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Abstract. In this paper, the authors established a unified framework for deriving and analyzing
a posteriori error estimators for finite volume methods for the Stokes equations. The a posteriori
error estimators are residual-based, and are applicable to various finite volume methods for the Stokes
equations. In particular, the unified theoretical analysis works well for finite volume schemes arising
from using trial functions of conforming, non-conforming, and discontinuous finite element functions,
yielding new results that are not seen in existing literature.
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1. Introduction. In scientific computing for science and engineering problems,
finite volume methods are widely used and appreciated by users due to their local
conservative properties for quantities which are of physical interest (e.g., mass or
energy). Among many references for finite volume methods, we would like to cite some
which addresses theoretical issues such as stability and convergence [8, 9, 15, 16, 21,
22, 25, 27, 28, 11, 13, 15, 38, 39, 34]. In [17], a unified framework has been developed
for the finite volume methods for the Stokes equations. The framework of [17] covers
various type of finite volume schemes including those arising from conforming, non-
conforming, and discontinuous finite element functions. The goal of this paper is to
establish a general theory for a posteriori error estimation for the Stokes equations
based on such a framework of finite volume methods.

We shall focus our attention on residual type a posteriori error estimators, in
which the computable formula for judging the efficiency and reliability of numerical
schemes is given as functions of residuals. Along this avenue, many fine results have
been developed for finite element methods for the Stokes equations [31, 5, 3, 29, 32,
19, 20, 6, 26, 24, 35, 36]. However, little can be seen in existing literature for the finite
volume methods for Stokes equations.

This paper will first introduce a general finite volume formulation which covers
conforming, non-conforming, and discontinuous Galerkin methods as examples, for
the Stokes equations. Then, a general residual type a posteriori error estimator shall
be presented with a unified mathematical analysis. The paper is organized as follows.
In Section 2, the Stokes problem and some notations are introduced. In Section 3, a
general framework of finite volume methods for the Stokes equations is presented. A
priori error estimation for this framework will be stated under certain assumptions on
the discrete spaces. In Section 4, a posteriori error analysis is presented and analyzed
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for this framework. Finally, in Section 5, examples of discrete spaces for conforming,
non-conforming, and discontinuous Galerkin finite volume methods are given. It will
be shown that the aforementioned spaces satisfy the assumptions, and hence both the
a priori and the a posteriori analysis are applicable to them all.

2. Preliminaries and notations. Let Ω be a bounded open domain in R
d, d =

2, 3. Denote by ∂Ω the boundary of Ω. Consider the Stokes equations

−∆u+∇p = f in Ω, (2.1)

∇ · u = 0 in Ω, (2.2)

u = 0 on ∂Ω, (2.3)

where the symbols ∆, ∇, and ∇· denote the Laplacian, gradient, and divergence
operators, respectively, and f is the external volumetric force.

For simplicity, the algorithm and its analysis will be presented for the model
Stokes problem (2.1)-(2.3) only in two-dimensional spaces (i.e.; d = 2) with polygonal
domains. An extension to the Stokes problem in three dimensions can be made
formally for general polyhedral domains.

For any open subset D of Ω, we introduce standard definitions for the Sobolev
spaces Hs(D) and their associated inner-products (·, ·)s,D, norms ‖ · ‖s,D, and semi-
norms | · |s,D for s ≥ 0 (see [1, 7] for details). For example, for any integer s ≥ 0, the
semi-norm | · |s,D is given by

|v|s,D =





∑

|α|=s

∫

D

|∂αv|2dD





1

2

,

with the usual notation

α = (α1, α2) where α1, α2 are nonnegative integers,

|α| = α1 + α2, ∂α = ∂α1

x1
∂α2

x2
.

Then the Sobolev norm ‖ · ‖s,D can be written by

‖v‖s,D =





s
∑

j=0

|v|2j,D





1

2

.

The space H0(D) coincides with L2(D). In this case, we suppress the subscript s in
its norm and inner-product, i.e. they are are denoted by ‖·‖D and (·, ·)D, respectively.
Moreover, when D = Ω, we also suppress the subscript D in the notations of norms
and inner-products. Define L2

0(Ω) to be the subspace of L2(Ω) consisting of functions
with mean value zero.

The above definition/notation can easily be extended to vector-valued and matrix-
valued functions. The norm, semi-norm, and inner-product for such functions shall
follow the same naming convention. In addition, all these definitions can be trans-
ferred from a polygonal domain D to an edge e, a domain with lower dimension.
Similar notation system will be employed. For example, ‖ · ‖s,e and ‖ · ‖e would
denote the norm in Hs(e) and L2(e), etc.
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Throughout the paper, we follow the convention that a bold Latin letter denotes
a vector. Let u = [ui]1≤i≤2, v = [vi]1≤i≤2 be two vectors, and σ = [σij ]1≤i,j≤2,
τ = [τij ]1≤i,j≤2 be two matrices, define

∇v =

(

∂v1
∂x

∂v1
∂y

∂v2
∂x

∂v2
∂y

)

, ∇ · v =
∂v1

∂x
+

∂v2

∂y
,

u⊗ v =

(

u1v1 u1v2
u2v1 u2v2

)

, σ : τ =

2
∑

i,j=1

σijτij ,

v · σ =

(

σ11v1 + σ12v2
σ21v1 + σ22v2

)

, v · σ · u =
2
∑

i,j=1

σijuivj .

It is not hard to see that

σ : (u⊗ v) = v · σ · u.

Let Th be a geometrically conformal triangulation of the domain Ω; i.e., the
intersection of any two triangles in Th is either empty, a common vertex, or a common
edge. Denote by hT the diameter of triangle T ∈ Th, and h the maximum of all hT . We
assume that Th is shape regular in the sense that for each T ∈ Th, the ratio between hT

and the diameter of the inscribed circle is bounded from above. The shape regularity
of Th ensures a validity of the inverse inequality for finite element functions. In
addition, shape regularity allows one to apply the routine scaling arguments in finite
element analysis.

We then introduce a dual partition T ∗
h of Th. Three different type of dual parti-

tions will be considered, as shown in Figure 2.1. We call the first one a vertex-based
dual partition. It is defined as the union of the convex hulls around each vertex,
which are obtained by connecting the barycenters of the triangles and the midpoints
of corresponding edges. The second one is an edge-based dual partition. Each tri-
angle T ∈ Th is further divided into three subtriangles by connecting the barycenter
to the vertices. Associated with each interior edge, the two subtriangles which share
this edge form a quadrilateral. Similarly, each boundary edge is associated with one
subtriangle. Define the edge-based dual partition T ∗

h to be the union of these interior
quadrilaterals and the border triangles. The third on is a triangle-based dual parti-
tion. Each triangle T ∈ Th is further divided into three subtriangles by connecting
the barycenter to the vertices. Define the triangle-based dual partition T ∗

h to be the
union of all these subtriangles.
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vertex−based edge−based triangle−based

Fig. 2.1. Three different type of dual partitions.

Finally, we define jumps and averages on the edges of the mesh. Let Eh denote
the union of the boundaries of all triangles T in Th and E0

h := Eh\∂Ω denote the
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collection of all interior edges. For an interior edge e shared by two triangles T1 and
T2, denote n1 and n2 to be the unit normal vectors on e pointing exterior to T1 and
T2, respectively. Define the average and jump on e for scalar q, vector w and matrix
τ , respectively, by

{q} =
1

2
(q|T1

+ q|T2
), [[q]] = q|T1

n1 + q|T2
n2,

{w} =
1

2
(w|T1

+w|T2
), [[w]] = w|T1

· n1 +w|T2
· n2,

{τ} =
1

2
(τ |T1

+ τ |T2
), [[τ ]] = n1 · τ |T1

+ n2 · τ |T2
.

We also define a matrix-valued jump [·] for w on e by

[w] = w|T1
⊗ n1 +w|T2

⊗ n2.

If e is a boundary edge, the above definitions need to be adjusted accordingly so that
both the average and the jump are equal to the one-sided values on e. That is,

{q} = q|e, {w} = w|e, {τ} = τ |e,

[[q]] = q|en, [[w]] = w|e · n, [[τ ]] = n · τ |e,

[w] = w|e ⊗ n,

where n is the unit outward normal of Ω.
Let I be the 2 × 2 identity matrix. It is not hard to see that [[q]] = [[qI]] for all

scalar function q. Let q, v and τ be scalar-, vector-, and matrix-valued functions
that are regular enough to make all involving terms well-defined, then the following
identities are standard [2]:

∑

T∈Th

∫

∂T

q v · n ds =
∑

e∈E0

h

∫

e

[[q]] · {v} ds+
∑

e∈Eh

∫

e

{q}[[v]] ds, (2.4)

∑

T∈Th

∫

∂T

n · τ · v ds =
∑

e∈E0

h

∫

e

[[τ ]] · {v} ds+
∑

e∈Eh

∫

e

{τ} : [v] ds. (2.5)

We shall also need the well-know trace theorem: for any polygon K with an edge
e and any function g ∈ H1(K),

‖g‖2e . h−1
K ‖g‖2K + hK‖∇g‖2K . (2.6)

3. Finite volume formulation. We start from defining the discrete spaces for a
general finite volume approximation. It is a framework with the flexibility of choosing
conforming, non-conforming or discontinuous Galerkin approximations to the velocity.
To this end, denote V to be either [H1

0 (Ω)]
2 or [L2(Ω)]2. Let Pl(D) be the space of

all polynomials, with degree less than or equal to l, on a given polygon D. The finite
dimensional trial function space Vh for the velocity is a subspace of piecewise linears,
i.e.,

Vh ⊆ {v ∈ V : v|T ∈ P1(T )
2, ∀T ∈ Th}.

Certain continuity conditions may be imposed on Vh, depending on the type of meth-
ods. For example, Vh can be the continuous P1 conforming space, the Crouzeix-
Raviart P1 nonconforming space [18] (continuous at midpoints of edges), or the to-
tally discontinuous P1 space to be used in conjunction with the discontinuous finite
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volume method [39]. More details of these spaces will be given in Section 5. To ensure
that the analysis of a posteriori error estimation works, we also need the space Vh to
satisfy

{v ∈ [H1
0 (Ω)]

2 : v|T ∈ P1(T )
2, ∀T ∈ Th} ⊆ Vh. (3.1)

Note that all three examples of Vh listed above have this property.

The test function space Wh for the velocity is defined on the dual mesh T ∗
h ,

Wh = {w ∈ L2(Ω)2 : w|K ∈ P0(K)2, ∀K ∈ T ∗
h }. (3.2)

Here, depending on the type of Vh, appropriate dual partition T ∗
h will be chosen.

Details will be presented in Section 5.

Define Qh by

Qh = {q ∈ L2
0(Ω) : q|T ∈ P0(T ), ∀T ∈ Th′},

where h′ = h or h′ = 2h. When h′ = 2h, it actually means that Th must be derived by
dividing each triangle in T2h into four subtriangles, through connecting the midpoint
of its three edges. Whether to use h′ = h or h′ = 2h depends on the choice of Vh.
For different Vh, different Qh shall be chosen to guarantee the discrete formulation is
well-posed. Again, details will be given in Section 5. The space Qh serves as both the
trial and the test spaces for the pressure.

We assume the existence of a transfer operator γ which maps V (h) := Vh +
[H2(Ω) ∩ H1

0 (Ω)]
2 onto the test space Wh. In particular, γ connects the trial space

Vh with the test space Wh. Throughout the paper, operator γ is required to satisfy
the following assumption:

Assumption A1. For T ∈ Th,

∫

T

(v − γv)dx = 0 ∀ v ∈ Vh, T ∈ Th,

∫

e

(v − γv)ds = 0 ∀ v ∈ Vh, e ∈ Eh,

if [v] = 0, then [γv] = 0, ∀ v ∈ V (h), e ∈ Eh,

‖γv− v‖T ≤ chT |v|1,T ∀ v ∈ V (h), T ∈ Th,

‖[γv]‖e ≤ ‖[v]‖e ∀ v ∈ V (h), e ∈ Eh,

where c is a general constant independent of the mesh size or the functions involved.

The purpose of introducing γ is to substitute the test space Wh by γVh, and a
unified framework of finite volume methods can then be defined. Such a technique
has been used in [11, 12, 16] for the finite volume analysis of second order elliptic
equations, and in [34] for Stokes equations. Of course, it remains a question whether
such an operator γ exists or not. We will show in Section 5 that it does exist for some
choices of Vh and T ∗

h . For now, we would like to skip such details, and concentrate
on the a posteriori error analysis under a very general framework.

We are ready to derive the general finite volume formulation for problem (2.1)-
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(2.3). Denote

(v, w)Th
=
∑

T∈Th

∫

K

v ·w dx, (v, w)T ∗

h
=
∑

K∈T ∗

h

∫

K

v ·w dx,

(v, w)Eh
=
∑

e∈Eh

∫

e

v ·w ds, (v, w)E0

h

=
∑

e∈E0

h

∫

e

v ·w ds.

Note that similar notations can also be defined for scalar functions. Testing the
momentum equation (2.1) by γv ∈ Wh gives

−(∆u, γv)T ∗

h
+ (∇p, γv)T ∗

h
= (f , γv), (3.3)

and testing the continuity equation (2.2) by q ∈ Qh gives

(∇ · u, q)T
h′

= 0. (3.4)

Define bilinear forms a : V (h)× V (h) → R and c : V (h)× L2
0(Ω) → R by

a(u,v) := −
∑

K∈T ∗

h

∫

∂K

n · ∇u · γvds+
∑

T∈Th

∫

∂T

n · ∇u · γvds

and

c(v, p) :=
∑

K∈T ∗

h

∫

∂K

pγv · nds−
∑

T∈Th

∫

∂T

pγv · nds.

Since for the continuous solution u and p, both [[∇u]] and [[p]] vanish on e ∈ E0
h. Thus,

by using integrating by parts, equations (2.4)-(2.5), and the fact that γv is piecewise
constant, we have

−(∆u, γv)T ∗

h
= −

∑

K∈T ∗

h

∫

∂K

n · ∇u · γvds

= a(u,v)−
∑

T∈Th

∫

∂T

n · ∇u · γvds

= a(u,v)− ({∇u}, [γv])Eh
.

Similarly,

(∇p, γv) =
∑

K∈T ∗

h

∫

∂K

pγv · nds

= c(v, p) +
∑

T∈Th

∫

∂T

pγv · nds

= c(v, p) + ([[γv]], {p})Eh
.

Combining the above, Equation (3.3) becomes

a(u,v)− ({∇u}, [γv])Eh
+ c(v, p) + ([[γv]], {p})Eh

= (f , γv).
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We also notice that for the exact velocity u, by Assumption A1, the jump [γu] and
hence also [[γu]] vanish on all e ∈ Eh. Therefore Equation (3.4) can be written as

(∇ · u, q)T
h′
− ([[γu]], {q})Eh

= 0.

Now define

A(u,v) := a(u,v) − ({∇u}, [γv])Eh

+ δ({∇v}, [γu])Eh
+ α(h−1

e [u], [v])Eh
,

C(v, p) := c(v, p) + ([[γv]], {p})Eh
,

B(u, q) = (∇ · u, q)T
h′
− ([[γu]], {q})Eh

,

(3.5)

where α ≥ 0 and δ = 1, −1 or 0 are parameters.
Consider the following framework of finite volume methods: find (uh, ph) ∈ Vh ×

Qh such that

A(uh,v) + C(v, ph) = (f , γv) ∀v ∈ Vh,

B(uh, q) = 0 ∀ q ∈ Qh.
(3.6)

Notice that the formulation (3.6) is consistent, i.e., the true solution (u, p) satisfies

A(u,v) + C(v, p) = (f , γv) ∀v ∈ Vh,

B(u, q) = 0 ∀ q ∈ Qh.
(3.7)

Subtracting (3.6) from (3.7) gives the orthogonality property of the error

A(u− uh,v) + C(v, p− ph) = 0 ∀v ∈ Vh,

B(u− uh, q) = 0 ∀ q ∈ Qh.
(3.8)

In order to perform a priori or a posteriori error estimations, certain conditions
need to be imposed on Vh, Qh and γ. For now we only give an abstract theory built
on several assumptions. Proof of these assumptions, together with suitable choices
for Vh, Qh and γ will be given in Section 5.

Define a norm ||| · ||| on V (h) as

|||v|||2 = |v|21,h +
∑

e∈Eh

h−1
e ‖[v]‖2e, (3.9)

where |v|21,h =
∑

T∈Th
|v|21,T . We will make the following assumptions:

Assumption A2. For v,w ∈ V (h) and q ∈ L2
0(Ω),

a(v,w) = (∇v,∇w)Th
+
∑

T∈Th

(γw −w, ∇v · n)∂T

+(∆v, w − γw)Th
,

c(v, q) = −(∇ · v, q)Th
+
∑

T∈Th

((v − γv) · n, q)∂T

+(∇q, γv − v)Th
.
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Assumption A3. For v,w ∈ V (h) and q ∈ L2
0(Ω),

A(v,v) ≥ c|||v|||2, for all v ∈ Vh,

A(v,w) ≤ c|||v|||



|||w|||+

(

∑

T

h2
T |w|22,T

)1/2


 ,

C(v, q) ≤ c|||v|||



‖q‖+

(

∑

T∈Th

h2
T |q|

2
1,T

)1/2


 if q|T ∈ H1(T ) for T ∈ Th,

C(v, q) = −B(v, q), for all q ∈ Qh,

where c is a general constant independent of the mesh size or the functions involved.

Assumption A4. There exists an operator Π1 : V (h) → Vh such that

B(v −Π1v, q) = 0, ∀ q ∈ Qh.

In addition, the operator Π1 is assumed to satisfy

|v −Π1v|s,T ≤ cht−s|v|t,T , ∀T ∈ Th, s = 0, 1, t = 1, 2,

where the constant c depends only on the shape of T and parameters s and t.
Note that when v ∈ [H1

0 (Ω) ∩ H2(Ω)]2, we have B(v, q) = (∇ · v, q). Then by
Assumption A4, the continuous inf-sup condition, and inequality (2.6), we have the
following discrete inf-sup condition, or the so-called LBB condition (see [4]):

sup
v∈Vh

B(v, q)

|||v|||
≥ β‖q‖, ∀ q ∈ Qh,

where β is a positive constant independent of the mesh size h. Define Π2 to be the L2

orthogonal projection from L2
0(Ω) to the finite dimensional space Qh. Then we have

the following a priori error estimations [17]:

Theorem 3.1. Let (uh, ph) ∈ Vh × Qh be the solution of (3.6) and (u, p) ∈
[H2(Ω)∩H1

0 (Ω)]
2× [L2

0(Ω)∩H1(Ω)] be the solution of (2.1)–(2.3). Under the assump-
tions A1-A4, there exists a constant c independent of h such that

|||u− uh|||+ ‖p− ph‖ ≤ c



|||u−Π1u|||+ ‖p−Π2p‖+

(

∑

T∈Th

h2|u−Π1u|
2
2,T

)
1

2

+

(

∑

T∈Th

h2|p−Π2p|
2
1,T

)
1

2



 .

Theorem 3.2. Let (u, p) ∈ [H2(Ω) ∩H1
0 (Ω)]

2 × [L2
0(Ω) ∩H1(Ω)] and (uh, ph) ∈

Vh ×Qh be the solutions of (2.1)-(2.3) and (3.6) respectively with δ = −1. Then

‖u− uh‖ ≤ ch



|||u−Π1u|||+ ‖p−Π2p‖+

(

∑

T∈Th

h2|u−Π1u|
2
2,T

)
1

2

+

(

∑

T∈Th

h2|p−Π2p|
2
1,T

)
1

2

+ h‖f‖1



 .
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4. A posteriori error estimates. In this section, we will derive an a posteriori
error estimator for the finite volume formulation (3.6). Currently, the analysis only
works when the bilinear form A(·, ·) is symmetric, i.e. δ = −1. Hence we will set
δ = −1 throughout this section. For simplicity of the notation, we shall use “.” to
denote “less than or equal to up to a constant independent of the mesh size, variables,
or other parameters appearing in the inequality”.

Define

J1(∇uh − phI) =

{

[[∇uh − phI]] if e ∈ E0
h

0 otherwise,

and

J2(uh) =

{

[uh] if e ∈ E0
h

2uh ⊗ n otherwise.

Define a global error estimator as

η2 =
∑

T∈Th

η2T ,

with

η2T = h2
T ‖f‖

2
T + ‖∇ · uh‖

2
T +

1

2

∑

e∈Eh

∫

e

(

heJ1(∇uh − phI)
2 + h−1

e J2(uh)
2
)

ds,

where he denotes the length of edge e. Our ultimate goal is to establish the following
result:

Theorem 4.1. Let (u, p) and (uh, ph) be the solutions of (2.1)-(2.2) and (3.6),
and A(·, ·) be symmetric, i.e. δ = −1. Then, one has

|||u− uh|||+ ‖p− ph‖ . η (4.1)

and

η . |||u− uh|||+ ‖p− ph‖+

(

∑

T∈Th

h2
T ‖f − fT ‖

2
T

)1/2

, (4.2)

where fT is the average of f on T and (
∑

T∈Th
h2
T ‖f − fT ‖2T )

1/2 is the data oscillation
term. For convenience, the relation (4.1) is referred to as a reliability estimate and
(4.2) as an efficiency estimate.

We will need a technical lemma in the proof of the above theorem. Define
H1(Th) =

∏

T∈Th
H1(T ) and Vk =

∏

T∈Th
Pk(T ). For any triangle T ∈ Th, denote by

T (T ) the set of all triangles in Th having a nonempty intersection with T , including
T itself. Denote by E(T ) the set of all edges in Eh having a nonempty intersection
with T , including all three edges of T . Then following lemma has been proved in [36]:

Lemma 4.2. For any v ∈ H1(Th), there exists a vI ∈ Vk ∩ H1
0 (Ω), k ≥ 1,

satisfying

‖v − vI‖
2
T + h2

T ‖∇(v − vI)‖
2
T .

∑

T ′∈T (T )

h2
T ′‖∇v‖2T ′ +

∑

e∈E(T )

he‖[[v]]‖
2
e ∀T ∈ Th.

(4.3)
Furthermore, if v ∈ Vh, then there exists a vI ∈ Vk ∩H1

0 (Ω), k ≥ 1, satisfying

‖v − vI‖
2
T + h2

T ‖∇(v − vI)‖
2
T .

∑

e∈E(T )

he‖[[v]]‖
2
e ∀T ∈ Th, (4.4)

9



4.1. Proof of reliability. In this section, we will prove the reliability estimate
(4.1). Let e = u− uh and ǫ = p− ph. To streamline the proof, we first state several
technical inequalities as the following lemmas.

Lemma 4.3. For w ∈ Vh, we have

({γw−w}, [[∇e]])E0

h

= 0, (4.5)

({γw−w}, [[ǫ]])E0

h

= 0. (4.6)

Proof. (4.5) and (4.6) follow directly from Assumption A1, by noticing that
[[∇e]] = −[[∇uh]] and [[ǫ]] = −[[ph]] are both constants on edges.

Lemma 4.4. For w ∈ Vh and A(·, ·) be symmetric, i.e. δ = −1, we have

({∇e}, [w])Eh
− ({ǫ}, [[w]])Eh

=(∇e, ∇w)Th
+ (∆u−∇p, w − γw)Th

− (∇ ·w, ǫ)Th
− ({∇w}, [γe])Eh

+ α(h−1
e [w], [e])Eh

.

(4.7)

Furthermore, when w is also continuous,

(∇ ·w, ǫ)Th
= (∇e, ∇w)Th

+ (∆u−∇p, w − γw)Th
− ({∇w}, [γe])Eh

. (4.8)

Proof. Using the definition of A(·, ·), Assumption A2, Equation (2.5), Lemma
4.3, and the fact that ∆uh|T = 0, we have,

A(e,w) = (∇e, ∇w)Th
+
∑

T∈Th

(∇e · n, γw−w)∂T + (∆u, w − γw)Th

−({∇w}, [γe])Eh
− ({∇e}, [γw])Eh

+ α(h−1
e [w], [e])Eh

= (∇e, ∇w)Th
+ ({∇e}, [γw−w])Eh

+ (∆u, w − γw)Th

−({∇w}, [γe])Eh
− ({∇e}, [γw])Eh

+ α(h−1
e [w], [e])Eh

= (∇e, ∇w)Th
+ (∆u, w − γw)Th

− ({∇e}, [w])Eh

−({∇w}, [γe])Eh
+ α(h−1

e [w], [e])Eh
. (4.9)

Similarly,

C(w, ǫ) = −(∇ ·w, ǫ)Th
+
∑

T∈Th

((w − γw) · n, ǫ)∂T

−(∇ǫ, w − γw)Th
+ ({ǫ}, [[γw]])Eh

= −(∇ ·w, ǫ)Th
+ ({ǫ}, [[w− γw]])Eh

−(∇p, w − γw)Th
+ ({ǫ}, [[γw]])Eh

= −(∇ ·w, ǫ)Th
− (∇p, w− γw)Th

+ ({ǫ}, [[w]])Eh
. (4.10)

Combining equations (3.8), (4.9) and (4.10) gives Equation (4.7).
If w ∈ Vh is also continuous, then [w] = 0 and [[w]] = 0. In this case, (4.7)

becomes (4.8).
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Lemma 4.5. Let (u, p) and (uh, ph) be the solutions of (2.1)-(2.2) and (3.6),
respectively, and A(·, ·) be symmetric, i.e. δ = −1. Then

‖p− ph‖
2 . η2 +

∑

T∈Th

‖∇e‖2T . (4.11)

Proof. Let v ∈ [H1
0 (Ω)]

2 and vI ∈ Vh be an interpolation of v such that both
components satisfy (4.3). Observe that such an interpolation vI is possible if Vh

satisfies the assumption (3.1). Using the integration by parts, equations (4.8), (2.4),
(2.5), (2.6), Assumption A1, the Schwartz inequality, the inverse inequality, and the
fact that both v and vI are continuous across each interior edge, we have

(∇ · v, ǫ) = (∇ · (v − vI), ǫ) + (∇ · vI , ǫ)

= −(v − vI , ∇p)Th
+
∑

T∈Th

((v − vI) · n, ǫ )∂T

+(∇e, ∇vI)Th
+ (∆u−∇p, vI − γvI)Th

− ({∇vI}, [γe])Eh

= −(v − vI , ∇p)Th
− ({v − vI}, [[ph]])E0

h

−(∇e, ∇(v − vI))Th
+ (∇e, ∇v)Th

+(∆u−∇p, vI − γvI)Th
− ({∇vI}, [γe])Eh

= (v − vI , ∆u−∇p)Th
+ ({v − vI}, [[∇uh − phI]])E0

h

+(∆u−∇p, vI − γvI)Th
− ({∇vI}, [γe])Eh

+ (∇e, ∇v)Th

. ‖v‖1

(

h‖f‖+ (
∑

e∈Eh
0

he‖[[∇uh − phI]]‖
2
e)

1/2

+(
∑

e∈Eh

h−1
e ‖[uh]‖

2
e)

1/2 + (
∑

T∈Th

‖∇e‖2T )
1/2

)

.

Combining the above and the inf-sup condition

‖p− ph‖ . sup
v∈H1

0
(Ω)2

(∇ · v, p− ph)

‖v‖1

gives Inequality (4.11). This completes the proof of the lemma.

Now we are able to prove the main theorem on the reliability of the a posteriori
error estimator. For simplicity of the notation, denote ∇h to be the element-wise
gradient associated with the mesh Th.

Theorem 4.6. Let (u, p) and (uh, ph) be the solutions of (2.1)-(2.2) and (3.6),
and A(·, ·) be symmetric, i.e. δ = −1. Then we have the following global reliability
bounds:

|||u− uh|||+ ‖p− ph‖ . η. (4.12)

Proof. Let eI ∈ Vh be an interpolation of e such that both components satisfy
(4.3). Using integration by parts, equation (4.8), (2.4), (2.5), and the facts that
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[u] = [eI ] = 0 on all e ∈ Eh, [∇u] = [p] = 0 on all e ∈ E0
h, we have

(∇e, ∇e)Th

=(∇e, ∇e−∇eI)Th
+ (∇e, ∇eI)Th

=(∇e, ∇e−∇eI)Th
+ (∇ · eI , ǫ)

− (∆u−∇p, eI − γeI)Th
+ ({∇eI}, [γe])Eh

=(∇e, ∇e−∇eI)Th
− (∇ · (e− eI), ǫ)Th

+ (∇ · e, ǫ)Th

− (∆u−∇p, eI − γeI)Th
+ ({∇eI}, [γe])Eh

=(−∆u+∇p, e− eI)Th
+
∑

T∈Th

(∇e · n, e− eI)∂T −
∑

T∈Th

((e− eI) · n, ǫ)∂T

+ (∇ · e, ǫ)Th
− (∆u−∇p, eI − γeI)Th

+ ({∇eI}, [γe])Eh

=(−∆u+∇p, e− eI)Th
− ({e− eI}, [[∇uh − phI]])Eh

0

− ({∇e}, [uh − χ])Eh
+ ({ǫ}, [[uh − χ]])Eh

+ (∇ · e, ǫ)Th
− (∆u−∇p, eI − γeI)Th

+ ({∇eI}, [γe])Eh
,

(4.13)

where χ ∈ Vh is the continuous interpolation of uh such that both components satisfy
(4.4). Note that [χ] = 0 and [[χ]] = 0 on all e ∈ Eh. By equations (4.7), (4.4), (2.6),
Assumption A1, and the Schwartz inequality,

({∇e}, [uh − χ])Eh
+ ({ǫ}, [[uh − χ]])Eh

=(∇e, ∇(uh − χ))Th
+ (∆u−∇p, (uh − χ)− γ(uh − χ))Th

− (∇ · (uh − χ), ǫ)Th
− ({∇(uh − χ)}, [γe])Eh

+ α(h−1
e [uh − χ], [e])Eh

.η (|||e|||+ ‖ǫ‖) +
∑

T∈Th

‖∆u−∇p‖ (hT |uh − χ|1,T )

+
∑

e∈Eh



h−1
e

∑

T ′∈{T e

1
, T e

2
}

‖∇(uh − χ)‖2T ′





1/2

‖[γe]‖e + α
∑

e∈Eh

h−1
e ‖[uh]‖

2
e

.η (|||e|||+ ‖ǫ‖) +

(

∑

T∈Th

h2
T ‖f‖

2
T

)1/2(
∑

e∈Eh

h−1
e ‖[uh]‖

2
e

)1/2

+
∑

e∈Eh





∑

T ′∈{T e

1
, T e

2
}

‖∇(uh − χ)‖2T ′





1/2

h−1/2
e ‖[uh]‖e + α

∑

e∈Eh

h−1
e ‖[uh]‖

2
e

.η (|||e|||+ ‖ǫ‖) + η2.

(4.14)

Here T e
1 , T

e
2 are the two triangles in Th sharing the edge e. For boundary edges, we

simply set both of them be equal to the only triangle associated with that edge. Since
∇ · u = 0, we have

(∇ · e, ǫ)Th
= −(∇ · uh, ǫ)Th

. ‖ǫ‖ η. (4.15)

Other terms in Equation (4.13) can be similarly estimated. Combining (4.13)-(4.15)
and using equations (2.6), (4.3), Assumption A1, Lemma 4.5, the Schwartz inequality,
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and the inverse inequality, we have

|||u− uh|||
2
=(∇e, ∇e)Th

+
∑

e∈Eh

h−1
e ‖[uh]‖

2
e

. (|||e|||+ ‖ǫ‖) η + η2.

By Lemma 4.5 and the Young’s inequality, we have

|||u− uh|||
2
. η2.

Combining this with Lemma 4.5 gives (4.12).

4.2. Proof of efficiency. In this section, we will prove the efficiency estimate
(4.2). We first define two bubble functions, which are widely used in a posteriori error
estimations [33].

For each triangle T ∈ Th, denote by φT the following bubble function

φT =

{

27λ1λ2λ3 in T,

0 in Ω\T,

where λi, i = 1, 2, 3 are barycentric coordinates on T . It is clear that φT ∈ H1
0 (Ω)

and satisfies the following properties [33]:

• For any polynomial q with degree at most m, there exist positive constants
cm and Cm, depending only on m, such that

cm‖q‖2T ≤

∫

T

q2φT dx ≤ ‖q‖2T , (4.16)

‖∇(qφT )‖T ≤ Cmh−1
T ‖q‖T . (4.17)

For each e ∈ E0
h, we can analogously define an edge bubble function φe. Let T1

and T2 be two triangles sharing the edge e. To this end, denote by ωe = T1 ∪ T2

the union of the elements T1 and T2. Assume that in Ti, i = 1, 2, the barycentric
coordinates associated with the two ends of e are λTi

1 and λTi

2 , respectively. The edge
bubble function can be defined as follows

φe =











4λT1

1 λT1

2 in T1,

4λT2

1 λT2

2 in T2,

0 in Ω\ωe.

Then φe ∈ H1
0 (Ω) and satisfies the following properties [33]:

• For any polynomial q with degree at most m, there exist positive constants
dm, Dm and Em, depending only on m, such that

dm‖q‖2e ≤

∫

e

q2φe ds ≤ ‖q‖2e, (4.18)

‖∇(qφe)‖ωe
≤ Dmh−1/2

e ‖q‖e, (4.19)

‖qφe‖ωe
≤ Emh1/2

e ‖q‖e. (4.20)
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Then we have the following efficiency bound.

Theorem 4.7. Let (u, p) and (uh, ph) be the solutions of (2.1)-(2.2) and (3.6),
and A(·, ·) be symmetric, i.e. δ = −1. Then

hT ‖f‖T . ‖∇(u− uh)‖T + ‖p− ph‖T + hT ‖f − fT ‖T , (4.21)

h1/2
e ‖[[∇uh − phI]]‖e . he‖f − fT ‖ωe

+ ‖∇h(u− uh)‖ωe
+ ‖p− ph‖ωe

, (4.22)

where fT is the average of f on T , and

‖∇ · uh‖T . ‖∇e‖T . (4.23)

Proof. Let T ∈ Th and wT = fTφT . Testing equation (2.1) with wT gives

(f , wT )T = (∇u, ∇wT )T − (∇ ·wT , p)T .

Notice that (∇uh,∇wT )T = 0 and (∇ ·wT , ph)T = 0, we obviously have

(f − fT , wT )T + (fT , wT )T = (∇e, ∇wT )T − (∇ ·wT , ǫ )T .

Then, by inequalities (4.16)-(4.17),

‖fT ‖
2
T .(fT , wT )T

=(f − fT , wT )T − (∇e, ∇wT )T + (∇ ·wT , ǫ )T

.h−1
T (‖∇e‖T + ‖ǫ‖T )‖fT ‖T + ‖f − fT ‖T ‖fT ‖T .

This completes the proof of (4.21).
Next we shall prove (4.22). Let e ∈ E0

h and we = [[∇uh − phI]]φe. Testing (2.1)
with we gives

(f , we)ωe
= (∇u,∇we)ωe

− (∇ ·we, p)ωe
. (4.24)

Using integration by parts and the fact that we = 0 on ∂ωe, we have

(∇uh,∇we)ωe
=
∑

T∈ωe

(∇uh · n, we)∂T =

∫

e

[[∇uh]] ·weds, (4.25)

and

(∇ ·we, ph)ωe
=
∑

T∈ωe

(phn, we)∂T =

∫

e

[[phI]] ·weds. (4.26)

Subtracting (4.25) and (4.26) from (4.24), and then using the properties of φe,
we have

‖[[∇uh − phI]]‖
2
e

.([[∇uh − phI]], we)e

=
∑

T∈ωe

((f − fT , we)T + (fT , we)T − (∇e,∇we)T + (ǫ, ∇ ·we)T )

.‖[[∇uh − phI]]‖e(h
1/2
e ‖f − fT ‖ωe

+ h1/2
e ‖fT ‖ωe

+ h−1/2
e ‖∇he‖ωe

+ h−1/2
e ‖ǫ‖ωe

)

14



Combining the above with (4.21), this completes the proof of (4.22).
Finally, the estimate (4.23) holds true as ∇ · u = 0 and clearly

‖∇ · uh‖T = ‖∇ · uh −∇ · u‖T = ‖∇ · e‖T ≤ ‖∇e‖T .

This completes the proof of the theorem.
Inequality (4.2) follows immediately from the above theorem.

5. Choices of T ∗
h , Vh, Qh and γ. In this section, we will illustrate how our

general theory can be applied to analyze different type of finite volume schemes. That
is, we will give several choices for T ∗

h , Vh, Qh and γ, and then prove that Assumptions
A1-A4 hold for them.

5.1. Finite volume method with conforming trial functions. For a given
geometrically conformal triangular mesh Th, let T ∗

h be the vertex-based dual partition
as shown in Figure 2.1.

The trial function space for velocity associated with Th for the traditional finite
volume method is defined as

Vh = {v ∈ H1
0 (Ω)

2 : v|T ∈ P1(T )
2, ∀T ∈ Th},

with V = H1
0 (Ω)

2. The test function space Wh for velocity is defined as in (3.2), on
the dual partition T ∗

h . Let Qh be the finite dimensional space for pressure associated
with the triangulation Th′ = T2h, that is

Qh = {q ∈ L2
0(Ω) : q|T ∈ P0(T ), ∀T ∈ T2h}.

Denote N to be the set containing all interior nodes in Th. The operator γ : V (h) →
Wh is defined by

γv(x) =
∑

P∈N

v(P )χP (x), ∀x ∈ Ω, (5.1)

where χP is the characteristic function of the dual element associated with the node P .
It can be easily verified that γ defined in (5.1) satisfies Assumption A1 (see [16, 21]),
while the proof of Assumption A2 can be found in [21, 37].

By assumptions A1, A2 and the facts that Vh contains piecewise linear functions,
Qh contains piecewise constant functions, it is easy to see that for v,w ∈ Vh and
q ∈ Qh,

a(v,w) = (∇v,∇w), c(v, q) = −(∇ · v, q).

Now let us consider Assumption A3. For v ∈ Vh ⊂ H1
0 (Ω)

2, clearly [γv]e =
[v]e = 0 on all e ∈ Eh. The bilinear forms A(w,v) and C(v, q) reduce to a(w,v)
and c(v, q) respectively, and C(v, q) = −B(v, q) = −(∇ · v, q). Then the conforming
finite volume method can be written as: find (uh, ph) ∈ Vh × Qh such that for any
(v, q) ∈ Vh ×Qh,

a(uh, v)− (∇ · v, ph) = (f , γv),

(∇ · uh, q) = 0.

The boundedness of A(v,w) and C(v, q) follows directly from the above analysis,
Assumption A2, and the Schwartz inequality. The coercivity of A(v,w) on Vh is a
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direct consequence of A(v,v) = a(v,v) = (∇v, ∇v) and |||v||| = |v|1, for all v ∈ Vh.
This completes the proof of Assumption A3.

Assumption A4 follows from the analysis of the stable P1 − P0 macro-element
[23, 37]. We also note that the same conclusions hold for the conforming bilinear trial
function case [14].

5.2. Finite volume method with nonconforming trial functions. For a
given geometrically conformal triangulation Th, let T ∗

h be its edge-based dual parti-
tion, as shown in Figure 2.1.

The nonconforming trial function space for the velocity is defined as

Vh = {v ∈ L2(Ω)2 : v|T ∈ P1(T )
2, ∀T ∈ Th,

v is continuous at the midpoint of all e ∈ E0
h

and v is zero at the midpoint of all boundary edges}.

The test function space Wh for velocity is defined as in (3.2), on the dual partition
T ∗
h . Define Th′ = Th and hence the finite dimensional space Qh for the pressure is

Qh = {q ∈ L2
0(Ω) : q|T ∈ P0(T ), ∀T ∈ Th}.

Let M be a set containing all the midpoints of interior edges in Th. The operator
γ : V (h) → Wh is defined by

γv(x) =
∑

P∈M

v(P )χP (x), ∀x ∈ Ω, (5.2)

where χP is the characteristic function of dual element associated with the node P .
Finite volume methods using the above nonconforming trial functions were con-

sidered in [10, 11]. In [16], it has been verified that the mapping γ defined in (5.2)
satisfies Assumption A1. The proof of Assumption A2 can be found in [37].

By assumptions A1 and A2 and the facts that Vh contains piecewise linear func-
tions, Qh contains piecewise constant functions, it is easy to see that for v,w ∈ Vh

and q ∈ Qh,

a(v,w) = (∇v,∇w)Th
, c(v, q) = −(∇ · v, q)Th

.

Now let us consider Assumption A3. By the definition of γ, we have [γv]e = 0
on all e ∈ Eh. The bilinear forms become

A(w,v) = a(w,v) + α(h−1
e [w], [v])Eh

,

C(v, q) = c(v, q),

C(v, q) = −B(v, q) = −(∇ · v, q)Th
.

The nonconforming finite volume method is to find (uh, ph) ∈ Vh ×Qh such that for
any (v, q) ∈ Vh ×Qh

a(uh, v) + α(h−1
e [uh], [v])Eh

− (∇ · v, ph)Th
= (f , γv),

(∇ · uh, q)Th
= 0.

The boundedness of a(v,w), c(v, q) and the coercivity of A(v,w) on Vh both
follow directly from the above analysis, Assumption A2, and the Schwartz inequality.
This completes the proof of Assumption A3.

Finally, Assumption A4 is the well-known stability of the lowest order Crouzeix-
Raviart element [18]. The same conclusions hold for the finite volume method using
the rotated bilinear trial functions [30], i.e., the nonconforming Q1 elements on rect-
angular grids. Details of such a finite volume method can be found in [13].
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5.3. Finite volume method with totally discontinuous trial functions.

The finite volume method using totally discontinuous trial functions was first proposed
in [38]. For a given geometrically conformal triangulation Th, let T ∗

h be its triangle-
based dual partition, as shown in Figure 2.1. Define Th′ = Th.

The discontinuous trial function space for the velocity is defined as

Vh = {v ∈ L2(Ω)2 : v|T ∈ P1(T )
2, ∀T ∈ Th}.

The test function space Wh for velocity is defined as in (3.2), on the dual partition
T ∗
h , and the finite dimensional space Qh for the pressure is

Qh = {q ∈ L2
0(Ω) : q|T ∈ P0(T ), ∀T ∈ Th}.

Define γ : V (h) → Wh by.

γv|K =
1

he

∫

e

v|Kds ∀K ∈ T ∗
h .

The operator γ defined above satisfies the first four conditions in Assumption A1

(see [38]). The last one follows from the Schwartz inequality:

‖[γv]‖2e =
1

h e

(∫

e

[v]ds

)2

≤
1

h e

(∫

e

[v]2ds

)(∫

e

ds

)

=

∫

e

[v]2ds = ‖[v]‖2e.

Proof for assumptions A2-A4 can be found in [39].
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