolation operators m} from H L)
onto X n(Q), and 7, onto V, as the following:

(W;ﬁ)lﬂh = W;,kﬁlﬂh: Vﬂk: (27)
m¥ =TT+ Y e (mht)9. (2.8)
v€l

It can be proved that the interpolation operators defined up here satisfy:

N
Lemma 2.4 Assume that v € Zﬁz(ﬂk) M H'(N), then VK € Th(f2e), (1 <k < N) we

k=1
have
0% — (7} 4 T)m. i < A ™ |T]2 k, m=012 (2.9)
1Bk — T aOlm,x < By "ok,  m=0,1,2, (2.10)
and
N
7~ (M) %mn S 3B "ha,,  m=12, (2.11)
k=1
N
|7~ Tallmn < ¢ Ry "|Paq,, m=1,2 (2.12)
k=1

We prove the existence and uniqueness of the solution in the appendix. Next some results of
the error estimate will be given. First we formulate a generalization of the second Strang lemma.
Using the same way as in [19] and the generalized Green formula one can prove easily that

Lemma 2.5 Assume that %, € % » i8 the solution of discrete problem (2.1), and % €
HL(f) is the solution of the original problem (1.3), then

- — . - E -
(€ — tplin £c( inf |&—Tp|yn+ sup | h£u1 w)|
TneVo.n ey, Iwh.h

) (2.13)
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| En (i, in, @, n)l (2.14)

1

g — @plloe £c sup  inf
FEH(Q) Pr€Vo.n loll2,0

in which the constants ¢ > 0 and independent of h, and

N
B@n)=-y ¥ [ (o) b

k=1 KTy (5x)
Eh(ﬁ-_. ﬂ:hi (:5: (ﬁfl) — ah(ﬁ' - ﬁh! 55 - {Eh) — Eﬁ(ﬁr {Eh) + Eh(‘ﬁ? ﬁh):

the nx being the outer normal on JK.

In order to prove our main result, we first state and prove some auxiliary lemmas.

N
Lemma 2.6 Assume that @ € ﬁ&(ﬂ) N H I:I'Z(Qk),

k=1
N
inf &~ Talia < heliklzn,.
U;.E\-)u_h k=1

The lemma above is the approximation error estimate, which can be derived from lemma
2.4,

N
Lemma 2.7 Assume that ¥ € I;’,:} (YN H I?”(Qk), Y € f"b‘h we have

k=1
N
|En(@, D) < ¢ Brldklzo, @l a. (2.15)
k=1
Proof Let
N
D@, @) = =% > (o(@)nk) - (& - B9) dr,
k=1 KeTh ()Y 2K
My(@, @) = Z (o(@)nx) - ['un,i"‘:'l ] dr, ([-]is 2 jump of function across ).

~elr ¥
It is easy to see that E,(€,18) = Dp(4, %) + Mp{d,d).

The D (i, w) satisfies inequality (2.15)(by the Bramble-Hilbert lemma [13]), so, we only
have to prove that M, (i, w) satisfies (2.15) also. From

[t [ ar

| (ot —G)- @2 —ayar Ve i)

< gl lo@nx - Ullg-1a 17 — B3l gasa
< ehsllo(@nkllgrag 198 = 521 guac,
< chjlila g, ”ﬁ? - wf“ﬁ”“('ﬂ'

”i}? - B?"?}mh} = cla?ll*-‘“"‘ + c]'TU’?h,;,h S clwill'j’h T clmill'i'h
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and summing on all v € T', we have that M, (&, @) satisfies (2.15).

Theorem 2.8 Assume that i, € I_fi;,h is the solution of discrete problem (2.1), and the

N
solution of the original problem (1.3) is @ € ﬁ[}(ﬂ) N H H2(Q,), then

k=1
N
&~ dnlin <€) Paldklza., (2.16)
k=1
1 — @allo. < ch®|i]2,0- (2.17)

Proof By Lemma 2.5, Lemma 2.6, and Lemma 2.7 we can get the (2,16). Now we prove
(2.17). According to Lemma 2.5

Ep(G,dn, G, 0n) = an(id—1dn, @ — @) — Ex(if, @n) + En(, iin)
= Ji1+ o+ Ja.

Because 5 is arbitrary, assume that gy = m,3. For J; there is

N

ap(@ — g, F — mpP) < CZ |Ze — Tenl1,enlPe — TadBrelen
k=1

N N
< c) halielag, Y helFelza,

k=1 k=1

N
< ch ) hildk|20, @0
k=1

For J; and J3, similar to the proof of Lemma 2.7, we divide E,(-,-) into Dp(,} and My(-,-).
First we give some useful inequalities:

G —mpGly,n £ |G —dpfip + [T~ il a < chltl]sg,
[Grl2,n = Ima@lan £ 18 — mn@lon + |Pl2.a < clBlaq,
[Gal2.n £ |Gp = 7aill2n + |Tadl2,n
< ch“1|ﬁ'h — mpulin + (|8~ watlen + |Elo0)
< clilzq,
1% — ﬁ'fll h S |E— g1 n + |Gy - t_JI";E"ﬁ"ll,h < chldlz,q + chitz)zn < chli)z g,
T8 — (ma®)¥n < N~ G ln + [T — (ra@)en < chliilz q.

Then by Lesaint [19] and the above inequalities, because ¢ and @, are the solution of a original
problem and a discrete problem respectively, we have

N N
IDA(@,F)l € ) Bildelaau|@nlen < ¢y hE|Eela0. |20,
k=1 k=1

N

IDr(@,n)| < ) hilxnleknlPlan < ch?lilsaldla-
k=1
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Now we will prove it for M,(-,:}. Just the same to the prove of Lemma 2.7, in order to prove
the final results, we have to prove that

E ""5?,:‘ - ‘aaf,j"fwﬂ{-f} < chidlzq, (2.18)
ver
Z ”ﬁE: - ‘IE,_f”HU!(—r} < chlilzq. (2.19)
vel
For (2.18) there is
”53?: - ﬁj”ﬂlﬂ(ﬂ < "351 - ‘f:’f,i“Hl-”{'r} + ”933 — (Tf}:,j@j)Q”Hl!n(ﬂ

+ley (Th8)% | a2

< clhil@leq + hil@len;) + f—'”("T;.i@Q - (""'H.i‘ﬁ)q“ﬂé&m('r)
< ce(hilplag, + hjldl2q;)

+elids = (ki@ M gagaeyy + 1165 — (73,38 gapa
< elhil@lan; + hilflzgn,).

Summing up on all ¥ € I’ then we prove the (2.18).
For (2.19) there is

SN~ ey < 3~ @@ PNy + 182, — (a®PMsrrsacoy
yel gd=18

+(mR@) T — (DT 172 )

A

< iy = (md®)?in + Y NmD? — (@) Pl grsay
~el
(using the inequalities given above and (2.18))
< chlilsn.

Estimate (2.17) is a consequence of all inequalities above and the theorem 2.5.
3 Cascadic Multigrid Method

In this section we will use cascadic multigrid method to the mortar Wilson finite element
problem . Assume that f € L*(f), and « satisfies (1.4).

Denote Ty, to be the nested rectangular triangulation of the /th level over {2, we just use
ht = ho - 27¢ for simplicity. It is easy to see that spaces fu,h,(ﬂ) are nested, but the Mortar
Wilson spaces V; = 170,;” (1) are not nested. Then we can write the discrete form of the equation
on each level as

al(d, &) = (f,9) Vi eV, (3.1)

in which a;(,-) = ap,(-,-). We introduce the energy norm
90 = (a(@,9)¥,  voe V.
And for constants ¢ and €' independent of h), the energy norm satisfies

clliElln, < W9l < Cllldln, Vi€ Vi
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So we will use the energy norm in this section for all the characters of [{{-]|[s, are satisfied by the
energy norm.

There are three assumptions:

(H1) There exists an intergrid transfer operator I : Vier o Y

(1) |7~ Litllo,e < Chllirllfhl-__u Vi € ﬂ—l 1
(2) ||@ — Lifi-1]lo.q < ch?lifllon, i; i8 the FEM solution on the [th level.

(H2) Chose the iterative operator on the lth level & p,, : V, = 17;, There exists a linear operator
T, : Vi = V} such that |t — C,m, 47| < |T;™ (@ —@})[, in which my is the number of iteration
steps on the level {, and

(V) W™ aA < ezl VE €V,

2 W™ < e, VP eV,
where v is a positive number depending on the given iteration.

(H3) There exists a projection B, : Vi—; + V; =+ V; such that a;(B4,7) = (@,7), Vo € V), and
(1) |I¥ — Bdlloa < chultlin,_,, vi e Vi_,.

Then the cascadic multigrid method can be written as follows:

(1) Set 43 = %y = @y and let
(2) fori=1,.-.. L

(3) Set 4} =™

Following (5], we call a cascadic multigrid optimal in the energy norm on level L if we obtain

that
8 ~ @ llle ~ | - Felya, 3.2
amount of work = G(n;), nr = dimVy. '
Let m;{0 € 1 < L) be the smallest integer satisfying
my > ﬁL_lmL (33)

for some fixed 8 > 1, where m is the number of iterations on the finest level L. Shi and Xu
have proven in [25] for elliptic problems that

Theorem 3.1 Under the assumptions (H1),(H2) and (H3), if m; is given by (3.3), then
the accuracy of the cascadic multigrid is

1

1 hy bl
gL — 8Ll < CI—Zﬁ-v mr”-ﬂlﬂ,ﬂ; 8>2v,
S 1 (3.4)

hy _aC
CL;'l;llﬂln,m B=2v,
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and the computation cost of the cascadic multigrid is proportional to

L 1 d
C b 2 1

T mum < 1o g-agmen, A< (3.5)
=0 CLmyny, B =29,

where ' is independent of by and L, and d is the dimension of the domain f2.

According the theorem above, we will give a practical method which is optimal for the
mortar Wilson finite element method for planar linear elasticity, it is to say that we will find an
intergrid transfer operator, an iteration operator and a projection which satisfy (H1),(H2) and
{H3) respectively.

Denote €, on level [ to be the ey defined on section 2, then we have
levatllo,y S chulfym — Tywm|yy, Vi€ VO, (3.6)

The above inequality can be found in [15}(inequality (5.4)). Then we define the intergrid transfer
operation I; : Vi_; — V; as

Iﬂﬁl = 6?-1 + ZETJ(‘:’E-J: Vﬁf—l € Vfl
Y

Lemma 3.2 For mortar Wilson finite element method, I; satisfies assumption (H1).

Proof First prove the inequality (1) of assumption (H1). V& € Vi_,, according to Lemma
2.2,

|l = LYo, 10— lo.a + 179 — Lilloa

chilli -, + 1| ) € (8)lloa-

el

<
<

Let y* be the nodes of the level { on vNM_ then

lex s (FNE.0 2 Y A ey (TN » Bl s (T2,
y{

According to (3.6),

e 1 (F°)lo,1

(A

1/2
el =51y < chy (15713, + 15Tl .-)
1/2 — "
< ey (158 in + 02 15,50) < e 2 (1Bl 1y + 1T im0, )

So the inequality (1) of assumption (H1) has been proved. Next we will prove the inequality (2).
Assume that i is the solution of the original problem (1.3), then

18 ~ Lit—1loe < N1& - dilloa + 1€~ 42, lloq + 10, - LiEi_1|loq.

Because

e - 22, o & = Gi—allo,q + i1 — 72, lo.a

e1hil| fllo.a + c2h?| @z < ch?|| Fllo.q,

IAIA
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we have

i — Liii—1llo.e < chillflloo +1I z 61,1(17;?_1)"0,0-
~€T

Similar to the proof of inequality (1), we obtain
3/2
ey @Dl chy?|@2 =82 A
chy( — B2, 3y + 1T~ G2y 514 n)
ch(|@ = T2, ey + 18 = 824 im0

IA A

IA

1Y e @2 Dlloa s chil — 42 1., < chfllfllo.a-
~€l .

Next we will give out a proper iteration operator which satisfies assumption (H2). First we write

out the equivalent linear algebraic equations of the discrete problem on level . Denote the basis
function of mortar Wilson finite element method by ¢}, 1 <i < M;, then Vi € V, we have

M, Mr. |

s-Sad=3 | |

i=1 i=1

V4,2

) Let A; be the stiff matrix on level { and A be the maximum eigenvalue of 4;. V¥ ¢ 17';, Y f €
L2(Q),and 1 € i < My, let

Vio=| |, E,=|T"]= (f1,4%)
" [‘*"\2] " [fm] [(fz,r.ﬁi) ’

Via i
=] |, m=|
L W,M{ _ L 'FE,MJ -
Let
M;
(17: iUJE - (Vi, I’VI)E — Z W?;wl,h
i—1
M,
e = Vle= (z 1ZANLS
i=1
Villle = (AVi, V)i = (@@ )} = (Idil,
Vo, @ € V.

With the notations above, the discrete problem on level / (3.1) can be rewritten as
AV = F. (3.7)

And the cascadic algorithm is presented as follows:
Cascadic Multigrid Algorithm
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1. Vg = A5l Fo;

2. forl=1,---,L do
begin
Vi=ILVE, ;
put’ Vr — SI(AI, I’/}! Fi);

end.

Here I is the intergrid transfer operator, S;(A4;, Vi, F}) is the iteration operator on level |
and the number of iteration steps are m;. Here the CG{conjugate-gradient) method will be used,
and be proved to satisfy the assumption (H2). The algorithm of CG method for planar linear
elasticity can be found in [16)].

We divide the basis functions ¢ on level { into three groups for convenience:

(1) those ¢ that is equal to 1 at the node inside one of the ; or the two ends of ¥NMM ¢ ;,

to 0 at all other nodes in §}; and equals to 0 outside 2, and is bilinear on each elementary
rectangle;

(2) those ¢y which have one of the second derivative at the center some K € T}, () to be h=?
and the other 0, equaling to 0 at all nodes, and is of 2-order on each elementary rectangle;

(3) those ¢x which equal to 1 at the nodes on v™ € I(including the two ends), being similar

to the ¢, in the first group in Qpy(,), equaling to m,¢x on Yy, equaling to 0 at all other
nodes, and are bilinear on each elementary rectangle.

Lemma 3.3 CG method satisfies assumption (H2), and v = 1.

Proof Vi € V;, because CG method minimizes the error norm I[lie (23], for all linear
operator 7},

™Ml 2 1SEC (A, Vi, B -

According to the conclusions of Shaidurov [23], for CG method there is

Jx Vs
SF% (ALY, < = .
1157 (40, Vi Plle < e IVille = 59l (3.:8)
IS (A Vi, F)llle < WIVillE = [1#1)1:- (3.9)
S0, in order to prove our result, we only have to prove that
(a) A" <e¢, cisindependent of by,  (b)||#llg < ek {|T][o.q-

We first prove (a). Split # = @y + ¥, in which @ is the linear combination of the basis
functions in group (1)(2)(denote the set of these basis functions by ®3), and # is the linear

combination of the basis functions in group (3)(denote the set of these basis functions as dr),
then

(Alvi: Vi)E - ﬂl({;:g) S 2(“"(60160) + ﬂt(ar‘s ﬁr))i
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in which

Y] (gﬂ » ﬁo)

Z ai(V1,i¢:, V1,5 05)

$i ;i Edg

< Y (@(Vidi, Viida)) (@ (Ve, 55, Vi)
¢i.¢; €L

< ¢ Y a(Viede Viude) S¢ D Viedelin,:
PrEDp $u€dPo

According to lemma (4.4) in [15)], there is

a(vr,9r) < ¢ E Vi kbxlT a,
PuEPr

By scaling argument, it is easy to see that for the ¢, € Py, M.k‘i’kl?,h, < c(‘[/!:"; + Vi.&,). For the
¢r € Pr, assume that the side on which it does not equal to 0 is T and that yar C €, yaar C 825,
then

Vekdrli in, < (Vi Vi),

and

vt (V@) n < ki ey (Vs a, < chi lena(Viede)ld -
chi  |Visdrla o < (Vi - Vig).

|A

Summing all these up we have
(AIVL I‘fl)E < E(VI':W)E (310)

Because V; is arbitrary, A* < c.

Then we prove (b). VK € T}, (%), let Cy, Cy, Cs, Cs € R? be the values of the four vertices,
and Gk (z), Gk (y) € R? be the second derivatives at the center of K. Using scaling argument,
let ¢ be the transformations of ¥ on the reference square K = [—1,1] x [-1,1]. The values on
the vertices does not change but

Gi(z) = hiGi(x), G%L(y) =hiG{(y).
Let £,n be the coordinates on the reference square. Because
19llg,4 = 0=>Ci =0, (i = 1,2,3,4) and G4 () = G} (y) =,

we have

-2
hy 3

IV

cllﬁ‘llﬁ, X
e+ cfe, +cfes +cTe,
+(h{ Gk ()T (R} Gk (2)) + (R} G )T (R Gk ().

A"

So, |8l < chi |llo.q-

Finally we prove assumption (H3). It is easy to see that the projection P, has the following

characters:
{ NPA < ol-1,  VFE By,

Iﬂﬂl'h* 5 cialll,hl-ll Vi € ﬁ—l- (3‘11)
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Lemma 3.4 F; satisfies (H3).
Proof Assume that ¥ € f’i_;, then there exists E’ € ﬁg(n) such that

-

~dive(§) =7 - B#, in{,
£=0, on 0.

By the Green formula,

o - Pillgg = (¥- P3,7— P

N
aT-R9) -3, D, (o(E)nk) - Fds

k=1 KeTh,_ (a7 0K

N
£ X [ (@) (Rods

k=1 KT, (1) * 0K
ai(€, 7 — Pi¥) — En,_,(£,9) + En, (§, i¥),

(€, 7 — )| lay (€ — mn, &, 7 — P

< ll€~ mn, ElllilIE - Pl
< chulléllzlllolli-:

< chullllz.alttin,

< chil[¥ — Billo.al|¥la,n, ;-

Similar to the proof of the error estimate in section 2, we have

1Bw, (E,0)] < chyllf — Pidlloq|f16,,
|Eh: (E-: Pg'ﬁ)l < chy||lv - B 0,4 Hﬁll,h:
< iyl ~ Pillo,alth n,-

So, ||t — Fitllo,e < chuitlin,._,-

Now we can see that under the intergrid transfer operator I; and CG method, the cascadic
multigrid method is optimal for mortar Wilson finite element method of planar linear elasticity.

4 Numerical Experiments

In this section we describe some numerical results. The program is designed for the domain
0 = {-1,1} x [-1,1], which is decomposed into two sub-domains: &) = [-1,1] % [0,1} and
0, = [-1,1] x [-1,0]. Assume that v C @, and ¥¥™ c ;. And f is chosen so that the
solution # = (uy,us) is:

u =1x107% x (1 —22)(1 - ¢%)
uz =1 x 107 x (1 — 2%)(1 - ¢*)

We use the Cascadic algorithm given in Section 3 and the CG method to be the smoather.
Set 8 = 2, we can get the following results. In the table down here, L is the number of total
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levels, m1 is the iteration number on the coarsest grid and m5 is the iteration number on the
finest grid. F is the Young modulus and v is the Possion coefficient, and the L.amé constants

can be derived like this
F vE

=Ty T OTod<)

Let h; denote the step of triangulation over sub-domain {2;, d.o.f be the ”degree of freedom” of
all, 4y is the cascadic solution on level L.

Tablel L=5F=7x10""Pa,v=3,ml=128,m5=38

hT! P R7! L dof ML —allle | iz — G, 3L — oo
32 148 { 39586 1.44204 5.99997 x 1079 | 4.1662 x 107
64 (96 | 159042 | 0.73483 3.09612 x 10~% | 2.3733 x 107

128 | 192 | 637570 | 0.373412 1.5927 x 107% | 1.24249 x 107
206 | 384 | 25563090 | 0.189749 8.20557 x 10~7 | 6.69434 x 108

We can conclude from the table above that, for the given number of level and number of
iteration steps on each level, it is to say that the whole amount of work is O(n;), the energy
norm and the H! semi-norm is O(h), which means that for mortar Wilson finite element method
of homogeneous boundary value problem the cascadic multigrid method given in section 3 is
optimal. As for the L? norm, it is known that for second order elliptic value problems using
Wilson element, the cascadic multigrid method can not get optimal approximation with respect
to L? norm. And here, through the results of numerical experiments it can be concluded that it
is not optimal to L? norm.

v Appendix

The Korn inequality due to the variational formulation of planar linear elasticity is well
known. In order to prove the discrete Korn inequality for mortar Wilson finite element method
of planar linear elasticity, we will following the steps like this: first prove the Korn inequality
over the space

P
i
[y

"

Because 170?,1 C X§, so the Korn inequality stands over the mortar @1 element space f’fh. Then
we will extend it to the mortar Wilson element space V4 4.

Lemma 5.1 If %€ V,, then VK € Tn(S%), (1 < k < N) there exist ¢ and C independent
of A that

2 2 2
¢ D lesi@)3 & < Dr(@) + Y ((,2(G))? + (w3, (C))?) < € > les@igx,  (5.1)

i,j=1 i=1 i,i=1

2
ol x £ Br(B) + D _((01,(GK))* + (v14(Ck))?) < Cli |2 . (5.2)

i=1
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in which
2
Bx(@) = > [(vi(Az) = v:(A1))? + (vi(A3) — v:(A1))?
F(0i(Ae) — vl An))? + (vs(Ad) — vs(A2))2],
Di(tx) = (va(As) —v2(A1))? + (v2(Ag) — v2(A2))?
+{v1(Az2) — v1(A41))? + (v1(Ag) — v1(A3))?
+[(v2(A2) + v2(Ag) — va(A4)) — v2(A3))
+(v1(As) + v1(Ag) = v1{A43) — v (4 )%,
viz(Gi) = h2(L3)(GKk), A
wy(Gr) = W(%g)Gx), LGl

Ay, Ag, A3, A4 are the four vertices of K, and G is the center of K (see the picture).

The prove can be found in P.Lesaint’s {19].

—~ =1 ~
Lemma 5.2 H!(Q) = H (Q)®RM(Q), it is to say that V& € H1(1), there exists (Z,10) €
~1
H (1) x RM(Q) such that ¥ = Z+ &, and (|2}); + |}F])x < ¢|}¥],.

Lemma 5.3 There exists a positive constant € that
~1
le@lle 2 Clivllay@), VI €H (). (5.3)

Lemma 5.2 and 5.3 can be found in S.Brenner’s [12]. Lemma 5.3 is the second Korn lemma.
The following lemma is easy to be checked.

Lemma 5.4 Let RM, = RM (),

N
b .
II{#= ( _f;:i“;z ) € RM;, in Q4}n X} = {0}, (5.4)
k=1 '

in which, b; and ¢ 1, cr 2 are constants.
By contradiction, the following theorem can be proven.

Theorem 5.5 Assume that constant c is independent of A, then

N
Y NTelha, s, Vie XE. (5.5)
k=1
Corollary 5.8
[Fnlin < elliallla, Vi € V3, (5.6)

Next we will prove that the Korn inequality stands over the mortar Wilson element space.

Theorem 5.7 Assume that ¢, C are constants independent of h,

clFalie < HIFallla < ClTalr,n, V84 € Vou. (5.7)
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Proof It is easy to see that |||Tx]|ln € ClUal1,4, S0 we just prove that elPalin < |i0sll|a-

it

Because -E'E € th, according to Theorem 5.5, |ﬁf lip < cl[lﬁf |ll», and by Lemma 5.1 and
@ (Gx) = v (Gk) =0, VK € Ty(U%), (1 £ k < N), we have

Bx(tha) = Bx(®2,) < ik, Yk K € Ta(Sh),

2
e S lles@Ex < D@ = Dx(@), Yk K € Ta(().

i,3=1
Summing it for all K € Tp(§2%), 1 <k < N, we get

N

N
Y Y Bk@ew) € ). Y. 1Rk

k=1 KeTy () k=1 K€Th(0)

N 2
e S N e @D &

k=1 KeT, () 8J=1

N
< ¢y Y Dr(fn)

k=1 KeTh{Qk)

IA

Using Lemma 5.1 again we have |7,]1 4 < ¢f||Tall|x-
Theorem 5.8 There exists one and only one solution for the discrete problem (2.1).

The proof follows from the Lax-Milgram lemma.
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