A COMPUTATIONAL STUDY OF THE WEAK GALERKIN
METHOD FOR SECOND-ORDER ELLIPTIC EQUATIONS
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Abstract. The weak Galerkin finite element method is a novel numerical method that was first
proposed and analyzed by Wang and Ye in [29] for general second order elliptic problems on triangular
meshes. The goal of this paper is to conduct a computational investigation for the weak Galerkin
method for various model problems with more general finite element partitions. The numerical results
confirm the theory established in [29]. The results also indicate that the weak Galerkin method is
efficient, robust, and reliable in scientific computing.
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1. Introduction. In this paper, we are concerned with computation and nu-
merical accuracy issues for the weak Galerkin method that was recently introduced
in [29] for second order elliptic equations. The weak Galerkin method is an exten-
sion of the standard Galerkin finite element method where classical derivatives were
substituted by weakly defined derivatives on functions with discontinuity. The weak
Galerkin method is also related to the standard mixed finite element method in that
the two methods are identical for simple model problems (such as the Poisson prob-
lem) using certain finite element discretizations (for example, Raviart-Thomas [27]
and Brezzi-Douglas-Marini elements [6]). But they have fundamental differences for
general second order elliptic equations and finite element discretizations, as we shall
explain in details later. The goal of this paper is to numerically demonstrate the
efficiency and accuracy of the weak Galerkin method in scientific computing. In addi-
tion, we shall extend the weak Galerkin method of [29] from triangular and tetrahedral
elements to rectangular and cubic elements.

For simplicity, we take the linear second order elliptic equation as our model
problem. More precisely, let  be an open bounded domain in R? d = 2,3 with
Lipschitz continuous boundary 92. The model problem seeks an unknown function
u = u(x) satisfying

(1.1) -V -(AVu)+ B -Vu+~yu = f in Q,
’ u = g on 0},

where A € [L(Q)]9%4, B € [L>=()]¢, and v € L>=(f) are vector- and scalar-valued
functions, as appropriate. Furthermore, assume that A is a symmetric and uniformly
positive definite matrix function on §2 and the problem (1.1) has one and only one weak
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solution in the usual Sobolev space H'()) consisting of square integrable derivatives
up to order one. f and g are given functions that ensure the desired solvability of
(1.1).

Since the weak Galerkin method is a brand new method, we would like to comment
on its relation with some existing methods in literature. Due to the “discontinuous”
nature of the functions in the weak Galerkin finite element space, it is sensible to make
comparisons with methods employing discontinuous functions, such as the mixed finite
element method [10], the discontinuous Galerkin method (see the survey paper [3]),
and the discontinuous Petrov-Galerkin method [15, 16, 17].

The original idea of the weak Galerkin method is motivated by the hybrid mixed
finite element method. In fact, it is not hard to show that, for the Poisson equa-
tion —Au = f, the weak Galerkin method with X, defined using Raviart-Thomas
or Brezzi-Douglas-Marini elements is equivalent to the hybrid mixed finite element
method [2, 10] using the same elements. In this case, one can indeed prove (see [26]
for example) that Vguy, is in H(div,Q) and is equal to the discrete dual variable in
the mixed finite element approximation. However, the introduction of the weak gra-
dient operator V4 makes the weak Galerkin method fundamentally different from the
mixed method for general second order elliptic equations. Why and how are they dif-
ferent? First, for second order elliptic equations with variable coefficients, these two
methods give different numerical approximations. More precisely, for the equation
—V - (AVu+ Bu) = f where A and 3 are variable matrix- and vector-coefficients, the
mixed finite element method defines the dual variable 0 = AVu + Bu € H(div) with
a finite element discretization oy in the same space. However, in the weak Galerkin
finite element method, the corresponding numerical flux is given by A(Vqur) + Bup
which is in general not a function in H(div), though V4u is locally in H(div) space
on each element. Second, the weak Galerkin method allows a variety of choices for S}
and Y, as long as they satisfy certain conditions so that a weak gradient operator
Vg4 can be defined with a certain approximation property. In this paper, we only
consider the most “natural” and obvious choices based on the Raviart-Thomas and
the Brezzi-Douglas-Marini elements. More general schemes and elements defined on
arbitrary polygon/polyhedron have been introduced in [31] and [21].

The introduction of the weak gradient operator V, allows one to freely approx-
imate u and Vu by using totally discontinuous functions. Another well-known nu-
merical method which employs totally discontinuous functions is the discontinuous
Galerkin method. To compare these two methods, we look at the two-dimensional
problem with the lowest order elements for each of them. This amounts to the discon-
tinuous Galerkin method using piecewise linear functions on a triangular mesh, and
the weak Galerkin method defined on the same mesh using (Po(Ky), Po(F'), RTp(K)).
In other words, the weak Galerkin method uses piecewise constants on both the trian-
gles and the edges. These two elements give comparable approximation errors, as they
both have O(h) in the energy norm of the error and O(h?) in the L? norm, assuming
full regularity of the solution. The total degrees of freedom for the discontinuous
Galerkin method is 3x (the number of triangles), and for the weak Galerkin method
it is (the number of triangles)+ (the number of edges). Clearly, the weak Galerkin
method generates a smaller linear system to solve than the discontinuous Galerkin
method. As to implementation, the weak formulation of the discontinuous Galerkin
method involves jumps of the primal variable and averages of the flux on mesh edges.
Therefore, the computation of local stiffness matrices are no longer confined within
one triangle, as it must exchange information with all neighboring triangles, through
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jumps and averages on edges. On the contrary, the computation of the local stiff-
ness matrix for weak Galerkin methods is completely localized, and involves only the
degrees of freedom on a given triangle and its three edges. Note that the commu-
nication with neighboring triangles is conveniently done through the introduction of
edge-based degrees of freedom. Once the local stiffness matrices are computed, one
can assemble the global matrix in the same way as treating a usual primal formulation.
It should be pointed out that the computation of the local stiffness matrix for weak
Galerkin methods can be formulated in a standard or routine way, as to be discussed
in Section 3. Explicit formulas for the local stiffness matrix for several lowest order
weak Galerkin elements will be presented in Section 3.

The discontinuous Petrov-Galerkin method has recently been proposed for trans-
port equations [15, 16], as well as for second order elliptic equations [17]. Different
from the usual discontinuous Galerkin methods, the Petrov-Galerkin method uses
different trial and test spaces, where the trial space is piecewisely defined using poly-
nomials on both mesh elements and edges. For elliptic equations, the discontinuous
Petrov-Galerkin method no longer needs a stabilization term, as is required in the inte-
rior penalty discontinuous Galerkin methods. This eliminates the trouble of choosing
stabilization parameters that was commonly questioned to the discontinuous Galerkin
method. Like the Petrov-Galerkin method, the weak Galerkin method also does not
require any selection of stabilization parameters. The weak Galerkin method is quite
different from the discontinuous Petrov-Galerkin method. First, the weak Galerkin
method is a Ritz-Galerkin method that uses the same trial and test spaces. Sec-
ond, the trial space for the weak Galerkin method only contains the primal variable,
while the trial space for the discontinuous Petrov-Galerkin method contains both the
primal and the dual variables. In addition, to achieve the same order of approxima-
tion accuracy, the weak Galerkin method uses much less degrees of freedom than the
discontinuous Petrov-Galerkin method.

One well-known feature of the discontinuous Galerkin method or the discontin-
uous Petrov-Galerkin method is their ability in dealing with hybrid and even non-
conformal meshes. This nice feature provides an added degree of freedom in mesh
generation and refinement. It should be pointed out that the weak Galerkin method,
as formulated in [31, 21], enjoys the same feature with a well developed convergence
theory. Nevertheless, the weak Galerkin is still at its very early stage of development,
and there are a lot outstanding issues that remain to be explored. For example, it is
not clear whether the weak Galerkin method shall provide improved numerical solu-
tion to convection-dominant problems. How the idea of weak Galerkin can be used to
yield more robust numerical schemes for high order of partial differential equations?
What are the fast solution techniques for the discrete system arising from the weak
Galerkin methods? The list can certainly go much longer. The most profound part of
the weak Galerkin method is the novelty of the idea of using discrete weak gradient op-
erators V4 in numerical partial differential equations. This idea can be generalized to
more complicated differential equations including those with div and curl operators,
as one can similarly define weak divergence and weak curl. The implementation of all
these possible extensions are all based on the computation of these weak operators.
The purpose of this paper is to provide a standard formula and a detailed algorithm
to efficiently compute the weak gradient V4, and also to validate the accuracy and
robustness of the weak Galerkin method with numerical examples. Once a standard
formula for computing V4 has been established, one can derive similar formulas for
weak divergence and weak curl in other applications.



Throughout the paper, we use ||-|| to denote the standard L? norm over the domain
Q, and use bold face Latin characters to denote vectors or vector-valued functions.

The paper is organized as follows. In Section 2, the weak Galerkin method is
introduced and an abstract theory is given. In particular, we prove that certain
rectangular elements satisfy the assumptions in the abstract theory, and thus establish
a well-posedness and error estimate for the corresponding weak Galerkin method with
rectangular meshes. In Section 3, we present some implementation details for the weak
Galerkin elements. Finally in Section 4, we report some numerical results for various
test problems. The numerical experiments not only confirm the theoretical predictions
as given in the original paper [29], but also reveal new results that have not yet been
theoretically investigated.

2. The Weak Galerkin Method. Let 7, be a shape-regular, quasi-uniform
mesh of the domain 2, with characteristic mesh size h. In two-dimension, we consider
triangular and rectangular meshes, and in three-dimension, we mainly consider tetra-
hedral and hexahedral meshes. For each element K € T}, denote by Ky and 0K the
interior and the boundary of K, respectively. Here, K can be a triangle, a rectangle,
a tetrahedron or a hexahedron. The boundary 0K consists of several “sides”, which
are edges in two-dimension or faces/polygons in three-dimension. Denote by F}, the
collection of all edges/faces in 7.

On ecach K € T, let P;j(Kp) be the set of polynomials on Ky with degree less
than or equal to j, and Q;(K) be the set of polynomials on K, with degree of each
variable less than or equal to j. Likewise, on each F' € F,, P(F) and Q;(F) are
defined analogously. Now, define a weak discrete space on mesh 7, by

Sy ={v: v|k, € Pj(Ky) or Q;(Ky) for all K € Ty,
v|p € P(F) or Q(F) for all F € Fp}.

Observe that the definition of S} does not require any form of continuity across
element or edge/face interfaces. A function in S}, is characterized by its value on the
interior of each element plus its value on the edges/faces. Therefore, it is convenient
to represent functions in Sy with two components, v = {vg, v}, where vy denotes the
value of v on all Kys and v, denotes the value of v on Fy,.

We further define an L? projection from H'(f)) onto S, by setting Qnv =
{Qov, Qpv}, where Qov|k is the local L? projection of v in P;(Kp), for K € T,
and Quv|F is the local L? projection in P(F), for F € Fy,.

The idea of the weak Galerkin method is to seek an approximate solution to
Equation (1.1) in the weak discrete space Sp. To this end, we need to introduce a
discrete gradient operator on S;. Indeed, this will be done locally on each element
K. Let V,.(K) be a space of polynomials on K such that [P,.(K)]¢ C V,.(K); details
of V,.(K) will be given later. Let

Y, ={q e [L*()]?: qlx € V;(K) for all K € T}

A discrete gradient of v, = {vg,vs} € S, is defined to be a function V4v, € ¥, such
that on each K € Ty,

(2.1) /Vdvh~qda?:—/ UOV-qd:E—i—/ uvpq - nds, forall q € V,.(K),
K K 0K

where n is the unit outward normal on 0K . Clearly, such a discrete gradient is always
well-defined.
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Denote by (-,-) the standard L?-inner product on . Let S? be a subset of Sj,
consisting of functions with vanishing boundary values. Now we can write the weak
Galerkin formulation for Equation (1.1) as follows: find u, = {ug, up} € Sp, such that
up = Qpg on each edge/face F' C 99 and

(2.2) (Avduh, Vdvh) + (,3 -Vaup, vo) + (’Y’LLo, UQ) = (f, ’Uo)

for all v, = {vo,vp} € S). For simplicity of notation, we introduce the following
bilinear form

(2.3) a(up,vy) 2 (AVaup, Vaor) + (8 - Vaun,vo) + (Yug, vo).

The spaces S and ¥, can not be chosen arbitrarily. There are certain criteria
they need to follow, in order to guarantee that Equation (2.2) provides a good ap-
proximation to the solution of Equation (1.1). For example, ¥ has to be rich enough
to prevent from the loss of information in the process of taking discrete gradients,
while it should remain to be sufficiently small for its computational cost. Hence, we
would like to impose the following conditions upon S} and Xp:

(P1) For any vy, € S, and K € Ty, Vaup|x = 0 if and only if vg = vy, = constant
on K.
(P2) For any w € H™1(Q), where 0 < m < j + 1, we have

IVa(@nw) = V|| < Ch™ [wllmy1,

where and in what follows of this paper, C denotes a generic constant inde-
pendent of the mesh size h.

Under the above two assumptions, it has been proved in [29] that Equation (2.2)
has a unique solution as long as the mesh size h is moderately small and the dual of
(1.1) has an H!'**-regularity with some s > 0. Furthermore, one has the following
error estimate:

[Va(un — Quu)|| < C (B f = Qof || + h™ [[ullm+1) ,

2.4
24 lluo — Qoull < C (A **If = Qo fl| + K™ F*|[ullm+1) |

for any 0 < m < j+1, and s > 0 is the largest number such that the dual of Equation
(1.1) has an H!'**-regularity.

There are several possible combinations of Sj, and ¥; that satisfy Assumptions
(P1) and (P2). Two examples of triangular elements have been given in [29], which
are

1. Triangular element (P;(Ky), P;(F), RT;(K)) for j > 0. That is, in the def-
inition of Sy, we set [ = j. And in the definition of ¥;, we set r = j and
V. (K) to be the jth order Raviart-Thomas element RT;(K) [27].

2. Triangular element (Pj(Ko), Pj+1(F), (Pj+1(K))%) for j > 0. That is, in
the definition of Sy, we set [ = j + 1. And in the definition of ¥j, we set
r=j+1and V,(K) = (Pj+1(K))% or in other words, the (j + 1)st order
Brezzi-Douglas-Marini element [6].

Next, we shall extend this result to rectangular elements. An extension to three-
dimensional tetrahedral and hexahedral elements is straightforward.



2.1. Weak Galerkin on Rectangular Meshes. Consider the following two
type of rectangular elements:

1. Rectangular element (Q;(Ky), Q;(F), RT;(K)) for j > 0. That is, in the

definition of Sy, we set | = 7, and in the definition of ¥, we set r = j and

V-(K) to be the jth order Raviart-Thomas element RT}(K) on rectangle K.

2. Rectangular element (P;(Ky), Pj+1(F), BDM;1(K)) for j > 0. That is, in

the definition of Sy, we set [ = j + 1, and in the definition of ¥, we set

r=j+41and V,.(K) to be the (j + 1)st order Brezzi-Douglas-Marini element
BDM;;1(K) on rectangle K.

Denote by Q; ;(K) the space of polynomials with degree in « and y less than or equal
—0/0y
0/0x

- 48]

to ¢ and 7, respectively, and curl = { ] . It is known that

BDM;1(K) = { ji ] + span {curl (z72y), curl (zy?*?)},

and dim(RT;(K)) = 2(j + 1)(j + 2), dim(BDM,11(K)) = (j +2)(j + 3) + 2. The
degrees of freedom for RT;(K) are:

/(q~n)wds7 for all w € Q;(F), F € FNOK,
F

/ q-pdzr, forall pe Q;-1,;(K) x Qj,;-1(K).
K
The degrees of freedom for BDM,11(K) are

/ (q-n)wds, for all w € Pj11(F), F e FNOK,
F

/ q-pdz, for all p € [Pj_1(K))*.
K
It is also well-known that on each rectangle K € T, and each edge F' € Fj;, N 0K,

V- RT;(K) = Q;(Ko), RT;(K) -n|p = Q;(F),

B G BDM () = Pi(Ko),  BDM;1(K)-nlp = Py (F).

Next, we show that the two set of elements defined as above satisfy Assumptions
(P1) and (P2).

LEMMA 2.1. For the two type of rectangular elements given in this subsection,
the Assumption P1 holds true.

Proof. If vg = v = constant on K, then clearly Vgu,|kx vanishes since the
right-hand side of (2.1) is zero from the divergence theorem. Now let us assume that
Vavn|k = 0. By (2.1) and using integration by parts, we have for all q € RT;(K) or
BDM; 41 (K),

O:f/ UOV-qdo:+/ vpq - nds
K oK

(2.6)
:/ (vbfvg)q~nds+/ (Vo) - qdz.
K K
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We first consider the element (Q;(Ko), Q;(F), RT;(K)). If j = 0, then vy is a
constant on Ky and clearly Vug = 0. If j > 0, take q such that fF (q-n)wds =0 for
all w € Q;(F) and let it traverse through all degrees of freedom defined by [, q-pdz,
for p € Qj—l,j(K) X de'_l(K). Since (Ub — UO)‘F S QJ(F) and Vug € Qj_l,j(K) X
Qj;—1(K), Equation (2.6) gives Vug = 0, which implies that v is a constant on K.
Now Equation (2.6) reduces into

/ (vp —vo)q-nds =0, for all q € RT};(K).
oK

Next, since (v — vo)|r € Qj(F) = RT;(K) - n|p for all F € F, N 0K, by letting q
traverse through all degrees of freedom on 0K, we have v, — vy = 0 on all F. This
implies v, = vg = constant in K.

For the (P;(Ky), Pj+1(F), BDM;+1(K)) element, using the same argument as
in the previous case, and noticing that Vg € (Pj—1(K))?, (v — vo)|r € Pj41(F) =
BDM;;1(K) n|p for all F € F,NOK, we can similarly prove that v, = vy = constant
in K. 0O

LEMMA 2.2. For the two type of rectangular elements given in this subsection,
the Assumption (P2) holds true.

Proof. Let w € H™(Q), 1 <m < j+ 1. For any q € ¥;, and K € T, by (2.5)
and the definition of L? projections, we have

/ (VaQuw) - qdz = — / (Quu)(V-adz + | Quulq-n)ds
K K

0K

:_/Kw(v-q)da:+/ w(q-n)ds

:/K(Vw)~qd:1:. "

In other words, on each K € Tp,, V4Qpw is the L? projection of Vw onto RT;(K) or
BDM,41(K). Thus, the Assumption (P2) follows immediately from the approxima-
tion properties of the L? projection, and the fact that both RT;(K) and BDM,1(K)
contains the entire polynomial space [P;(K)]%. O

Using Lemma 2.1 and Lemma 2.2, one can derive the error estimate (2.4) for the
rectangular elements by following the argument presented in [29]. Details are left to
interested readers as an exercise.

3. Computation of Local Stiffness Matrices. Similar to the standard Galerkin
finite element method, the weak Galerkin method (2.2) can be implemented as a ma-
trix problem where the matrix is given as the sum of local stiffness matrices on each el-
ement K € Tj. Thus, a key step in the computer implementation of the weak Galerkin
is to compute element stiffness matrices. The goal of this section is to demonstrate
ways of computing element stiffness matrices for various elements introduced in the
previous sections.

For a given element K € 7T, let ¢g;, ¢ = 1,...,No, be a set of basis func-
tions for P;(Ky) or Q;(Ky), and ¢p4, ¢ = 1,..., Ny, be a set of basis functions for
Y rearnr, DIF) or X peoxnr, Qi(F) . Note that {¢;;} is the union of basis func-
tions from all edges/faces of element K. Then every v, = {vo,vp} € Sj has the
following representation in K:

No Ny
Up|x = {Zﬂo,i%,i, va,i¢b,i} .
i=1 i=1



On each K, the local stiffness matrix Mg for Equation (2.2) can thus be written as
a block matrix

(3.1) Mg = {MO’O Mo’b}

Myo My

where My is an Ny x Ng matrix, Moy is an Ny x N, matrix, My o is an N, x Ny
matrix, and My is an IV x N, matrix. These matrices are defined, respectively, by

Moo = [a(¢o,;, ¢o,i)K]m ; Mo = [a(dp,, ¢0,i)K]i7j ;
My = [a(do,;, (bb,i)K]iJ ; My, = [a(¢w,;, ¢b,i)K]i7j ,

where the bilinear form a(-,-) is defined as in (2.3), and ¢, j are the row and column
indices, respectively.

To compute each block of Mg, we first need to calculate the discrete gradient
operator V4. For convenience, denote the local vector representation of vp|x by

0,1 Vp,1
V0,2 Up,2
XO = 9 Xb =
V0, N Ub,Ny

Let x;, i =1,..., Ny, be a set of basis functions for V,.(K). Then, for every qy;, € ¥y,
its value on K can be expressed as

Ny
dnlk = Z%Xi'
i=1

Similarly, we denote the local vector representation of qn|x by

dNy

Then, by the definition of the discrete gradient (2.1), given v,|x, we can compute the
vector form of V,v, on K by

(3.2) Dy (Vaup) = —Zgvy + Trvy,

where the Ny x Ny matrix Dy, the Ny x Ny matrix Zk, and the Ny x Np matrix
Ty are defined, respectively, by

fKX1'X1d33 fKX1'XNVd$
(3.3) Dy = ’
S Xny -xade o [ Xy Xy, d
SV -x1)poide - [ (V-x1)doN, dx
T = 7

S (Vxny )01 de - [ (VX )do.n, dz



and
Jor(X1 -m)pp1ds -+ [ (X1 n)gu N, ds
Tk =
faK(XNV : n)¢>b,1 ds --- faK(XNV : n)¢b,Nb ds
Notice that Dy is a symmetric matrix.

Once the matrices Dk, Zx and Tk are computed, we can use (3.2) to calculate
the weak gradient of basis functions ¢¢ ; and ¢, ; on K. It is not hard to see that

(3.4) (Vago,i) = —Di Zxel, (Vagpi) = D' Tieel,

where QZN ° and gfv b are the standard basis for the Euclidean spaces RNe and R™e,
respectively, such that its i-th entry is 1 and all other entries are 0.
Define matrices

Ag = [(AXpXi)K]M ;
(3.5) Bk = [(B - x;, QSO,Z')KLJ- ;
Ck = [(W’d)o,jad)o,i)l(]iw

where (-, -)x denote the standard inner-product on L?(K) or [L?(K)]¢, as appropriate.
Clearly, A is an Ny X Ny matrix, Bg is an Ny X Ny matrix, and C is an Ny x Ny
matrix. Then, an elementary matrix calculation shows that the local stiffness matrix
M for Equation (2.2) can be expressed in a way as specified in the following lemma.

LEMMA 3.1. The local stiffness matric My defined in (3.1) can be computed by
using the following formula
Moo = Z4 D' Ak D' Zie — Bk D' Zie + Ck,
Moy = —Z4 Dt Ax D' Tie + Bk D' Tk,
Myo = ~Tk D' Ax Dt Zx + T D' Bl
My, =T D' Ak Dyt T,

(3.6)

where the superscript t stands for the standard matrix transpose.

For the Poisson equation —Au = f, we clearly have Ay = Dg and B = 0,
Ck = 0. Since Dk is symmetric, the local stiffness matrix becomes

Z4 D Zx  —Z4 D Tk

(3.7) Mg = .
~TLDR Zx  TLDE Tk

In the rest of this section, we shall demonstrate the computation of the element

stiffness matrix Mg with two concrete examples.

3.1. For the Triangular Element (Po(K), Po(F), RTo(K)). Let K be a tri-
angular element in 7,. We consider the case when j =1 = 0 and V,.(K) being the
lowest order Raviart-Thomas element. In other words, the discrete space S; con-
sists of piecewise constants on the triangles, and piecewise constants on the edges
of the mesh. In this case, the discrete gradient is defined by using the lowest order
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Raviart-Thomas element on the triangle K. Clearly, we have Ny = 1, N, = 3 and
Ny = 3.

Let v; = (x4,¥;), © = 1,2, 3, be the vertices of the triangle K and e; be the edge
opposite to the vertex v;. Denote by |e;| the length of edge e; and |K| the area of the
triangle K. We also denote by n; and t; the unit outward normal and unit tangen-
tial vectors on e;, respectively. Here t; should be in the positive (counterclockwise)
orientation. If edge e; goes from vertex v; to v and K stays on the left when one
travels from v; to vy, then it is not hard to see that

¢ = tin] 1 |og—x; _maa| 1 Yk — Yj
i= = ) n; = = .

ti2 lei] [k — Y5 N2 les| | — (7 — )

3.1.1. Approach I. One may use the following set of basis functions for the
weak discrete functions on K:

1 on e;
(3.8) o1 =1, = for i = 1,2,3,
0 otherwise
and
led] {aﬁ - x} ,
3.9 ; = , fori=1,23.
39 Xi 2|1K| Y —¥i

Notice that x; forms the standard basis for the lowest order Raviart-Thomas element,
for which the degrees of freedom are taken to be the normal component on edges.
Indeed, x; satisfies

| 1 for i = j,
A 0 =
i Biles 0 for i # j.
It is straight forward to compute that, for the above defined basis functions,
|€1‘ |€1| 0 0
ZK: |62‘ 5 TKZ O |62| O
les] 0 0 |es]

The computation of D is slightly more complicated, but it can still be done without
much difficulty, especially with the help of symbolic computing tools provided in
existing software packages such as Maple and Mathematica. For simplicity of notation,
denote

li = |e]? for 1 <4< 3,
Lij = lei* + |e;? for 1 <i4,5 <3 andi#j,
lios = lex]® + |e2]? + |es|*.
Then, it can be verified that

le1|? (3laz —11)  lexllea| (lia — 3l3)  lex|les| (s — 3l2)

Dk lea|lez] (liz — 3l3)  lea|® (313 —12)  lealles| (laz — 311)

T 48K ,
lexlles| (lis — 3l2)  lezlles| (l2s —3l1)  es|* (3l12 — I3)
(3.10)
3log =11 lig—3l3 liz3 =3l
= — Tk |lis—3l3 3liz—1o loz—3l| TL.
48|K| K 12 3 13 2 23 1 K

liz—=3ly laz =3l 3lia—1I3
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We point out that, the value of D given as in (3.10) agrees with the one presented
in [4]. A verification of the formula (3.10) can be carried out by using the following
fact

1 1 1 1
K| =< |z1 x2 x3],
Y Y2 Y3

leil? = (zj — 26)* + (y; — yi)?, i=1,2,3, j #k, j and k different from 7.

In computer implementation, it is convenient to use a form for the local matrix that
can be expressed by using only edge lengths, as the one given by (3.10).

In addition, using symbolic computing tools and the law of sines and cosines, we
can write D;{l as follows:

20y I3 =1l la—1l3
I3 =12 21y li —la3 Tgl.
lQ — 113 ll — l23 213

! 1

2|K]|

11
1 1+
123 1 1 1
Thus, to compute the local stiffness matrix M, it suffices to calculate Agx, Bx
and Ck as given in (3.5), and then apply Lemma 3.1. Notice that these three matrices
depend on the coefficients A, 3 and ~, and quadrature rules may be employed in the

calculation. However, for the simple case of the Poisson equation —Awu = f, we see
from (3.7) that

_ 144K _ gt _ [—48|K|  —48|K| —48|K]
Moo = |: l123 :| ’ Moy = MbO - |: l123 l123 l123 ] ’
L6lic 11 1 . 21y lz—liz l2—l3
My, = ; K] 11 1|+ 3K I3 — l12 215 Iy — a3
A I la —l13 11 —l23 213

3.1.2. Approach II. We would like to present another approach for computing
the local stiffness matrix Mg in the rest of this subsection. Observe that a set of
basis functions for the local space V,.(K) can be chosen as follows

0 p—
17 X3 =

where (Z = (21 +x2+3)/3,5 = (y1 + y2 +y3)/3) is the coordinate of the barycenter
of K. Note that both components of x; have mean value zero on K. For the weak
discrete function on K, we use the same set of basis functions as given in (3.8). It is
not hard to see that

r—2

y—y

)

(3.11) X1 = H s Xe=

10 0 0
Dg=I|K[|0 1 0|, Zg=| 0 |,
0 0 4= 2|K|

and

Ys—Y2 Y1 —Ys Y2—U
Tk = |T2—T3 23— T3 T1— X2

2|K] 2|K] 2|K|
3 3 3
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Next, we use the formula (3.5) to calculate the matrices Ax, By and Ck for the new
basis (3.11). Finally, we calculate the local stiffness matrix My by using the formula
provided in Lemma 3.1.

Since the set of basis functions for the weak discrete space are the same in Ap-
proaches I and II, the resulting local stiffness matrix My would remain unchanged
from Approaches I and II. The set of basis functions (3.11) is advantageous over the
set (3.9) in that the matrix Dy is a diagonal one whose inverse in trivial to compute.

3.2. For the Cubic Element (Qo(K), Qo(F), RTo(K)). Let K = [0,a] x
[0,0] x [0, ¢] be a rectangular box where a, b, ¢ are positive real numbers. We consider
the three-dimensional cubic element, for which the discrete space S;, consists of piece-
wise constants on Ky and piecewise constants on the faces of K. The space for the
discrete gradient is the lowest order Raviart-Thomas element on K. We clearly have
NOZI,Nb:6aHdNV:6.

Denote the six faces F;, i =1,...,6 by

F, : 2=0, F, : x=a,
FegZO, F4Zy:b,
Fs : 2=0, Fs 1 z=rc.

Note that the volume of K is given by |K| = abc and the normal direction to each
face is given by

-1 1 0 0 0 0
n=|0|,nn=1[0],ng=|—-1|, ny= (1|, n5=|[0],ng= |0
0 0 0 0 -1 1

We adopt the following set of basis functions for the weak discrete space on K

1 on F;
¢o1 =1, v, = fori=1,...,6,
0 otherwise
and
Z -1 = 0 0 0 0
X1: 0 aX2: 0 7X3* %_1 aX4* % 7X5* 0 aXGZ 0
0 0 0 0 z2-1 z
Clearly, each x; satisfies
n,|p = 1 for ¢ = 7,
Xit BylF; = 0 for i # j.
It is not hard to compute that
2 -1 0 0 0 0 21 0 0 0 O
-1 2 0 0 0 0 1 2 00 0O
D_@OOZ—lOO D,1_1002100
K=" 1o 0o -1 2 0o o}’ K =IK[|o 0 1 2 0 o]’
0 0 0 0 2 -1 0 00 0 21
0 0 0 0 1 2 0 00 0 1 2
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and
be be 0 0 0 O O
be 0 b¢c¢ 0 O 0 O
ac 0 0 a O 0 O
ZK = ge| - Te=10 0 0 a 0 0
ab 0 0 0 O ab O
ab 0 0 0 O 0 ab

Then, the local stiffness matrix Mg can be computed using the formula presented in
Lemma 3.1.

4. Numerical Experiments. In this section, we shall report some numerical
results for the weak Galerkin finite element method on a variety of testing problems,
with different mesh and finite elements. To this end, let up, = {ug,up} and u be
the solution to the weak Galerkin equation (2.2) and the original equation (1.1),
respectively. Define the error by e, = un — Quu = {eg, ey} where Qpu is the L?
projection of u onto appropriately defined spaces. Let us introduce the following

norms:

1/2
H*' semi-norm: IVaenl = ( Z / \Vaen|? dx) ,
KeT, 'K

1/2
Element-based L? norm : lleoll = ( Z / leo)? d:c) ,
KeT, K
1/2
Edge/Face-based L? norm : lles] = ( Z hK/ |eb|2ds> )
FeFy F

where in the definition of |lep]|, hx stands for the size of the element K that takes F
as an edge/face. We shall also compute the error in the following norms

1/2
IV attn — V| = <Z / |Vduh—Vu|2da:> ,
KeT, VK

1/2
Jun —ull = < > / |uo —u|2d9€> ;
KeT, VK

lleolloo = sup eo()].
z € Ko
KeTy,

Here the maximum norm ||ep||o is computed over all Gaussian points, and all other
integrals are calculated with a Gaussian quadrature rule that is of high order of
accuracy so that the error from the numerical integration can be virtually ignored.

4.1. Case 1: Model Problems with Various Boundary Conditions. First,
we consider the Laplace equation with nonhomogeneous Dirichlet boundary condition:

(4.1) u=g on 0N.
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We introduce a discrete Dirichlet boundary data g, which is either the usual nodal
value interpolation, or the L? projection of u = g on the boundary. Let I' C 9 and
define

Sgn.r.n ={v: vk, € Pj(Ko) or Qj(Ko) for all K € Ty,
v|p € P(F) or Qi(F) for all F € Fp,
v=gponF,NT}

When I' = 052, we simply denote Sy, aq.n by Sg,.». The discrete Galerkin formulation
for the nonhomogeneous Dirichlet boundary value problem can be written as: find
up, € Sy, such that for all vy, € SV,

(AVqun, Vaur) + (B - Vaun,vo) + (yuo, vo) = (f, vo).

We would like to see how the weak Galerkin approximation might be affected when
the boundary data u = g is approximated with different schemes (nodal interpolation
verses L2 projection). To this end, we use a two dimensional test problem with domain
Q= (0,1) x (0,1) and exact solution given by u = sin(2rx + 7/2) sin(2my + 7/2).
A uniform triangular mesh and the element (Py(K), Po(F), RTy(K)) is used in the
weak Galerkin discretization. The results are reported in Table 4.1 and Table 4.2. It
can be seen that both approximations of the Dirichlet boundary data give optimal
order of convergence for the weak Galerkin method, while the L? projection method
yields a slightly smaller error in ||eg| and ||ep|.

Next, we consider a mixed boundary condition:

u=gP on I'p,
(AVu) -n+au = gt on g,

where ¢ is the Dirichlet boundary data, ¢t is the Robin type boundary data, o > 0,
and TpNTgr =0, Tp UTRg = Q. When « = 0, the Robin type boundary condition
becomes the Neumann type boundary condition.

For the mixed boundary condition, it is not hard to see that the weak formulation
can be written as: find u;, € Sg,f’,l“mh such that for all vy, € Sorp, .,

(AV gup, Vaop) + {(up, vp)ry + (8 - Vaun, vo) + (yuo, vo) = (f,v0) + (g%, vp)rp,

where (-,-)r, denotes the L? inner-product on I'r. We tested a two-dimensional
problem with A to be an identity matrix and Q = (0,1)? with a uniform triangular
mesh. The exact solution is chosen to be u = sin(mwy)e™*. This function satisfies

Vu-n4+u=0

on the boundary segment £ = 1. We use the Dirichlet boundary condition on all other
boundary segments. The element (Py(K), Po(F'), RTp(K)) is used in the discretiza-
tion. For the Dirichlet boundary data, the L? projection is used to approximate the
boundary data g”. The results are reported in Table 4.3. It shows optimal rates of
convergence in all norms for the weak Galerkin approximation with mixed boundary
conditions.
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TABLE 4.1
Case 1. Numerical results with Dirichlet data being approximated by the usual nodal point
interpolation.

L~ ] IVaenll  lleol lesll  [Vaun — Vull Jluo —ull Jleoflc ||
1/8 7.14e-01  2.16e-02  4.05e-02 1.01e4-0 1.30e-01  4.43e-02
1/16 || 3.56e-01 5.61e-03 1.01e-02 5.04e-01 6.53e-02  1.12e-02
1/32 1.78e-01 1.41e-03 2.53e-03 2.51e-01 3.27e-02  2.86e-03
1/64 || 8.90e-02 3.55e-04 6.32e-04 1.25e-01 1.63e-02  7.15e-04
1/128 || 4.45e-02 8.88e-05 1.57e-04 6.29e-02 8.18e-03  1.79e-04

Or(h: ) 1.0012 1.9837 2.0014 1.0024 0.9984 1.9879
TABLE 4.2

Case 1. Numerical results with Dirichlet data being approzimated by L? projection.

[~ [ [Vaenl ol lesll  [Vaun — Vull_Jluo —ull_ Jleofl ||
1/8 [ 7.10e-01 1.75¢-02 3.08¢-02  1.0le+0 1.20e-01  3.68e-02
1/16 || 3.55e-01 4.59¢-03 7.69e-03  5.04e-01 6.52e-02  9.54¢-03
1/32 | 1.78¢-01 1.16e-03 1.92e-03  2.51e-01 3.27e-02  2.39¢-03
1/64 | 8.90e-02 2.90e-04 4.8le04  1.25e-01 1.63¢-02  6.01e-04
1/128 |[ 4.45¢-02 7.27e-05 1.20e-04  6.29e-02 8.18¢-03  1.50e-04

OTUL V| 09993 19808 1.9999 1.0015 0.9968  1.9861

4.2. Case 2: A Model Problem with Degenerate Diffusion. We consider
a test problem where the diffusion coefficient A is singular at some points of the
domain. Note that in this case, the usual mixed finite element method may not
be applicable due to the degeneracy of the coefficient. But the primary variable
based formulations, including the weak Galerkin method, can still be employed for a
numerical approximation.

More precisely, we consider the following two-dimensional problem

-V (zyVu) = f

u=20

in Q,
on 0,

where © = (0,1)2. Notice that the diffusion coefficient A = zy vanishes at the origin.
We set the exact solution to be u = z(1 — x)y(1 —y). The configuration for the finite
element partitions is the same as in test Case 1. We tested the weak Galerkin method
on this problem, and the results are presented in Table 4.4 and Figure 4.1.

Since the diffusion coefficient A is not uniformly positive definite on €, we have
no anticipation that the weak Galerkin approximation has any optimal rate of conver-
gence, though the exact solution is smooth. It should be pointed out that the usual
Lax-Milgram theorem is not applicable to such problems in order to have a result
on the solution existence and uniqueness. However, one can prove that the discrete
problem always has a unique solution when Gaussian quadratures are used in the
numerical integration. Interestingly, the numerical experiments show that the weak
Galerkin method converges with a rate of approximately O(h%®) in ||Vg4epn||, O(h!2%)
in |leg]| and ||ep||. It is left for future research to explore a theoretical foundation of
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TABLE 4.3
Case 1. Numerical results for a test problem with mized boundary conditions, where a Robin
type boundary condition is imposed on part of the boundary.

L~ ][ [IVaenll __lleol lesll  [Vaun —Vull _Jluo—ull_[leoflo |
1/8 [ 1.55¢-01 3.18¢-03 1.14e-02  1.95e-01  4.51e-02 1.12¢-02
1/16 || 7.87e-02 8.20e-04 2.90e-03  9.82e-02  2.25e-02 3.18¢-03
1/32 || 3.940-02 2.060-04 7.29¢-04  4.92¢-02 1.12c-02 _ 8.400-04
1/64 || 1.97e-02 5.17e-05 1.82e-04  2.46e-02  5.64e-03 2.15¢-04

1/128 | 9.87e-03 1.29¢-05 4.56e-05  1.23e-02  2.82¢-03 5.46¢-05

O(h")

T =

0.9958 1.9876 1.9926 0.9971 1.0001 1.9262

TABLE 4.4
Case 2. Numerical results for a test problem with degenerate diffusion A in the domain.

[ h ] Vaen] leoll el [IVaun —Vull Jluo —ull  [leollso |
1/8 5.61e-02 3.32e-03 6.60e-03 5.75e-02 5.48e-03  1.27e-02
1/16 4.03e-02 1.38e-03 2.81e-03 4.09e-02 2.59e-03  4.90e-03
1/32 2.95e-02 5.68e-04 1.16e-03 2.96e-02 1.23e-03 2.21e-03
1/64 2.15e-02 2.35e-04 4.83e-04 2.15e-02 5.97e-04 1.16e-03

1/128 || 1.55e-02  9.93e-05 2.02e-04 1.55e-02 2.91e-04 5.99e-04

O(h")

T =

0.4614 1.2687 1.2594 0.4697 1.0579 1.0912

the observed convergence behavior.

4.3. Case 3: A Model Problem on a Domain with Corner Singularity.
We consider the Laplace equation on a two-dimensional domain for which the exact
solution possesses a corner singularity. For simplicity, we take Q = (0,1)? and let the
exact solution be given by

(4.2) u(z,y) = x(1—z)y(l —y)r=>*7,
where r = /22 4+ y? and v € (0, 1] is a constant. Clearly, we have
w€ H}(QNH™™5(Q) and wu¢ H™(Q),

where € is any small, but positive number. Again, a uniform triangular mesh and the
element (Py(K), Po(F), RTy(K)) are used in the numerical discretization. Note that
the weak Galerkin for this problem is exactly the same as the standard mixed finite
element method.

This model problem was numerically tested with v = 0.5 and v = 0.25. The
convergence rates are reported in Table 4.5 and Table 4.6. Notice that |Vgen|| and
|leo]| behaves in a way as predicted by theory (2.4); i.e., they converge with rates given
by O(h") and O(h'*7), respectively. The result also shows that the approximation
on the element edge/face has a rate of convergence O(h'*7).

4.4. Case 4: A Model Problem with Intersecting Interfaces. This test
problem is taken from [20], which has also been tested by other researchers [22, 25].
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Fi1c. 4.1. Case 2. Convergence rate of ||Vaen||, lleoll and ||ey|| for the case of degenerate diffusion.

107}
S
[
——H1 semi norm
107 -o—||e0|
—&—||eb]|
107 10™
h: mesh size

TABLE 4.5
Case 3. Convergence rates for a problem with corner singularity (v = 0.5).

[~ [ [Vaenl el lesll  [Vaun — Vull_Jluo —ull_ Jleofl ||
1/8 [ 1.88¢-01 6.40e-03 1.47e02  2.54e-01 1.49¢-02  4.30e-02
1/16 || 1.36e-01 2.20e-03 5.28¢-03  1.84e-01 7.66e-03  3.01e-02
1/32 [ 9.74e-02 7.62e-04 1.86e-03  1.32e-01 3.89e-03  2.12¢-02

1/64 | 6.93e-02 2.65e-04 6.57e-04 9.42e-02 1.96e-03  1.49e-02
1/128 || 4.92e-02  9.33e-05 2.32e-04 6.69e-02 9.88e-04 1.05e-02
OT(h: ) 0.4852 1.5251 1.4992 0.4827 0.9805 0.5066

In two dimension, consider Q = (—1,1)? and the following problem
-V - (AVu) =0,

where A = K415 in the first and third quadrants, and K>I5 in the second and forth
quadrants. Here I5 is the 2 x 2 identity matrix and K7, K5 are two positive numbers.
Consider an exact solution which takes the following form in polar coordinates:

u(z,y) =r"p(0),
where v € (0,1] and
cos((m/2 —o)y)cos((0 — /2 + p)y), if0<0<m/2,

cos(py) cos((6 — 7 + o)y), ifr/2<6<m,
(4.3) (o) = COS(ZI’YV) cos(( -7 — p)z), ifr<6<3m/2,
cos((m/2 — p)vy)cos((6 —3n/2 — o)y), if3n/2 <6< 2m.

The parameters 7, p, o satisfy the following nonlinear relations

R:= K /Ky = —tan((w/2 — o)) cot(py),
1/R = —tan(py) cot(op),

(4.4) R = — tan(p) cot((n/2 — p)),
max{0, 7y — 7} < 27yp < min{7my, 7},
max{0, 7 — 7y} < —2y0 < min{m, 27 — 7y}.
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TABLE 4.6
Case 8. Convergence rates for a problem with corner singularity (v = 0.25).

[~ Vaenll ol lesll  Vaun —Vull Jluo —ull_ [leollos |
1/8 [ 4.93e-01 1.69¢-02 3.58¢-02  6.65e-01 2.56e-02  1.25e-01
1/16 || 4.18¢:01 7.07e-03  1.52e-02  5.66e-01 1.31e-02 1.05e-01
1/32 || 3.53¢-01  2.94e-03  6.39¢-03  4.79¢-01 6.72¢-03  8.85¢-02
1/64 || 2.98¢:01 1.22e-03 2.68¢-03  4.04e-01 3.42¢-03  7.44e-02

1/128 || 2.51e-01 5.14e-04 1.12e-03 3.40e-01 1.73e-03  6.25e-02
T
OT(};) 0.2437 1.2613 1.2489 0.2417 0.9717 0.2505

The solution u(r, ) is known to be in H!*7=2(Q) for any € > 0, and has a singularity
near the origin (0,0).

One choice for the coefficients is to take v = 0.1, R ~ 161.4476387975881,
pr7/4, o = —14.92256510455152. We numerically solve this problem by using the
weak Galerkin method with element (Py(K), Po(F), RTp(K)) on triangular meshes.
It turns out that uniform triangular meshes are not good enough to handle the sin-
gularity in this problem. Indeed, we use a locally refined initial mesh, as shown in
Figure 4.2, which consists of 268 triangles. This mesh is then uniformly refined, by di-
viding each triangle into 4 subtriangles, to get a sequence of nested meshes. Although
this can not be compared with an adaptive mesh refinement process, it does improve
the accuracy of the numerical approximation, as shown in our numerical results re-
ported in Table 4.7. Since the mesh is not quasi-uniform, we do not expect that the
theoretical error estimation (2.4) apply for this problem. An interesting observation
of Table 4.7 is that, the norm |lug — u|| appears to converge in a much faster rate
than |leg|| = |Jup — Qoul|, while the opposite has usually been observed for other test
cases. We believe that this is due to the use of a locally refined initial mesh in our
testing process. When the actual value of ||ug — u|| reduces to the same level as the
value of |leg]|, its convergence rate slows down to the same as ||eg||. Readers are also
encouraged to derive their own conclusions from these numerical experiments.

We also observe that, when the initial mesh gets more refined near the origin,
the convergence rates increase slightly. In Table 4.8, this trend is clearly shown.
For each initial mesh, it is refined four times to get five levels of nested meshes. The
convergence rates are computed based on these five nested meshes. The initial meshes
are generated by refining only those triangles near the origin. Two examples of initial
meshes are shown in Figure 4.2.

4.5. Case 5: An Anisotropic Problem. Consider a two dimensional anisotropic
problem defined in the square domain Q = (0,1)? as follows

V- (AVu) = f,

where the diffusion coefficient is given by

k2 0
A:[O 1}, for k # 0.

We chose a function f and a Dirichlet boundary condition so that the exact solution
is given by u(z,y) = sin(27x) sin(2k7y). In applying the weak Galerkin method, we
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Fic. 4.2. Case 4. The initial triangular mesh for the intersecting interface problem, with 268
(left) and 300 (right) triangles.

TABLE 4.7
Case 4. Convergence rate for the intersecting interface problem with an initial mesh containing
268 triangles.

| level [| [[Vaenll [leol lesll  Vaun —Vull  Jluo —ull [leolloe |
0 [ 1.07e-01 3.97e-03 9.95¢-03  1.47e-01 2.60e-02  1.97¢-02
1 [[976e-02 2.92e-03 6.44e-03  1.26e-01 1.33¢-02  1.94e-02
2 [ 9.30e02 251e-03 5.11e-03  1.16e-01 7.01e-03  1.91e-02
3 [912e02 221e-03 4.44e-03  1.1le-01 3.95¢-03  1.88¢-02
4 |898¢-02 1.95¢-03 3.91e-03  1.07e-01 2.55e-03  1.84e-02
T
OT(Z V| 00604 02446 0.3220 0.1084 0.8461  0.0239

use an anisotropic triangular mesh that was constructed by first dividing the domain
into kn x n sub-rectangles, and then splitting each rectangle into two triangles by
connecting a diagonal line. The characteristic mesh size is h = 1/n. We tested two
cases with £ = 3 and £k = 9. The results are reported in Tables 4.9 and 4.10. The
tables show optimal rates of convergence for the weak Galerkin approximation in
various norms. The numerical experiment indicates that the weak Galerkin method
can handle anisotropic problems and meshes without any trouble.

4.6. Case 6: A Three-Dimensional Model Problem. The final test prob-
lem is a three dimensional Laplace equation defined on Q = (0,1)3, with a Dirichlet
boundary condition and an exact solution given by u = sin(27x) sin(27y) sin(27z).
The purpose of this test problem is to examine the convergence rate of the cubic
(Qo(K), Qo(F), RTo(K)) element. The results are reported in Table 4.11.

In addition to the optimal rates of convergence as shown in Table 4.11, on can also
see a superconvergence for ||Vgep||. The same result is anticipated for 2D rectangular
elements. It is left to interested readers for a further investigation, especially for
model problems with variable coefficients.
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TABLE 4.8
Case 4. Convergence rate for the intersecting interface problem with different initial meshes,
where the first column indicates the total number of triangles in the initial mesh.

# Convergence rates O(h"), r =

triangles || [|Vaenll  leoll  llesll  [[Vaun = Vull fluo —ul Jleollo
268 0.0604 0.2446 0.3229 0.1084 0.8461 0.0239
300 0.0750  0.2623 0.3489 0.1206 0.8699 0.0373
332 0.0888 0.2818 0.3772 0.1329 0.8912 0.0487
364 0.1020 0.3031 0.4079 0.1454 0.9099 0.0586
396 0.1148 0.3266 0.4411 0.1581 0.9260 0.0673
428 0.1273  0.3522 0.4766 0.1711 0.9396 0.0749
460 0.1396  0.3802 0.5145 0.1843 0.9509 0.0817
492 0.1519  0.4105 0.5548 0.1978 0.9602 0.0878
524 0.1641  0.4432 0.5972 0.2117 0.9678 0.0932

TABLE 4.9
Case 5. Convergence rate for the anisotropic problem with k = 3.

[ h [ [Vaenll ol leol  [Vaun =Vl Jluo —ull  fleollos |
1/8 1.48e+0 1.95e-02 4.61e-02 2.70e+0 1.29e-01  4.13e-02
1/16 7.39¢-01 5.11e-03  1.16e-02 1.35e+0 6.53e-02  1.06e-02
1/32 3.69e-01  1.29e-03  2.92e-03 6.80e-01 3.27e-02  2.67e-03
1/64 1.84e-01 3.24e-04 7.33e-04 3.40e-01 1.63e-02  6.68e-04

1/128 || 9.23e-02 8.12e-05 1.83e-04 1.70e-01 8.18e-03  1.66e-04
OT(h: ) 1.0010 1.9793 1.9942 0.9972 0.9975 1.9906
TABLE 4.10
Case 5. Convergence rate for the anisotropic problem with k = 9.

L~ T IVaenll  Tleoll leoll — [Vaun = Vaul Jluo —ull  fleolls ||
1/4 7.98¢+0 6.80e-02 2.93e-01 1.58e+1 2.52e-01  1.49e-01
1/8 3.89e+0 2.07e-02 7.44e-02 8.18e+0 1.30e-01  4.22e-02
1/16 1.91e+0 5.43e-03 1.88e-02 4.12e+0 6.53e-02  1.09e-02
1/32 9.54e-01 1.37e-03 4.72e-03 2.06e+0 3.27e-02  2.74e-03
1/64 4.76e-01 3.44e-04 1.18e-03 1.03e+0 1.63e-02  6.84e-04

OT(h:) 1.0161 1.9160 1.9897 0.9857 0.9883 1.9492
TABLE 4.11
Case 6. Convergence rate for a 8D model problem with smooth solution.

[ h [ [Vaenll ol leol  [[Vaun — Vaul  Jluo —ull  fleolloc |
1/8 1.85e-01 1.62e-02 4.27e-02 1.22e+00 1.34e-01  3.63e-02
1/12 8.53e-02 7.69e-03 1.94e-02 8.19e-01 9.14e-02  1.96e-02
1/16 4.86e-02 4.42e-03 1.10e-02 6.15e-01 6.89e-02  1.18e-02
1/20 || 3.13e-02 2.85e-03 7.07e-03 4.92e-01 5.52e-02  7.78e-03

OT(h:) 1.9389 1.8984 1.9618 0.9914 0.9737 1.6779
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