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        ON PLANAR LINEAR ELASTICITY"
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Abstract  Cascadic multigrid technique for mortar Wilson finite element method of

homogeneous boundary value planar linear elastici勺is described and analyzed. First
the mortar Wilson如“。element method for planar如ear elasticity mill be analyzed,
and the error estimate under LZ and Hl norm is optimal. Then a cascadic multigrid
method for the mortar finite element discrete problem is described. Suitable grid trans-

fir operator and smoother are developed which lead to an optimal cascadic multigrid
method. Finally, the computational results are presented.
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1  Introduction

邵The1 mortar finite element method is a non-conforming domain decomposition technique[2,3,9].  It handles discrete finite element approximations on independently partitioned sub-
domains and is designed to be optimal勿 using the matching conditions to restrain the jump

across sub-domain interfaces. The flexibility of this method is well recognized. Bernardi, Maday
and Patera [3] proved the existence and uniqueness of discrete problem of Poisson equation, and
also showed that the mortar finite element method is of the same accuration to the usual finite

element method. In order to solve large scale problems, some preconditioning technique have
been successfully adapted. For example, the "Dirichlet-Neumann" or "Neumann-Neumann" al-

gorithms [2,20,20], substructuring preconditioner [1] and multigrid method阵,15,20,26], in which
the preconditioners in [4,20,26] require a use of Lagrange multipliers under a primal hybrid for-
mulation. Recently the cascadic multigrid method [5,6,23,251 for finite element is considered.
Cascadic multigrid differs from usual multigrid method in that it requires no coarse grid correc-
tions and it performs more iterations on coarser levels to obtain less iterations on finer levels.

In this paper we will consider the cascadic multi幼d method for mortar finite element approxi-
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mations of the pure displacement boundary problems in plane linear elasticity associated with a
homogeneous isotropic elastic material. Next is the description of some notations and the varia-
tional form of our problem. In section 2 the mortar finite element discretion is introduced with
the error estimate (the existence and uniqueness of solutions to the discrete problems are proved
in appendix). In section 3 the cascadic multigrid for the discrete problem will be analyzed and an
algorithm is乡ven and it is proved to be optimal. Finally some results of numerical experiments
are given in section 4.

    Letnbe a bounded convex polygon in the x一，plane with a Lipschitz-continuous boundary
8f1. We shall only consider the case of homogeneous boundary conditions in the pure displace-
ment boundary problems because the results can be easily extended to the more general cases.
For a given integer m > 0, we introduce the norm and seminorm over the Sobolev space HI(fl)

洲!，一(f. aE I。一)“’，}一(、艺I8avls dxIa卜协

By interpolation theory and dual theory the m can be
follows, we shall be interested in the space

to all real number. In what

=(Ho '(-Q))'.

For any‘=(VI, V2)。Ho (n),
will be denoted by I l.,n and

      A., (n)

the expressions
}}训}二.o.

(IV, 12,0+Iv2122},n)112 and (1Ivi1122�,n+
We let the stresses ai, and the strains‘“be

IIV2112a,n)112

勺卜叠lcit(O = 2 a jj，8v,8xi)，，‘i, j‘2, (1.1)

                  ai1 W)=A (div司几+21r ei, (司，1三i, j < 2,

where the constants A七0 and u>0 are the coefficients of Lam, of the
气=0 (i 0力，6ii，1.

    The bilinear form a(.,-) is defined on璐(。)x房(。)by

                (1.2)

continuum, and where

a(u", V7):一兀(2A e(u-):￡〔司十A div it div v") da.
The homogeneous boundary value problem can be formulated as follows:
ments u E房(。)such that

to find the displace-

a(u", v7=(f,i7,    Vv' E fio(n). (1.3)

And if f'E L2 (0), by [11) the problem (1.3) has a unique solution“fi'(fl) and there
positive constant汤 such that

哟

5)

IIAllz,n+Alldivu1h,n 5 Cnll1llo,n.

Definition 1.1  Define the space of rigid motions

RM(f1):={v': t7=c6+b 6E月，，‘cR}
、
、
l
es
了
1

勿
嘴

2
!

、



Cascadic Multigrid Methods for Mortar Wilson Finite Element Methods

and the space

FA:一{“。”·(“):!n v"“二0, J rot v"n“一。} (1.6)

It is easy to see that RM(SI) is the kernel of E,

。(司二0, 时〔RM(f1),

and the space H_“ (9) is the subset of Hl(n).
                                    2  Mortar W ilson FEM

    Assume that St is a rectangle. Divide S1 into several non-overlapping rectangles S1以k=
1一N). We consider here only the geometrically conforming version, which means that 8fli门851j
(Vi j4 j) is either an empty set, an edge or a vertex. The interface r=U;-1852; is broken into
a set of disjoint open straight line segments、，each of which is the common side of 8f1; n 801
for some‘and j. Set mortar side and nonmortar side on each y〔r, represent them勿-ym and
,yNdf and assume that钧E r,

'YM任。“(，)， ,yNM〔nNM(y)

    We associate with each ilk a regular quasi-uniform triangulation T1,(f1k) made of elements
that are rectangles. By hk we denote the maximum diameter of the rectangles. The triangulations
generally do not align at the sub-domain interfaces.

    We first introduce the Q, element, Q1 (K)=span{1，二，，，:，}over the rectangle K, and then
the Wilson element, W(K)=span{1，二，y,xy,z2,y2}, over K. Each。E QI(K) is determined
by its values at the vertices of K. Each，E W(K) is determined by the values at the vertices of

、and by the values    1;认1  8..v and一    1二1  8， v(see:13,19! for det‘工。).Define
              一 meas(K)。一‘西-一 meas(K、1.,- 00、一 L‘一，‘。J·协U。一 ，一。‘。::c

瓜(n*)={‘，‘:Vk,hIK。YV (K) and continuous at the vertices of K},
邓(。。)={vk,hIK。01(K),and continuous at the vertices of K},

Ih(n)一11 gh(nk),   .9Q(n)=11邓(。*)·
上-1 介--I

Such spaces as瓜(。)and邓(。)generally do not align on the
spaces on interface segments，.Every -yNM is divided into sub-intervals

。r. We introduce some

勿 the vertices of mesh
in the non-mortar domain of y. Denote the sub-intervals
wy,s are the sub-intervals at the ends of y. Then we have

勿wr.a, a=1，一，S, where w,,, and

W h ('Y)=征
Mh('Y)={+G
90(-Y)={+G

(101,02):'Pi (i=1, 2)is linear on e吵wy,,and continuous on，}，
(01,02)‘Wh(-Y):Oi(‘=1, 2)vanishes at the end-points of y},

一一

一-

=WGi,02) E译h (y):Oi(‘=1, 2)is constant on wy,land wy,s},

    Hu"c瓜 (n),
Define the mortar

let尹be the bilinear part of v". Then沪is continuous in flk, 1 < k三N

户/

哟
月了
人
.

finite element spaces as the following:

  {v"h E瓜(。):竹c r,叮‘户(，)，(v一vh).}d,一0},

=Wh任9Q(n):V7 C F, Vi E Sh(-y),(v;,、一v7}h) - j dT=0)

几

邓
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It is easy to

      Define

see that邓C风

spaces几、(。)
vanishing at the

C Xh(S2),珠(52) C邓(11),风、C讯，赚 C邓，the func-

tions in which vertices on

XQ(S2), V‘二Vh, V了。V4, the functions
852. And the spaces ?h(fl) C瓜(。)
in which satisfying the condition that

才A C

J v"dx =n
“，五rot v"‘一。Then we。一，‘。the discrete prob‘一of‘工.3) as:“·‘u"h〔Vo,h that

ah(uh,vh)=(f,vh),    VIA‘VO,h, (2.1)

in which

ah(uh,'tih):.=艺 艺
KCT. (n‘)
jx(2。 Olk,h) : EL ( A        "A,h)+A div ilk,h div v6k,h) dx

Define the discrete norm over口k as

luhl-,k,h=( F_    lt7k,AI-,二)奋，lghlm,h=(}, lvhlm,k,h)，二、，2，
KET(n山)

ll?7hll-,k,h = (又 llvk,hllm,K3, ll+7hll-,h 仇 =0,1,2

1
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Lemma 2.1  I11,h, I1Il]1h is the norm over VD,h, I1,h,h is equivalent to 111,h over VO,h
According to the mortar condition we define the following projection. V-y〔r, define the

projection丘。:L2(7)、后"(7) as

关(n, -I·ids=关“·fads,    Vv" E L2(-Y), +D E 5'h(-y).
In [3] the projection is proved proper and stable in L2(,y) and瑞2("y), i.e

    IIff71I0,7 <_ CII0O,T,

1]n,ul]yoo'(,)‘C1]vl1�g'(,),

Vv"E L2(7),

VV E瑞2(7).

Let {yk'} denote the nodes of Th(nK) and the operator。，:L2 ('Y)*邓(。)be defined by

fl,v(yk),
0',

if y'k。7 n nNM(,),
otherwise

It is easy to see that if 6 E X'Q (R),。+艺。，“。甲，and if 6 E Xh(n),。+L+,Er E.yV E Vh.
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  And for，。r, we introduce the orthogonal projectionn，:L2 (7)、Mh(-y), which have [3]

      Iw - R,vII}}(,) +hi 1/211。一n,v11二一，:(，〕< chi1 IVIIH"(,),  VV E H0('y),      (2.4)
where 0三0三1.

    Before analyzing the error estimate of mortar finite element solution, we give two lemmas
on interpolation

      Lemma 2.

error
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Assume that vk,h。Xh(0k), the bilinear part馆*satisfies that

]Ii7k,、一v}h }}o,S14+hk [VA:,、一嫂h11*、‘chkwk,hI l,k,h"

And, if嫂、equals to 0 at all the nodes which are not on the side:of sub-domain。*，we

                w!h l l,k,h:cw}h } xoa' (,)'

The inequality(2.5) is the Lemma 3.2 in

Definition 2.3  Assume that“〔艺

[27], and the proof of inequality(2.6) follows

万2(Qk) n户1(f2), denote 7h;to be the Wilson

interpolation operator over 12k. Define separately the interpolation operators
onto Xn(M, and二、onto认as the following:

vrh from方‘(。)

(-hv)In.=kh.kVln., VO‘，

二、v=TrhV -F艺 E,Kt7}4.

(2.7)

(2.8)
,任r

It can be proved that theinterpolation operators defined up here satisfy:
              N

Lemma 2.4  Assume that v' E艺I32 (0k) n Al (P), then HK。Th(Ik), (1‘、C
七=1

A一(- *h        -)'I-,Kk,hV ‘ch'-'IV12,K,
  I O'k一-k.hVl-,K !} ch'k-'IV12,K,

m二0,1, 2,

仇=0,1,2,

V

d

a

n

h

a

。一(ifhV-)QIm,hCcF_ hk m1v112,% 饥=1,2，

k=1N
Iv一、+,n.n <_ eF h2-,Iv12,ak, m二1,2

    We prove the existence and uniqueness of the solution in the appendix. Next some results of
the error estimate will be given. First we formulate a generalization of the second Strang lemma.
Using the same way as in [19] and the generalized Green formula one can prove easily that

    Lemma 2.5  Assume that瓜
房(。)is the solution of the original

E Ve,h is the solution of discrete problem (2.1), and u" E
problem (1.3), then

]“一酬‘，“‘“(、琉、}“一t1h I1 ,h十supWC1-IEn(u, +g) I ),  M IA
(2.13)



Chen Wenbin Yanqiu

1W一诚110,a < c  sup    inf
VE即(p) gyp, E V...

I Eh (u, 11h, 'P', A) I
    11浏2.0

(2.14)

in which the constants c>0 and independent of h, and

___、 Nn 。 f ，_、、_，
t h(U, V1)=一L,   L          /  (a(UPIK)‘T UT,

          k=i KE7Vn, )' ax
Eh (u, 1<h, }, }5h)=ah(‘一uh,尹一再)一Eh (u,再)十Eh W, 9h),

the 7)K being the outer normal on 8K.

    In order to prove our main result, we first state and prove some auxiliary lemmas
                                                                                      N

Lemma 2.6  Assume that‘。Ho (f2) fl 11 fl2(Qk),

6n E几..
lu一v"hll,h <_ c艺 hklukl2,a,.

The lemma above is the approximation error estimate, which can be derived from lemma
2.4.

Lemma 2.7  Assume that:。Ho (n) n II 172 (n,,), d.1。lre,h we have

k=N
[Eh(u',v7)1 < c艺hk J'uk J2,RJ V7l1,h (2.15)

Proof  Let

  Dh(u,词 =
k=1 KET,(ri,)f、  (Q(u')1TK)8K ‘(‘一‘，‘二艺
N
艺 

 
 
 

-

Mh (u, T')=E7Er关(aRVK)·[w"01‘一([.]is a jump of function across "y)

It is easy to see that Eh(u",动=Dh恤，甸十Mh(u,词.

    The Dh(u,动 satisfies inequality (2.15)(by the Bramble-Hilbert lemma [13]), so, we only
have to prove that Mh(it,词 satisfies (2.15) also. Rom

          关(a(u)QK)，[w4] dr
        一关(a(u-)、一+Y) - (- Pi一w1) dr    b'} E Mh(,y)
          ‘汤。inf。，  Ila(u&A?' (1) 一ill，一，' (7) ll'ViQ一1}1? 11-4- (,)
            :chi 11 a(u)nx 11 it=i. (.,) Il砰一谬lltlin(')
              ‘chilul2,n; 11却一刃ll,7}/z(,),

00一}Qll}}ro(7):Cl,4罗}l j,h + CI 7U Q l l,i,h:Cl w j h.j,h + ClZll'i'h
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and summing on all y E r, we have

      Theorem 2.8  Assume that

that Mh(u"动satisfies (2.15)

u"h E Yo,h is thesolution
  N

of discrete problem (2.1), and the

n
曰

solution of the original problem (1.3) is u' E房(。)n 牙2(flk), then

N

}、一uhll,h <_ c又hk I 6k 12,0- (2.16)
k=1

}}‘一uhllo,o < ch21u12,0 (2.17)

    Proof  By Lemma 2.5, Lemma 2.6, and Lemma 2.7 we can get the (2,16). Now we prove
(2.17). According to Lemma 2.5

Eh (9, an, }3, A )= ah(u一1A, }P'一wn)一Eh (17, A) + En (W,uh)

                = J1+J2+Js.

Because几 is arbitrary, assume that几 =xh乒For J3 there is

N

an (u一6h,0一><nw}  <

<

<

。艺luk一6k,h I1,k,h jOk一、All,k,h

。艺hklukl2,a.艺hk I A 12,0,

ch艺hkit6k12,n,142,n"
人=l

For J2 and石，similar to the proof of Lemma 2.7, we divide Eh(
First we give some useful inequalities:

into Dh(〕and Mh(

Iuh一、司1,h

    1wh12,h
    }诚仪“

    }‘一u111,h
I砰一(二。u 0I1。

<_  1u一ChI1,h + I‘一7rhtiI1,h < chlu12,n,

= l7rhWJ2,h C 1w一1rhW12,。十}(P12,0 <_ c142,n,

5 1?7n一二hu12,h+Ian司2,h
< ch-'Iaah一7rhull,h+(}‘一7rhu12,h+W12,o)

三 司42,0,

< I‘一uhI1,h + luh一谓11,h‘chIu12,。十chIu6hI2,h‘chIu12,11,
‘!‘一UUhh 11,4 + I‘一(7rhu4l1,h‘chIu12,n.

Then妙Lesaint [1刃and the above inequalities, because尹and再are the solution of a original
problem and a discrete problem respectively, we have

N N

IDhK再)}三

1Dh城u0 <_

c艺hkIukI2,n,,IVh12,h，艺h22 }uk12,njwj2,n,
  k=1                         k=1

c艺hkIuk,hl2,k,h1(Pj2,n <_ ch21u12,o1j)2,n,



Chen Wenbin Wang Yangiu

Now we will prove it for Mh(,,.). Just the same to the
the final results, we have to prove that

of Lemma 2.7, in order to prove

艺“砍‘一成j1IH}/.(,) < chlP112,n,
YEr

艺日嵘‘一谧1160(,):chlu"1231.

(2.18)

(2.19)

For (2.18) there is

11砍‘一w"gjIIHV-(7)       <  IIAi一成i]IH"-(Y)+IWj一('Thd }j )'I I H}/2 (,)
                  +IIEY(}hw}QIIH}/}(Y)

                <  c(hilA2,n,+hi1 W12,0j)+ciJ(二盗，，词Q一(' *.，  -MI,V}(,)rh,jV
                      :5 r(hil词2101+hil词:，。，)

                +C(IIA一(二盗，‘刃911嘴‘，(，)+1A一(嵘，，钓Qll“。(，)
                      :5 C(hil}012,12j +hjlVj2,a,).

Summing up on all -y E r then we prove the (2.18).

    For (2.19) there is

    艺11吹‘一叹111HV-(,)‘又{11谧‘一(二。U 6)911H}12(,)I +IIUI、一(二。t-}?161}(,)
        份任r ，〔r

                      +1001)?一(二、U夕IIH}/2(,))
‘Cluj一(7rhg)Ql"、十艺I I ('r' I)?一(   -)9IrhU . IIHI"(,y)

                                  勺任r

  (using the inequalities given above and (2.18))
<         chlu112.n

Estimate (2.17) is a consequence of all inequalities above and the theorem 2.5.

                        3  Cascadic Multigrid Method

    In this section we will use cascadic multigrid method to the mortar Wilson finite element

promem·Assume that j〔L'(SS), and u' satisfies (1.4).

Denote几,1 to be the nested rectangular triangulation of the lth level over
h,二he·2-1 for
Wilson spaces叼
on each level as

几含，

simplicity. It is easy to see that spaces几,h,(fl) are nested, but the Mortar
=几,h, (f1) are not nested. Then we can write the discrete form of the equation

al (u1, VI)=(大'V1)1   VVI〔Y', (3.1)

in which a,(., -)=ah, (-, .). We introduce the energy norm

                          111司11=

And for constants c and C independent

(al (IV,VI)i,    Vv" E Ii.

。fh1,the energy

CIII司Ilh�

norm satisfies

C1ll1lih, S川训}‘三 Vv"Eli
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So we will use the energy norm in this section for all the characters of III刁}}、。are satisfied by the
energy norm.

There are three assumptions:

(Hl) There exists an intergrid transfer 一V

v"一几训。，。三chi I司1,h,_�
u",一I,u",_lllo,n <_ chi llfllo,n,

operator几:巧-1

VV E Vi-,，
    负is the FEMsolution on the Ith level

(l)
(z)

(H2) Chose the iterative operator on the Ith level C,。，:U。u,
  T,:U',、V such that 161一C,,-,-,1I 5 IT,"('!,一u',)I, in which

There exists a linear operator
m, is the number of iteration

steps on the level l, and

(1) IIIT"All、c等IIv1Io,n,“。V,,,
(2) IIIT,-'gIl1‘111+1111,,   VV E 17,,
    where v is a positive number depending onthe given iteration

(H3) There exists a projection P,:V-1+V*V1 such that al (P, a, VV)=al (u',v-), dv'E V, and
    (1) Ilv一P,v"llo.n < ch,lvI1、_，、 b'1" E V-1.

Then the cascadic multigrid method can be written as follows:

(1) Set谓=佛=而and let
u",o=I,u,-1

(2) for 1=1,--.,L:
z=C',m,u"0

(3) Set讨=砂‘

Following [5], we call a cascadic multigrid optimal in the energy norm on level L if we obtain
that

}日几一此IIIL、!‘一u"hli,n-
amount of work=0(nL), 。;=dim几 (3.2)

Let mi(0 < ! < L) be the smallest integer satisfying

-t > fiL-'ML

for some fixed刀七1, where ML is the number of iterations on the finest level L
have proven in [25] for elliptic problems that

      (3.3)

Shi and Xu

    Theorem 3.1  Under the assumptions (Hl),(H2) and (H3), if。:is given by (3.3), then
the accuracy of the cascadic multigrid is

!

J、.
.
.
.
.
、

 
 
 
 
 
 
 
 

<
-

 
 
 
 
 
 
 
 
 
 
 
 

L 
 
 
 

引Ill几 一
C   11 - 2)3-舞}.月}。，。，
CL备IIAO.n,

(3.4)
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and the computation cost of the cascadic multigrid is proportional to

LE爪!·‘:{C1奋} ML%,
1=0 tU}MLT+L,

口<2d,

9=2d,
(3.5)

where C is independent of hL and乙，and d is the dimension of the domain fa.

    According the theorem above, we will give a practical method which is optimal for the
mortar Wilson finite element method for planar linear elasticity, it is to say that we will find an

intergrid transfer operator, an iteration operator and a projection which satisfy (Hl),(H2) and
(H3) respectively.

    Denote E.,,1 on level 1 to be the〔，defined on section 2, then we have

                IIE7,1 V IIo,7‘ch11 veyra一V,-I,,7,    Vv' E甲. (3.6)

The above inequality can be found in [151(inequality (5.4)). Then we define the intergrid transfer
operation I,:Y,-1、U as

              I,雄;=雄，十艺E7,i(雄，)， vv}1。V_4l.

Lemma 3.2     For

Proof First prove

mortar Wilson finite element method, 11 satisfies assumption (Hl),

the inequality (1) of assumption (Hl). Vv E讯_;，according to Lemma

lie一11v1IIo,n  <_  IIe一}Ilo,n+
            < chi I几,h,_，十}}

一71训。

-'.1(V'Q) IIo,0 "
尸
艺
似

Let y' be the nodes of the level 1 on -(NM, then

            IIE,,"(0,Q)II01.n、艺hi (c-,,t(iQ))(V')2、h/IIE7}1(v})IIO,y"

chi le一动;，，‘chi"(II V?II j n + 11动1j")
chfl"(1-IlLi,h, + 1IYj11a,h,)‘Ch,"' (lvill,i,h,-,+Ivi1l,i.h,_,)"

<
一

<
-

According to (3.6),

      llE7,f(})IIO,Y

So the inequality (1) of assumption (H1) has been proved. Next we will
Assume that u' is the solution of the original problem (1.3), then

prove the inequality (2)

Iluf一huf-1110,0 5119一111110.0 + II‘一雄1110,。十”雄;一11111-1 110,0

11u一粱1110,n‘11‘一u1-1110.0+lluf-:一雄1116,0
          ‘C141010,。十。hf Iulz,n‘chi 11J110.0,
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we have

Ila,一Ilu",_illo,a < chi I]fllo,n + 11 E E7,!(V,-i)Ilo,n.
今〔r

Similar to the proof of inequality (1), we obtain

IIEti,+(雄i)Ilo,n  <_  chi .'I雄1,‘一雄1,jl1,7
          ‘ch,(li9一雄;海，，+I“一雄1,j l +i.7 )
          < cht(l+7一雄;声;,h,_, + I‘一雄l,jll,j,ht_i),

“艺、:(雄0110,0‘chili"一雄tlt,h,-,‘chi llf lo,n.
                              乍〔r

Next we will give out a proper iteration operator which satisfies assumption (H2). First we write
out the equivalent linear algebraic equations of the discrete problem on level l. Denote the basis
function of mortar Wilson finite element method勿姚，1<‘5城，then 'd17 E讯we have

卜
冈
j

      M, 场

‘一艺0-{o;一5-

    Let A, be the stiff matrix

L2(f2), and 1 <‘< Aft, let
on level I and a, be the maximum eigenvalue of At. b'6 E 1i, Hj E

V.:= 月挤=
人,1

人，2

(f1, d,)
(f2, O;)

V,=

V,m

月 =

几. 1

F1,2

，

巧

巧

月.从

Let

M,

(认ul) E =

IliIlE =

IIIVIIIE =

(V,W,)二=艺V.iTW ,i,
              M,

IIVII。二(E V T.iV.i)"

(AIV, V t)息=(o; (,7, v-)) i二IIIv111i,
v,7,,s〔Vt.

With the notations the discrete problem on level l (3.1)二 be rewritten as

A, V二Fl. (3.7)

And the cascadic algorithm is presented as follows:
Cascadic Multigrid Algorithm
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1. Vo二Ao'Foi

2. for L= L.- L do

begin

    V,=几Vf_1;
put巧.=又(A,,巧，凡);

end.

    Here I, is the intergrid transfer operator, St (At, V1,月)is the iteration operator on level 1
and the number of iteration steps are mi. Here the CG(conjugate-gradient) method will be used,
and be proved to satisfy the assumption (H2). The algorithm of CG method for planar linear
elasticity can be found in [16].

We divide the basis functions Ok on level 1 into three groups for convenience:

(1) those "k that is equal to 1 at the node inside one of the fli or the two ends of ,yNM C。:，
    to 0 at all other nodes ino‘and equals to 0 outsideQ‘，and is bilinear on each elementary
    rectangle;

    Lemma 3.3

    Proof VV"〔

operator T,,

CG method satisfies assumption (H2), and，=1.

V, because CG method minimizes the error norm Ip1IIE [23], for all linear

川T"111, ? III毕气A,, V, F,)川E"

According to the conclusions of Shaidurov [23], for CG method there is

侧

阳

IIIScc(A,,V,F,)111s <斋 IIVIIE
                    川S, 0(A,,V,F,)IIIE

So, in order to prove our result, we only have to

5川V川‘

    训叉;._.
=2m, .石IIVIIE,

=川训I,.

prove that

(a) A' < c,  c is independent of hi, (b) IIVIIE <_ chi'IIV1I1o,n

      We first

functions in

combination

then

prove (a). Split 6=碗
group (1)(2)(denote the
of the basis functions in

+许，in which几is the linear combination of the basis

set of these basis functions妙 !FO), and计is the linear
group (3)(denote the set of these basis functions as I)r),

(人y,1,)F,=ai认仍< 2(ai(u6e,丙)+ at (许,许))，
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in which

a;丙，碗)= 艺 a;(V,;O;,V jOj)
咖,构C中。

‘ 艺 (al(V,; ;,V，‘咖))‘/2(a‘(巧，J妈，V,joj))r12
0i,0; E中。

‘。艺at (V,k0k,VIAOk) !5 C
中*〔中。

艺I V,k Ok l? ,h,
币wE币o

According to lemma (4.4) in I15], there is

al (v"r,Vr) < c艺 IV.kOk心，
0�E心r

easy to see that for the Ok E !Do, IV,kmkI子By scaling argument, it is
Ok E 41r, assume that the side on which it does not

、，_< c(V瓜·V,,k). For the
equal to o is r and that 7m C 0;, 7NM C f2;,

then

}V,k叫l.i,hi < c(V k  V;,k),
and

ICI,I(VI,kOA;)I'Ij,h,‘ch 121。，，‘(”，。功七)}                                                 0，。户三ch          1-'jf,.I(Vh 'j6yj(VI,kOk)I',n, !SCh         l,kOk)1'0,,r
            ‘ch-'jVI,kOkj'.,1          0‘C(VT,'k·V1,k).

Summing all these up we have
(At V, V) E5c(V,V)E (3.10)

Because巧is arbitrary, a' < c.

Then we prove (b). b'K〔Th, (0k), let CI, C2, C3,
the second derivatives at

C4〔Rz be the values of the four vertices

and GK(二),G关(b)〔RZ be
let v' be the transformations

the center of K. Using

the vertices does not change
of v' on the reference square K‘【一1,11 x!一1,
but

scaling argument,
1). The values on

GK (x)=嘴Gk(二)， G笑(，)=hi Gk (Y)
Let C, 7l be the coordinates on the reference square. Because

Il4o,k=0，。=0',(‘=1, 2,3, 4) and G'k'(二)=GK(v)一D,
we have

hi allv1II耘 全CII毗，、
> c(伴G1+叮Gz+叮G$+叮G,
  +(h;GK(二))T (hl GK(二))+(hi G}ic (y))T (hi GX(b))).

So, IIvJJE < ch尸11-110'a.

    Finally we prove assumption (H3). It is easy to see that the projection月has the following
characters:

Illpwllb  5IIIVIIII-1,

1乃司1，。;sc}训1‘卜，，

VV E
V6 E Y1 - 1. (3.11)
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Lemma 3.4 马satisfies

Proof  Assume that v E

(H3).

讯一，，then there exists万。璐(。)such that

-divo(})=v'一P, 61
万=。，

in 52,
on O52

By the Green formula,

ilv一P11110.,  = (y一Plv,v一P! v')
                            N

a!(},。一P, v-)一E
                      血=1 x任

艺
Tn,_, (S幼

[(Q(C)'7K)·v" ds

艺N艺 
 
 
 

十

  k=1 KETh, (n4)

at (Z v一P, VI-

五二(a (})7K) - (P! v) ds
En, _, (e+ if)十Eh, (e, P!-),

la,(}, v'一PI V-) I=Ia! (f -1rn, e, v一P, V-) I
            sclll了一7Th，翻:1116一PIVIIII
            ‘chi 1012,01111111-1
            ‘ChdR112,QjV1I,h-,
              !} chillir一P '110,01VIV '110,01VIV

Similarto the proof of the error estimate in section 2, we have

IEh,_,(ev-)j G ch,116一PIVIIlo,nwII1,n,_�
I En, (z Pi酬 ‘chrljV一P91lo,n1P+vl1,h,

            <  chilly一PIAlla,nlv11.h,_,

So, I1VV一Piyllo.n G ch,lVjl.h,_,.

    Now we can see that under the intergrid transfer operator It and CG method, the cascadic
multigrid method is optimal for mortar Wilson finite element method of planar linear elasticity.

                            4  Numerical Experiments

    In this section we describe some numerical results. The program is designed for the domain
Sl=卜1,1] x卜1,1], which is decomposed into two sub-domains: 511=[-1,1] x [0,1] and
。:=[一1,1]、[-1,0]. Assume that yM C f21 and yNM C 02. And !is chosen so that the
solution u"= (U1, U2) is:

u1=1x10-"x (1一x2)(1一y2)
u2=IX10-4X(1一x2)(1一，2)

    We use the Cascadic algorithm given in Section 3 and the CG method to be the smoother.

Set 0=2, we can get the following results.玩the table down here, L is the number of total
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levels, ml is the iteration number on the coarsest grid and m5 is the iteration number on the
finest grid. E is the Young modulus and v is the Possion coefficient, and the Lame constants
can he derived like this

办=
    E

2(1+。)’
久=

        vE

(1 + v)(1一2v)'

Let hi denote the step of triangulation over sub-domaino‘，d.o.f be the "degree of freedom" of
all,几 is the cascadic solution on level L.

Dable 1  L = 5, E=7、10"Pa, v =盖,ml二128, m5二8

hit 1,-1 d.o.f }H1t:一Ii川: 11L一1111,h} Pi:一住}}。，。
32 48 39586 1.44204 5.99997 x 10-e 4注662 x 10-0

64 96 159042 0.73483 3刀9612 x 10-e 23733 x 10'

128 192 637570 0.373412 1.5927 x 10-s 1.24249 x 10-7

256 384 2553090 0.189749 8.20557 x 10-7 6石9434 x 10-s

    We can conclude from the table above that, for the given number of level and number of
iteration steps on each level, it is to say that the whole amount of work is O(n,), the energy
norm and the Hl semi-norm is O(h), which means that for mortar Wilson finite element method
of homogeneous boundary value problem the cascadic multigrid method given in section 3 is
optimal. As for the L' norm, it is known that for second order elliptic value problems using
Wilson element, the cascadic multigrid method can not get optimal approximation with respect
to L' norm. And here, through the results of numerical experiments it can be concluded that it
is not optimal to La norm.

5  Appendix

    The Korn inequality due to the variational formulation of planar linear elasticity is well
known. In order to prove the discrete Kom inequality for mortar Wilson finite element method

of planar linear elasticity, we will following the steps like this: first prove the Korn inequality
over the space

N

v" E 11 Hl (52k ), s = 0, on 852,

f, ("i一v'j) dT=d

了
.
.
J
、
.
.
气

 
 
 
 
 
 

一- 
 
几

Because叽C称，so the Korn inequality stands over the mortar Ql element space叽 Then
we will extend it to the mortar Wilson element space几.*

      Lemma 5.1

of h that
If v6E么，then VK‘Th(flk), (1‘k < N) there exist。and C independent

IIEij (t7k)IIO,K‘DK(t7k)+艺((、，二(GK))'+(vi,,(GK))') < C艺IIEij(vk)IIO,K,  (5.1)
i=1 i,j=1

CI''rII1,K :5 BK(vk)+艺((、，二(GK))'+(vi,n(GK))') <_ CIVkji.K (5.2)
滋巴I
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in which

BK (4)

DK A )

=艺[(vj (A2)一。i(A1))2+(vj (As)一、(A1))2
      谁=1

  +(v; (A4)一。i(As))2+(vi(A4)一。i(A2))21,
= (v2 (As)一。2(Ai))2+(v2 (A4)一.2(A2))2
  +(vl (A2)一。i(A1))2+(vi (A4)一。1(A3))2
  +[(v2 (A2) +v2(A4)一v2(A1)一。2(A3))

  +(vi(As) + v1(Aa)一。i(A2)一。1(A,))]2,

。‘，二(GK)

vi,v(GK)
h2( g.-)(GK),-
h2(2;t)(。二)，

Al, A2, As, A4 are the four vertices of K, and GK is the center of K (see the picture).

The prove can be found in P.Lesaint's [19].

    Lemma 5.2
令1

H (fl) x RM(fl)

    Lemma 5.3

  H1(n)
such that

=1H
v' =

(fl) . RM(n), it is to say that Vv7 E牙，(。)，there exists (z", w") E

2'+斌and}}引;十}119111 < C110111.

There exists a positive constant C that

IIfW)I10:CII IIH,(n),，。。亏lH (f2) (5.3)

    Lemma 5.2 and 5.3 can be found in S.Brenner's [121. Lemma 5.3 is the second Korn lemma
The following lemma is easy to be checked.

Lemma 5.4 Let几材k

vk= in flk} fl众={0}, (5.4)

in which, bk and Ck,l, Ck,2

    By contradiction, the

are constants.

following theorem can be proven

Theorem 5.5      Assume that constant c is independent of h, then

                                        N

句

句

已

(5

(5

Pac

艺07k111,0,‘clll01h, Vv"任几.

Corollary 5.6

                Ivnihh <_ CIIlv.ll1h,    Vu"h。叽.
Next we will prove that the Korn inequality stands over the mortar Wilson element s

Theorem 5.7  Assume that c, C are constants independent of h,

                CIf'hh,h :5 11114111A !5 C117hh.h,   VT7h〔170.h (5.7)
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    Proof          It is easy to see that lllvhl1lh 5 Clvhll,h, so we just prove that elvhll、引IIVAIIIh.

  Because砰〔叽，according to Theorem 5.5, 1才I1,h G CIII寸ilih, and by Lemma 5.1 and
VQz(GK)=v元(GK)=0, VK〔ThA),(1‘k < N), we have

  Bx (vk,h )

116;i (峪)l1o.二

一BK(vlh):cl暇h 11,K,2 Vk, K〔几(QA;),

‘DK祀)= DK(v"k),    Vk,K。Th (f1k ).

Summing it for all K〔几(Qk), I < k < N, we get

又 又 BK (vk,h)‘c艺 艺 }峪Izl,x
k=1 KETh(62�) k=1兀〔几(日‘)

  N

‘c7 艺 2L日。i(vf )IIIO.x
k=1 KETh(nh) i,j=1
  N

‘C艺 艺 DK(vk,h)
                                                      k=1 KE几(0w)

Using Lemma 5.1 again we have Ivhl1,h < c川氏}}}、.

    Theorem 5.8  There exists one and only one solution for the discrete problem (2.1).

    The proof follows from the Lax-Milgram lemma.
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