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Abstract. An H(div) conforming mixed finite element method has been pro-

posed for the coupled Darcy-Stokes flow in [30], which imposes normal con-
tinuity on the velocity field strongly across the Darcy-Stokes interface. Here,
we develop an a posteriori error estimator for this H(div) conforming mixed
method, and prove its global reliability and efficiency. Due to the strong cou-

pling on the interface, special techniques need to be employed in the proof.
This is the main difference between this paper and Babuška and Gatica’s work
[5], in which they analyzed an a posteriori error estimator for the mixed for-

mulation using weakly coupled interface conditions.

1. Introduction

The coupled Darcy-Stokes problem is a well-known and well-studied problem,
which has many important applications. We refer to the nice overview [19] and
references therein for its physical background, modeling, and common numerical
methods. One important issue in the modeling of the coupled Darcy-Stokes flow is
the treatment of the interface condition, where the Stokes fluid meets the porous
medium. In this paper, we only consider the so called Beavers-Joseph-Saffman
condition, which was experimentally derived by Beavers and Joseph in [7], modified
by Saffman in [40], and later mathematically verified in [27, 28, 29, 36].

Depending on whether to use the primal formulation or the mixed formulation in
the Darcy region, there are two popular ways to formulate the weak problem of the
coupled Darcy-Stokes flow. Here we concentrate on the mixed formulation, which
has been studied in [3, 21, 22, 23, 30, 31, 32, 38, 39]. In [32], rigorous analysis of the
mixed formulation and its weak existence have been presented. The authors studied
two different mixed formulations. The first one imposes the normal continuity of
the velocity field on the interface weakly, by using a Lagrange multiplier; while
the second one imposes the normal continuity strongly in the functional space.
Later we shall call these two mixed formulations, respectively, the weakly coupled
formulation and the strongly coupled formulation.
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The weakly coupled formulation gives more freedom in choosing the discretiza-
tions for the Stokes side and the Darcy side separately. The work in [21, 22, 23, 32]
are based on the weakly coupled formulation. Research on the strongly coupled
formulation has been focused on developing unified discretization for the coupled
problem. That is, the Stokes side and the Darcy side are discretized using the same
finite element. This approach can simplify the numerical implementation, of course
only if the unified discretization is not significantly more complicated than com-
monly used discretizations for the Darcy and the Stokes problems. One essential
difficulty in choosing the unified discretization is that, the Stokes side velocity is in
H1 while the Darcy side velocity is only in H(div). Commonly used stable finite el-
ements for the Stokes equation do not work for the Darcy equation, and vice versa.
Special techniques usually need to be employed. In [3], a conforming, unified finite
element has been proposed for the strongly coupled mixed formulation. However,
it is constructed only on rectangular grids, and requires special treatment of the
nodal degrees of freedom along the interface. According to the authors knowledge,
the element proposed in [3] is probably the only existing conforming and unified
element. Other researchers have resorted to less restrictive discretizations such
as the non-conforming unified approach [31] or the discontinuous Galerkin (DG)
approach [30, 38, 39]. Due to its discontinuous nature, some DG discretizations
for the coupled Darcy-Stokes problem may break the strong coupling in the dis-
crete level [38, 39], as they impose the normal continuity across the interface via
interior penalties. We are interested in the H(div) conforming DG approach [30]
which preserves the strong coupling even in the discrete level. The idea of the
H(div) conforming DG approach is to use H(div) conforming elements, such as
the Raviart-Thomas [37] elements and the Brezzi-Douglas-Marini [9] elements, to
discretize the entire coupled problem. Such elements have normal continuity but
not tangential continuity on mesh edges/faces, and thus is not conforming for the
Stokes side. The solution is to use the interior penalty methods and impose the
tangential continuity on the Stokes side weakly, via edge/face integrals. We point
out that the H(div) conforming interior penalty method for the Stokes equation has
been well-studied in [15, 16, 47]. In [30], the authors used this approach to develop
a discretization for the coupled Darcy-Stokes problem, which strongly satisfies the
normal continuity condition on the interface. Energy norm a priori error estimates
is also proved. Later, an L2 a priori error estimation for this approach is given [24].

The purpose of this paper is to develop an a posteriori error estimator for the
H(div) conforming method proposed in [30]. A posteriori error estimations have
been well-established for both the mixed formulation of the Darcy flow [2, 8, 11, 34],
etc., and the Stokes flow [1, 6, 13, 18, 20, 26, 35, 42, 43, 45, 46], etc, among which
[26, 45] covers a posteriori error estimation for H(div) conforming interior penalty
methods for Stokes equations. However, there are only a few works existing for
the coupled Darcy-Stokes problem [5, 17], where [5] concerns the weakly coupled
mixed formulation while [17] uses the primal formulation on the Darcy side. To our
knowledge, there is no a posteriori error estimation for the strongly coupled mixed
formulation yet for the coupled Darcy-Stokes flow.

One immediately wants to ask, how different can the a posteriori error estimation
for the strongly coupled mixed formulation be, comparing with estimations for the
weakly coupled formulation or even for the pure Darcy or pure Stokes equations?
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Here, the technical difficulty lies in the combination of a posteriori error estima-
tions and the strongly imposed interface condition. For the mixed formulation of
pure Darcy problem, the easiest way of performing a posteriori error estimation is
to use a Helmholtz decomposition [11], while for the interior penalty method for
the pure Stokes equation, one may want to define a continuous approximation to
the discontinuous velocity [26, 45]. When coupling these two completely different
techniques together, the normal continuity condition across the interface needs to
be satisfied all the time. Special interpolation operators need to be constructed to
fulfill this requirement, and there are many technical complexities that need to be
clarified.

The paper is organized as follows. For simplicity, only two-dimensional problems
are considered. In Section 2, the model problem for the coupled Darcy-Stokes flow
and its strongly coupled mixed formulation are introduced, together with several
notations. The H(div) conforming discretization for the strongly coupled formu-
lation will be presented in Section 3. Then, in Section 4, an a posteriori error
estimator is derived. The process of deriving actually also serves as the proof for
the global reliability of the estimator. The global efficiency of the estimator is ver-
ified in Section 5. Finally in Appendix A, we construct an important interpolation
operator which preserves the normal continuity on the interface while satisfying
certain properties.

2. Model problem and notation

We follow the model developed in [24, 30]. Contents of sections 2 and 3 can be
found in [24, 30] and other references as will be stated. For reader’s convenience,
we present some details here. The notations used in this paper are slightly different
from those in [24, 30], hence sections 2 and 3 also serve the purpose of introducing
the notations.

Consider the coupled Darcy-Stokes system in a polygon Ω divided into two non-
overlapping subdomains ΩS and ΩD, which are occupied by the Stokes fluid and
porous medium, respectively. For simplicity, assume both ΩS and ΩD are polygonal.
Denote the interface between these two subdomains by ΓSD. Define ΓS = ∂ΩS\ΓSD

and ΓD = ∂ΩD\ΓSD. When the associated domain is clear from the context, use n
to represent the unit outward normal vector and t the unit tangential vector such
that (n, t) forms a right-hand coordinate system. On ΓSD, denote n̂ to be the unit
normal vector pointing from ΩS towards ΩD, and t̂ accordingly, as shown in Figure
1.

Figure 1. Domain of the coupled Darcy-Stokes problem.
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Consider the following coupled Darcy-Stokes problem, where the flow is governed
by the Stokes equation in ΩS and the Darcy’s law in ΩD:

(2.1)

−∇ · T(u, p) = f in ΩS ,

K−1u+∇p = f in ΩD,

∇ · u = g in Ω.

Here u is the velocity, p is the pressure, f and g are given vector-valued and scalar-
valued functions, respectively, in Ω. The stress tensor is defined by T(u, p) =
2νD(u) − pI, where ν > 0 is the fluid viscosity, D(u) = 1

2 (∇u + ∇uT ) is the
strain tensor, and I is the identity matrix. Finally, K is a symmetric and uniformly
positive tensor denoting the permeability tensor divided by the fluid viscosity. For
simplicity, assume K has smooth components and is also uniformly bounded from
above.

To distinguish between the Darcy and the Stokes sides when necessary, we some-
times denote uS = u|ΩS

, uD = u|ΩS
, and pS , pD in the same fashion. The bound-

ary condition is set to be:

(2.2)
uS = 0 on ΓS ,

uD · n = 0 on ΓD.

For simplicity, we assume that ΓS 6= ∅. On the interface ΓSD, we impose the
conservation of mass, the balance of normal forces, and the Beavers-Joseph-Saffman
condition [7, 40]

uS · n̂ = uD · n̂,(2.3)

− T(uS , pS)n̂ · n̂ = pD,(2.4)

− T(uS , pS)n̂ · t̂ = µK−1/2 uS · t̂,(2.5)

where µ > 0 is a variable related to the friction and shall be determined experimen-
tally, K−1/2 is defined using the standard eigenvalue decomposition. We assume
that µ is smooth and uniformly bounded both above and away from zero. It is not
hard to see that conditions (2.4) and (2.5) are equivalent to

(2.6) T(uS , pS)n̂+ pDn̂+ µK−1/2 (uS · t̂)t̂ = 0 on ΓSD.

Due to the boundary condition (2.2), we clearly need to assume the compatibility
condition

∫

Ω
g dx = 0. In addition, the pressure is unique only up to a constant.

Thus it is convenient to assume that
∫

Ω

p dx = 0.

The mixed weak formulation and the existence of the weak solution of problem
(2.1) has been thoroughly discussed in [24, 32]. Below we briefly state these results.

First, we introduce several notations. For a one- or two-dimensional polygonal
domain K, denote Hs(K), where s ∈ R, to be the usual Sobolev space, with the
norm ‖ ·‖s,K . When s = 0, it coincides with the square integrable space L2(K) and
we usually suppress 0 in the subscript of the norm, that is, ‖ ·‖K = ‖ ·‖0,K . Denote
(·, ·)K and < ·, · >K to be the L2 inner-product and duality form, respectively, in
K. When K is one-dimensional, the convention is to use < ·, · >K for both the L2

inner-product and duality form. When K = Ω, we usually suppress the subscript
K in (·, ·)K . Finally, all these notations can be easily extended to vector and tensor
spaces.
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We follow the convection that a bold character denotes a vector or vector-valued
function. Define

H(div, K) = {v ∈ (L2(K))2, ∇ · v ∈ L2(K)},

with the norm

‖v‖H(div, K) = (‖v‖2K + ‖∇ · v‖2K)1/2.

Let Γ ⊂ ∂K. Define

H0,Γ(div, K) = {v ∈ H(div, K), v · n = 0 on Γ},

and

H1
0,Γ(K) = {v ∈ H1(K), v = 0 on Γ}.

If Γ = ∂K, simply denote H0,∂K(div, K) = H0(div, K) and H1
0,∂K(K) = H1

0 (K).

We are interested in the trace of functions in H0,Γ(div, K) and H1
0,Γ(K) on Γ̃ =

∂K\Γ. It is well-known that for all v ∈ H1
0,Γ(K), we have v|Γ̃ ∈ H

1/2
00 (Γ̃) and for

all v ∈ H0,Γ(div, K), we have v · n|Γ̃ ∈ (H
1/2
00 (Γ̃))∗ [32] (readers may refer to [33]

for the definition and norm of H
1/2
00 (Γ̃)). An important property of H

1/2
00 (Γ̃), is

that, for any function in H
1/2
00 (Γ̃), it can be extended by zero on ∂K\Γ̃ and yields

a function in H1/2(∂K).
Define

V = {v ∈ H0(div,Ω) |vS ∈ H1(ΩS)
2 and v|ΓS

= 0}.

The space V is a Hilbert space under the norm (‖v‖21,ΩS
+ ‖v‖2H(div,ΩD))

1/2. Later

we will also introduce an equivalent energy norm on V . For convenience, denote
V S and V D to be the confinements of V on ΩS and ΩD respectively. It is clear
that functions in V satisfy the strong coupling condition (2.3) on the interface ΓSD.

Furthermore, vS |ΓSD
∈ H

1/2
00 (ΓSD)2 for all v ∈ V .

Define a bilinear form a(·, ·) : V × V → R by

a(u,v) = aS(u,v) + aD(u,v) + aI(u,v),

where
aS(u,v) = 2ν(D(u), D(v))ΩS

,

aD(u,v) = (K−1u,v)ΩD
,

aI(u,v) =< µK−1/2us · t̂,vs · t̂ >ΓSD
.

Denote Q = L2
0(Ω), the mean-value free subspace of L2(Ω), and define a bilinear

form b(·, ·) : V ×Q → R by

b(v, q) = −(∇ · v, q)Ω.

Now we can introduce the weak formulation of the Darcy-Stokes coupled problem:
Find (u, p) ∈ V ×Q such that

(2.7)

{

a(u,v) + b(v, p) = (f ,v) for all v ∈ V ,

b(u, q) = −(g, q) for all q ∈ Q.

Clearly, Equation (2.7) can be written into

Λ((u, p), (v, q)) = F ((v, q)),
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where

Λ((u, p), (v, q)) = a(u,v) + b(v, p) + b(u, q),(2.8)

F ((v, q)) = (f ,v)− (g, q).(2.9)

It has been shown [32] that the weak formulation (2.7) is equivalent to the
boundary value problem (2.1)-(2.5). Readers may also refer to [25] for a detailed
discussion on the interface conditions on ΓSD. To state the weak existence results
for problem (2.7), we first need to introduce several norms. Define an energy norm
on V by

‖v‖V =

(

‖∇v‖2ΩS
+ ‖µ1/2K−1/4vS · t̂‖2ΓSD

+ ‖K−1/2v‖2ΩD
+ ‖∇ · v‖2Ω

)1/2

.

It is not hard to see that

C1‖v‖V ≤

(

‖v‖21,ΩS
+ ‖v‖2H(div,ΩD)

)1/2

≤ C2‖v‖V ,

where C1 and C2 depend only on the shape of domain, µ, and K. Denote ‖ · ‖Q to
be the L2 norm on Ω and

|||(v, q)||| , ‖(v, q)‖V ×Q =
√

‖v‖2
V

+ ‖q‖2Q.

Then, it is not hard to establish the following Ladyzhenskaya-Babuška-Brezzi con-
dition [24, 32]:

a(v,v) ≥ α‖v‖2
V

for all v ∈ Z,(2.10)

sup
v∈V

b(v, q)

‖v‖V
≥ β‖q‖Q for all q ∈ Q,(2.11)

where
Z = {v ∈ V | ∇ · v = 0}.

These guarantee that Equation (2.7) admits a unique solution in V ×Q. Further-
more, it is well-known that conditions (2.10)-(2.11) are equivalent to the following
Babuška’s form: [10]

(2.12) sup
(v,q)∈V ×Q

Λ((w, ξ), (v, q))

|||(v, q)|||
≥ C(α, β)|||(w, ξ)||| for all (w, ξ) ∈ V ×Q.

Here C(α, β) is a constant depending on α and β.
Equation (2.7) is the strongly coupled formulation studied in [32]. An alter-

native weak formulation for problem (2.1), the weakly coupled formulation, has
also been presented in [32]. The weakly coupled formulation is defined on the space
(H1

0,ΓS
(ΩS)

2×H0,ΓD
(div,ΩD))×Q, and the interface condition (2.3) is then weakly

imposed by using a Lagrange multiplier. In [32], Layton, Schieweck and Yotov have
proved that when the porous medium is entirely enclosed in the fluid region, the
weakly coupled formulation and the strongly coupled formulation are equivalent,
and both are well-posed. However, for general domains, it can only be proved that
the strongly coupled formulation (2.7) is well-posed, while the well-posedness of the
weakly coupled formulation is unknown due to a technical difficulty of restricting
H−1/2(ΩD) on ΓSD [32]. Interested readers may refer to [32] for the details. Mixed
finite element methods introduced in [21, 22, 23, 32] are all based on the weakly
coupled formulation. The a posteriori error estimation given in [5] is also based on
the weakly coupled formulation. Different from the work in [5], here we propose
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an a posteriori error estimation for the strongly coupled formulation (2.7) and its
H(div) conforming finite element discretization introduced in [24, 30].

3. Mixed finite element discretization

Recently, an H(div) conforming, unified mixed method for (2.7), in which both
the Stokes part and the Darcy part are approximated by the Raviart-Thomas (RT )
elements, has been proposed [30]. Later, optimal error in L2 norm for the velocity
of the H(div) conforming formulation has been proved in [24]. Of course, the RT
elements are not H1 conforming on the Stokes side. The idea is to use the interior
penalty discontinuous Galerkin H(div) approach for the Stokes equation [15, 16, 47]
in the Stokes region, while using a usual mixed finite element discretization in
the Darcy region. There are three main advantages of this approach. First, the
unified finite element space may simplify the numerical simulation. Second, the
normal continuity condition (2.3) on the interface is strongly imposed on the discrete
level. Third, the discretization is strongly conservative [30, 47]. For example, when
g = 0 in ΩS , then the discrete velocity is exactly divergence free, instead of weakly
divergence free. Next, we briefly present this method.

Let Th be a geometrically conformal, shape-regular mesh on Ω. We require that
Th be aligned with ΓSD. For each triangle T ∈ Th, denote by hT its diameter. Let
h be the maximum of all hT . Denote T S

h and T D
h to be the meshes in ΩS and ΩD,

respectively.
Denote by Eh the set of all edges in Th. For each edge e ∈ Eh, denote by he its

length. Let ESD
h be the set of all edges in Th ∩ ΓSD, and let ES

h , E
D
h be the set of

all edges in Th ∩ (ΩS ∪ ΓS), Th ∩ (ΩD ∪ ΓD), respectively. We also denote ES
0,h and

ED
0,h to be the set of edges interior to ΩS and ΩD, respectively.

Let O, P be operators defined on each T ∈ T S
h or T D

h , but may not be well-
defined on the entire Ω. For example, the gradient operator on the space of dis-
continuous piecewise polynomials on Th. We introduce the notation for discrete L2

inner-products as following

(O(·), P(·))T S
h

=
∑

T∈T S
h

(O(·), P(·))T ,

(O(·), P(·))T D
h

=
∑

T∈T D
h

(O(·), P(·))T .

Similarly, define < ·, · >ES
h
, < ·, · >ES

0,h
, < ·, · >ED

h
, < ·, · >ED

0,h
, and < ·, · >ESD

h

in the same fashion. With the aid of these notations, we can also denote mesh-
dependent ”broken” L2 norms in a straight-forward manner. For example, ‖·‖T S

h
,

(·, ·)
1/2

T S
h

and ‖ · ‖ESD
h

,< ·, · >
1/2

ESD
h

. We especially remark that the ”broken” norm

may even contain hT or he in it. For example,

‖hTv‖T S
h

= (hTv, hTv)
1/2

T S
h

=

(

∑

T∈T S
h

h2
T ‖v‖

2
T

)1/2

,

‖h−1/2
e v‖ESD

h
=< h−1/2

e v, h−1/2
e v >

1/2

ESD
h

=

(

∑

e∈ESD
h

h−1
e ‖v‖2e

)1/2

.

Such notations shall greatly clean up the style of this paper.
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Let V h ⊂ H0(div,Ω) and Qh ⊂ Q be a pair of the Raviart-Thomas [37] finite
element spaces, except for the lowest-order one, defined on Th. That is, V h is the
RTk space, with k ≥ 1, and Qh is the discontinuous Pk space. Notice here we
exclude the RT0 element, since otherwise V h∩V will be empty. Readers may refer
to [10, 14] for more details and properties of the RT elements.

For convenience, denote V h,S and V h,D to be the confinement of V h in ΩS

and ΩD, respectively. Similarly, for any v ∈ V h, it can be split into vh,S ∈ V h,S

and vh,D ∈ V h,D. Denote Ph the space of H1 conforming Lagrange finite element
space on Th consisting of piecewise polynomials with degree less than or equal to
k, and let Ph,S , Ph,D be the confinements of Ph on ΩS and ΩD, respectively. By
the definition, we have

(Ph,S)
2 ∩ V S ⊂ V h,S .

Finally, we point out that all functions in V h satisfy the strong coupling condition
(2.3) on the interface ΓSD.

Define a discrete bilinear form

aS,h(u,v) = 2ν

(

(D(u), D(v))T S
h
− < {D(u)}n, [v] >ES

h
− < [u], {D(v)}n >ES

h

+ <
σ

he
[u], [v] >ES

h

)

,

where {·} and [·] denote the average and the jump on edges, respectively, and σ > 0
is a parameter of O(1). On the boundary edge e ⊂ ΓS , {·} and [·] are just the one-
sided values. On each edge, the direction n is taken to be the same as the direction
in [·], that is, if [v]|e , v|T1

−v|T2
where T1 and T2 share the edge e, then n points

from T1 to T2. The notations in the definition of bilinear form aS,h are standard in
the discontinuous Galerkin literature and readers may refer to [15, 16, 30, 47] for
more details.

Now, define

ah(u,v) = aS,h(u,v) + aD(u,v) + aI(u,v).

We have the discrete problem [24, 30]: Find (uh, ph) ∈ Vh ×Qh such that

(3.1)

{

ah(uh,v) + b(v, ph) = (f ,v) for all v ∈ V h,

b(uh, q) = −(g, q) for all q ∈ Qh.

Since V h,S is not in H1
0,ΓS

(ΩS)
2, the discrete space V h is not a subspace of V .

Therefore it does not inherit the norm of V . Here we shall define a discrete norm
on V h by

‖v‖V h
=

(

‖∇v‖2
T S
h

+ ‖h−1/2
e [v]‖2

ES
h

+ ‖µ1/2K−1/4vS · t̂‖2
ESD
h

+ ‖K−1/2v‖2ΩD
+ ‖∇ · v‖2Ω

)1/2

.

Although the norm ‖ · ‖V is not well-defined on V h, we point out that the discrete
norm ‖ · ‖V h

is well-defined on V . Indeed, it is clear that ‖v‖V h
= ‖v‖V for all

v ∈ V , since the jump term ‖h
−1/2
e [v]‖ES

h
vanishes. Later we shall use this property

and build certain discrete functions in V . Then for these functions, one can easily
shift from the discrete ‖ · ‖V h

norm to the continuous ‖ · ‖V norm.
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The space Qh is a subspace of Q and inherits its norm, which is just the L2

norm. Define the norm in (V + V h)×Q by

|||(v, q)|||h =

(

‖v‖2
V h

+ ‖q‖2Q

)1/2

.

Again, we have

|||(v, q)|||h = |||(v, q)||| for all v ∈ V and q ∈ Q.

Well-posedness and a priori error estimates for (3.1) have been given in [24, 30]:

Theorem 3.1. Equation (3.1) has a unique solution (uh, ph) for σ large enough,
but not depending on h. Assume the solution (u, p) of (2.7) is in Hs(Ω)2 ×Hs(Ω)
with 3/2 < s ≤ k + 1,then

|||(u− uh, p− ph)|||h ≤ Chs−1(|u|s,Ω + |p|s,Ω),

where C is a positive constant independent of the mesh size.

4. Residual based a posteriori estimation

The goal of this section is to derive an a posteriori error estimator for the problem
(3.1). For simplicity of notation, we shall use “.” to denote “less than or equal
to up to a constant independent of the mesh size, variables, or other parameters
appearing in the inequality”. In this section, we will also frequently use the following
well-known inequality: for any function ξ ∈ H1(T ) where T is a triangle with an
edge e, the following estimate holds:

(4.1) he‖ξ‖
2
e . ‖ξ‖2T + h2

T ‖∇ξ‖2T .

To derive an a posteriori error estimator, we first denote

εu = u− uh, εp = p− ph,

where (u, p) is the solution to (2.7) and (uh, ph) is the solution to (3.1). The idea
of deriving a reliable a posteriori error estimator is to find an upper bound for
|||(εu, εp)|||h.

As pointed out in the previous section, the norms ||| · |||h and ||| · ||| are identical on
V ×Q. Thus we introduce a new discrete function ũh ∈ V , which is defined from
the discrete solution uh and satisfy

(4.2) ‖uh − ũh‖V h
. ‖h−1/2

e [uh]‖ES
h
.

The definition of ũh and the proof of Equation (4.2) will be given in Appendix A.
Note that ũh is not necessarily in V h. The term ‖uh − ũh‖V h

is usually called the
nonconformity estimator in the a posteriori error estimation literature.

Denote

ε̃u = u− ũh ⊂ V ,

then

|||(εu, εp)|||h ≤ ‖uh − ũh‖V h
+ |||(ε̃u, εp)|||h = ‖uh − ũh‖V h

+ |||(ε̃u, εp)|||.

Since ‖uh−ũh‖V h
is bounded in Equation (4.2), we only need to estimate |||(ε̃u, εp)|||.

By the Babuška’s condition (2.12),

|||(ε̃u, εp)||| . sup
(v,q)∈V ×Q

Λ((ε̃u, εp), (v, q))

|||(v, q)|||
.
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Note that

Λ((ε̃u, εp), (v, q)) =

(

a(ε̃u,v) + b(v, εp)

)

+ b(ε̃u, q)

=

(

(f ,v)− a(ũh,v)− b(v, ph)

)

+

(

− (g, q) + (∇ · ũh, q)

)

= Res1(v) +Res2(q).

Here

(4.3)

Res2(q) ≤ ‖g −∇ · ũh‖‖q‖ ≤

(

‖g −∇ · uh‖+ ‖uh − ũh‖V h

)

‖q‖

.

(

‖g −∇ · uh‖+ ‖h−1/2
e [uh]‖ES

h

)

‖q‖.

Next, we concentrate on estimating Res1(v). Let vh ∈ V h be any function, by
(3.1), we have

Res1,h(vh) , (f ,vh)− ah(uh,vh)− b(vh, ph) = 0.

Thus

Res1(v) = Res1(v)−Res1,h(vh)

= (f ,v − vh)−

(

a(ũh,v)− ah(uh,vh)

)

− b(v − vh, ph)

= (f ,v − vh)ΩD
−

(

aD(ũh,v)− aD(uh,vh)

)

+ (∇ · (v − vh), ph)ΩD

+ (f ,v − vh)ΩS
−

(

aS(ũh,v)− aS,h(uh,vh)

)

+ (∇ · (v − vh), ph)ΩS

−

(

aI(ũh,v)− aI(uh,vh)

)

= RD +RS +RI ,

Next, we shall derive upper bounds for RD, RS and RI one by one. Clearly, the
choice of vh is essential to the estimation. We would like vh to satisfy the following
conditions:

(1) vh is in V h ∩ V ;
(2) vh is a good approximation of v;
(3) vh should lead to a straight-forward a posteriori error estimation, which

allows us to follow well-known techniques from the a posteriori error esti-
mations of pure Darcy and pure Stokes problems.

To satisfy the third condition, we must first investigate a posteriori error estimators
for the pure Darcy and the pure Stokes equations. For the Stokes equations, we
follow the proof in [26] where vh is chosen to be the Clément interpolation of v.
For the Darcy equation, we follow the proof in [11] where vh needs to be defined
using a Helmholtz decomposition. Now the difficulty is, how to couple these two
different type of definitions while ensuring that vh ∈ V h ∩ V ? Note that vh must
satisfy the strong coupling condition (2.3) across the interface ΓSD.
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4.1. Defining vh. Given v ∈ V , we define the Stokes side approximation vh,S and
the Darcy side approximation vh,D separately. Then vh will be the combination of
vh,S and vh,D as long as they satisfy

(4.4) vh,S · n̂ = vh,D · n̂ on ΓSD.

On the Stokes side, the approximation can be done directly by a Clément type
interpolation onto (Ph,S)

2∩V S ⊂ V h,S . Here we pick the Scott-Zhang interpolation
[41], since it also preserves the non-homogeneous boundary condition. The idea of
the Scott-Zhang interpolation is to first assign, for each Lagrange interpolation
point used as degrees of freedom for Ph,S , an associated integration region (see
Figure 2). Then, define the interpolated value at each Lagrange point by testing
the function with the dual basis in the associated integration region. For Lagrange
points interior to a triangle T ∈ T S

h , the associate integration region is the triangle
T . For Lagrange points lying on edges, the associate integration region is chosen
to be an edge. Note for points where several edges meet, the choice may not be
unique. In order to preserve the boundary condition, the associated integration
region for Lagrange points lying on ∂ΩS need to be chosen as a boundary edge
on ∂ΩS . We especially note that, at the end points ΓS ∩ ΓSD, the associated
integration region needs to be chosen on ΓS , in order to ensure the interpolated
value at these points are equal to zero (see Figure 2). Denote Ih to be the Scott-
Zhang interpolation mentioned above that maps H1(ΩS) to Ph,S , preserving the
homogeneous boundary condition on ΓS . On ΓSD, Ih maps the value at the end
points of ΓSD into zero, while produces the interpolated value on ΓSD using only the
function value on ΓSD. Indeed, Ih|ΓSD

can be viewed as a well-defined interpolation

fromH
1/2
00 (ΓSD) to Ph|ΓSD

, by simply setting the interpolation at end-points of ΓSD

to be zero. Notice that H
1/2
00 (ΓSD) can be extended by zero on either ΓS or ΓD, we

are able to easily make transition from ΩS to ΩD. That is, for ξ ∈ H1
0,ΓD

(ΩD) and

consequently ξ|ΓSD
∈ H

1/2
00 (ΓSD), the interpolation Ih|ΓSD

ξ is also well-defined on
ΓSD. Furthermore, similar to the proof in [41], one can show that for any e ∈ ESD

h ,

(4.5) he‖(I − Ih|ΓSD
)ξ‖2e .

∑

T∈SD(e)

h2
T ‖∇ξ‖2T ,

where SD(e) is the set of triangles in T D
h that have a non-empty intersection with

e. In the rest of the paper, when there is no ambiguity, we will just denote Ih|ΓSD

by Ih.
Clearly Ih , (Ih)

2 will map V S into (Ph,S)
2 ∩V S ⊂ V h,S . It is also known [41]

that Ih is a projection. In other words, IhϕS = ϕS for all ϕS in (Ph,S)
2 ∩ V S .

Define vh,S = IhvS . Since Ih is a linear operator, we have vh,S · n̂ = (IhvS) · n̂ =
Ih(vS · n̂) on ΓSD.

On the Darcy side, the interpolation will be defined using a Helmholtz decom-
position. That is, we first split

vD = w + curl η,

where

curl η =

(

− ∂η
∂x2

∂η
∂x1

)

,
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Figure 2. Associated integration region for different type of La-
grange points. Each Lagrange point is denoted by a black dot, and
the associated integration region is denoted by either a (shaded)
triangle or a (bold) edge. For Lagrange points on ΓS , ΓSD, or the
intersection of ΓS and ΓSD, there are special rules for choosing the
associated integration region.

ΩS

ΩS ΩS

ΩS ΩS ΩS

Lagrange points in

Lagrange points on ΓS
ΓS

Lagrange points on ΓSD

ΓSD ΓSD

ΓS

and w satisfies

∇ ·w = ∇ · vD,(4.6)

w|ΓD
= 0, w|ΓSD

= vS |ΓSD
.(4.7)

Here, condition (4.7) is imposed to ensure w ·n|ΓD
= 0 and w ·n̂|ΓSD

= vS ·n̂. Then
w ·n|∂ΩD

= vD ·n|∂ΩD
and consequently the compatibility condition

∫

ΩD
∇·w dx =

∫

ΩD
∇ · vD dx =

∫

∂ΩD
vD · n ds =

∫

∂ΩD
w · n ds is satisfied.

Of course one needs to make sure such a decomposition is well-defined and w, η

have certain regularity results. Indeed, since vS |ΓSD
∈ H

1/2
00 (ΓSD)2, according to

[4], there exists such a w ∈ H1(ΩD)2 satisfying (4.6) and (4.7). Furthermore, we
have

(4.8) ‖w‖1,ΩD
. ‖v‖V .

Now (vD −w)|ΩD
∈ H0(div,ΩD) is divergence-free. Thus there exists a potential

function η ∈ H1
0 (ΩD) such that curl η = vD −w, and

(4.9) ‖η‖1,ΩD
. ‖curl η‖0,ΩD

= ‖vD −w‖0,ΩD
. ‖v‖V .

Now we can start to define vh,D. First, we need an interpolation operator from
H1(ΩD)2 to V h,D, which must map w · n̂ to Ih(w · n̂) on ΓSD . Recall that a
usual nodal value interpolation Πh : H1(ΩD)2 → V h,D associated with the degrees
of freedom of the RTk elements [10] will map w · n̂ to Ph(w · n̂) on ΓSD, where
Ph is the L2 projection onto (V h,D · n̂)|ΓSD

= Ph|ΓSD
. Hence, we define a new

interpolation Π̃h : H1(ΩD)2 → V h,D such that it is the same as Πh on all other
degrees of freedom except for those associated with w · n̂|ΓSD

. On these degrees of

freedom, define Π̃h by

(4.10)

∫

e

(Π̃hw · n̂)sr ds =

∫

e

Ih(w · n̂)sr ds for all e ∈ ESD
h and 0 ≤ r ≤ k.
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Of course, on other degrees of freedom, Π̃h inherits the properties of Πh, especially
the following ones

(4.11)

∫

e

(w − Π̃hw) · n qh ds = 0 for all e ∈ ED
h and qh ∈ Qh,D,

∫

T

(w − Π̃hw) · ∇qh dx = 0 for all T ∈ T D
h and qh ∈ Qh,D.

Combine Proposition III.3.6 in [10] and approximation property of the Scott-Zhang
interpolation in [41], then use the scaling argument, Inequality (4.5), and the prop-
erty of the L2 projection, we have for all T ∈ T D

h ,

(4.12)

‖w − Π̃hw‖0,T . ‖w −Πhw‖0,T + ‖Π̃hw −Πhw‖0,T

. hT ‖∇w‖T + h
1/2
T ‖(Ih − Ph)(w · n̂)‖T∩ΓSD

.

(

∑

T∈SD(T )

h2
T ‖∇w‖2T

)1/2

where SD(T ) is the set of all triangles in T D
h that has a non-empty intersection

with T ∩ ΓSD.
Different from Πh, which satisfies ∇ · (Πhw) = Qh(∇ ·w) (see [10]), where Qh

is the L2 projection onto Qh,D, Π̃h does not satisfy the same relation. Instead, for

all qh ∈ Qh,D, by the definition of Π̃h and its properties (4.10)-(4.11), we have

(4.13)

(∇ · (w − Π̃hw), qh)ΩD

=
∑

T∈T D
h

(

< (w − Π̃hw) · n, qh >∂T −(w − Π̃hw,∇qh)T

)

=− < (w − Π̃hw) · n̂, qh >ESD
h

=− < (I − Ih)vS · n̂, qh >ESD
h

.

Finally, define

vh,D = Π̃hw + curl ηh,

where ηh is the Clément interpolation of η into the continuous piecewise Pk+1 poly-
nomials on T D

h that preserves the homogeneous boundary condition on ∂ΩD. Of
course one can also chose ηh to be the Scott-Zhang interpolation. By the prop-
erties of the Raviart-Thomas elements [10], it is easy to see that vh,D ∈ V h,D.
Furthermore, vh,S and vh,D satisfy the interface coupling condition (4.4) and hence
vh ∈ V h ∩ V . By the approximation properties of the Scott-Zhang interpolation
Ih and the Clément interpolation, we have

(4.14)

∑

T∈T S
h

(

‖vS − vh,S‖
2
T + h2

T |vS − vh,S |
2
1,T

)

.
∑

T∈T S
h

h2
T |v|

2
1,T ,

∑

T∈T D
h

(

‖η − ηh‖
2
T + h2

T |η − ηh|
2
1,T

)

.
∑

T∈T D
h

h2
T |η|

2
1,T .

Now we are ready to derive upper bounds, or equivalently the a posteriori error
estimators, for RD, RS and RI .
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4.2. Deriving the Darcy estimator. By the definition of aD(·, ·), Equation
(4.13), and the Schwarz inequality,

RD = (f ,v − vh)ΩD
−

(

aD(ũh,v)− aD(uh,vh)

)

+ (∇ · (v − vh), ph)ΩD

= (f ,v − vh)ΩD
− (K−1(ũh − uh),v)ΩD

− (K−1uh,v − vh)ΩD

+ (∇ · (v − vh), ph)ΩD

= (f −K−1uh,v − vh)ΩD
− (K−1(ũh − uh),v)ΩD

− < (I − Ih)vS · n̂, ph,D >ESD
h

. (f −K−1uh,v − vh)ΩD
+ ‖uh − ũh‖‖v‖ΩD

− < (I − Ih)vS · n̂, ph,D >ESD
h

.

Next, notice that

(f−K−1uh,v−vh)ΩD
= (f−K−1uh,w−Π̃hw)ΩD

+(f−K−1uh, curl (η−ηh))ΩD
,

where by (4.11), (4.12) and (4.8),

(f −K−1uh,w − Π̃hw)ΩD
. inf

p̃h∈Qh,D

‖hT (f −K−1uh −∇p̃h)‖T D
h
|w|1,ΩD

. inf
p̃h∈Qh,D

‖hT (f −K−1uh −∇p̃h)‖T D
h
‖v‖V ,

and by (4.1), (4.9), integration by parts, the boundary condition of η, and (4.14)

(f −K−1uh, curl (η − ηh))

.

(

‖hT curl (f −K−1uh)‖T D
h

+ ‖h1/2
e [f −K−1uh] · t‖ED

0,h

)

|η|1,ΩD

.

(

‖hT curl (f −K−1uh)‖T D
h

+ ‖h1/2
e [f −K−1uh] · t‖ED

0,h

)

‖v‖V .

Here curl is defined for any vector-valued function ξ = (ξ1, ξ2)
t by

curl ξ = −
∂ξ1
∂x2

+
∂ξ2
∂x1

.

Combining the above and using (4.2), we have

RD .

(

inf
p̃h∈Qh,D

‖hT (f −K−1uh −∇p̃h)‖T D
h

+ ‖hT curl (f −K−1uh)‖T D
h

+ ‖h1/2
e [f −K−1uh] · t‖ED

0,h
+ ‖h−1/2

e [uh]‖ES
h

)

‖v‖V

− < (I − Ih)vS · n̂, ph,D >ESD
h

.
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4.3. Deriving the Stokes estimator. Note that [vh] = 0 on all e ∈ ES
h . By using

the definition of aS(·, ·), ah,S(·, ·), and T, we have

RS = (f ,v − vh)ΩS
−

(

aS(ũh,v)− aS,h(uh,vh)

)

+ (∇ · (v − vh), ph)ΩS

= (f ,v − vh)ΩS
+ (2νD(uh − ũh), D(v))T S

h

−

(

(2νD(uh), D(v))T S
h
− aS,h(uh,vh)− (phI,∇(v − vh))T S

h

)

= (f ,v − vh)ΩS
+ (2νD(uh − ũh), D(v))T S

h

− (T(uh, ph), D(v − vh))T S
h
− 2ν < [uh], {D(vh)}n >ES

h

. (f ,v − vh)ΩS
− (T(uh, ph),∇(v − vh))T S

h

+ ‖uh − ũh‖V h
‖v‖V − 2ν < [uh], {D(vh)}n >ES

h
.

In the above we have used the algebraic relation that for any symmetric tensor τ
and domain K, (τ,∇(v − vh))K = (τ,D(v − vh))K .

Using integration by parts and (4.1), (4.14),

(f ,v − vh)ΩS
− (T(uh, ph),∇(v − vh))T S

h

=(f +∇ · T(uh, ph),v − vh)T S
h
−
∑

T∈T S
h

< T(uh, ph)n,v − vh >∂T

.

(

‖hT (f +∇ · T(uh, ph))‖T S
h
+ ‖h1/2

e [T(uh, ph)]n‖ES
0,h

)

‖v‖V

− < T(uh, ph)n̂, (I − Ih)vS >ESD
h

.

Combine all the above and using (4.2), we have

RS .

(

‖hT (f +∇ · T(uh, ph))‖T S
h
+ ‖h1/2

e [T(uh, ph)]n‖ES
0,h

+ ‖h−1/2
e [uh]‖ES

h

)

‖v‖V − < T(uh,S , ph,S)n̂, (I − Ih)vS >ESD
h

.

4.4. Deriving the interface estimator. By the definition of aI(·, ·) and using
the Schwarz inequality, inequalities (4.1), (4.2), we have

RI = −aI(ũh,v) + aI(uh,vh)

= − < µK−1/2(ũh,S − uh,S) · t̂,vS · t̂ >ESD
h

− < µK−1/2uh,S · t̂, (vS − vh,S) · t̂ >ESD
h

≤ ‖ũh − uh‖V h
‖v‖V h

− < µK−1/2uh,S · t̂, (I − Ih)vS · t̂ >ESD
h

. ‖h−1/2
e [uh]‖ES

h
‖v‖V − < µK−1/2uh,S · t̂, (I − Ih)vS · t̂ >ESD

h
.
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4.5. Estimator for the coupled problem. Finally, by adding RD, RS and RI

together, we have

Res1(v) .

(

inf
p̃h∈Qh,D

‖hT (f −K−1uh −∇p̃h)‖T D
h

+ ‖hT curl (f −K−1uh)‖T D
h

+ ‖h1/2
e [f −K−1uh] · t‖ED

0,h
+ ‖h−1/2

e [uh]‖ES
h

+ ‖hT (f +∇ · T(uh, ph))‖T S
h
+ ‖h1/2

e [T(uh, ph)]n‖ES
0,h

)1/2

‖v‖V

− < (I − Ih)vS · n̂, ph,D >ESD
h

− < T(uh,S , ph,S)n̂, (I − Ih)vS >ESD
h

− < µK−1/2uh,S · t̂, (I − Ih)vS · t̂ >ESD
h

.

Then, using (4.1) and (4.14),

< (I − Ih)vS · n̂, ph,D >ESD
h

+ < T(uh,S , ph,S)n̂, (I − Ih)vS >ESD
h

+ < µK−1/2uh,S · t̂, (I − Ih)vS · t̂ >ESD
h

= < T(uh,S , ph,S)n̂+ ph,Dn̂+ µK−1/2(uh,S · t̂)t̂, (I − Ih)vS >ESD
h

.

∥

∥

∥

∥

h1/2
e

(

T(uh,S , ph,S)n̂+ ph,Dn̂+ µK−1/2(uh,S · t̂)t̂

)
∥

∥

∥

∥

ESD
h

‖v‖V .

Combining the estimation for Res1(v) with the estimation (4.3) for Res2(q), and
setting p̃h = ph. We can now construct an a posteriori error estimator for Problem
(3.1). Let fT and fe be the L2 projection of f on a triangle T and an edge e,
respectively onto the space of kth order polynomials. We define the a posteriori
error estimator for the coupled Darcy-Stokes equation as following:

(1) for T ∈ T S
h

η2T,S =h2
T ‖fT +∇ · T(uh, ph)‖

2
T +

1

2

∑

e∈ES
0,h

∩∂T

he‖[T(uh, ph)]n‖
2
e

+
1

2

∑

e∈ES
0,h

∩∂T

h−1
e ‖[uh,S ]‖

2
e +

∑

e∈∂T∩ΓS

h−1
e ‖[uh,S ]‖

2
e + ‖g −∇ · uh‖

2
T ,

(2) for T ∈ T D
h

η2T,D = h2
T ‖fT −K−1uh −∇ph‖

2
T + h2

T ‖curl (fT −K−1uh)‖
2
T

+
1

2

∑

e∈ED
0,h

∩∂T

he‖[fe −K−1uh] · t‖
2
e + ‖g −∇ · uh‖

2
T ,

(3) for e ∈ ESD
h

η2e,SD = he‖T(uh,S , ph,S)n̂+ ph,Dn̂+ µK−1/2(uh,S · t̂)t̂‖2e.

Then the global a posteriori error estimator is

η2 =
∑

T∈T S
h

η2T,S +
∑

T∈T D
h

η2T,D +
∑

e∈ESD
h

η2e,SD.

In practice, one may distribute the value of ηe,SD by certain formula on the two
triangles sharing edge e, where one triangle is in ΩS and another in ΩD. This shall
give a functioning adaptive refinement strategy. Of course one can also design more
specific refinement strategy that uses ηe,SD directly. Here we do not move further
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into the adaptive refinement strategies, since we are only interested in the global
upper and lower bounds for η.

To conclude this section, in the above we have constructed and proved the reli-
ability of the a posterior estimator η, that is

Theorem 4.1. Let εu, εp and η be defined as in this section, then

|||(εu, εp)|||h . η +R(f),

where R(f , g) is the higher order oscillation term

R(f) = ‖hT (f − fT )‖Th
+ ‖hT curl (f − fT )‖T D

h
+ ‖h1/2

e (f − fe) · t‖ED
0,h

.

5. Efficiency of the a posteriori error estimator

The a posteriori error estimator is consider efficient if it also satisfies

(5.1) η . |||(εu, εp)|||h +R(f).

In this section, we shall prove this.
By examining ηT,S and ηT,D, we immediately realize that all terms are either

entirely interior to the Darcy side or to the Stokes side. In other words, when using
the standard technique of defining bubble functions, the support of each bubble
function is contained either in Ω̄S or Ω̄D. Thus, to prove

(5.2)
∑

T∈T S
h

η2T,S +
∑

T∈T D
h

η2T,D . |||(εu, εp)|||
2
h +R(f)2,

it suffices to use only the Darcy equation or only the Stokes equation. The proof
will be exactly the same as the proof for pure Darcy and pure Stokes equations.
Reader can refer to [11, 26, 45] for details.

Now we only need to prove the upper bound for
∑

e∈ESD
h

η2e,SD. The proof is

very similar to the proof of Lemma 4.5 in [5]. Below are given the details.
For each e ∈ ESD

h , define an edge bubble function φe which has support only
in the two triangles sharing e. Let TS

e and TD
e be the triangles in T S

h and T D
h ,

respectively, that contain edge e, and L : Pk(e) → Pk(T
S
e ) be an extension such

that L(q)|e = q for all q ∈ Pk(e). One may refer to [44] for the definition of φe, L
and the proof of the following properties:

• For any polynomial q with degree at most m, there exist positive constants
dm, Dm and Em, depending only on m, such that

dm‖q‖2e ≤

∫

e

q2φe ds ≤ Dm‖q‖2e,(5.3)

‖L(q)φe‖TS
e
≤ Emh1/2

e ‖q‖e.(5.4)

Denote L = (L)2 which maps Pk(e)
2 to Pk(T

S
e )2.
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Denote χe = T(uh,S , ph,S)n̂+ph,Dn̂+µK−1/2(uh,S · t̂)t̂ on e ∈ ESD
h . Then using

(2.6) and (5.3),

‖χe‖
2
e .

∫

e

χ2
eφe ds

=

∫

e

χeφe

(

(T(uh,S , ph,S)− T(uS , pS))n̂+ (ph,D − pD)n̂

+ µK−1/2((uh,S − uS) · t̂)t̂

)

ds

.

∫

e

χeφe(T(uh,S , ph,S)− T(uS , pS))n̂ ds

+ ‖χe‖e

(

‖ph,D − pD‖e + ‖µK−1/2(uh,S − uS) · t̂‖e

)

.

Then, using the support of φe, the inverse inequality and Inequality (5.4),
∫

e

χeφe(T(uh,S , ph,S)− T(uS , pS))n̂ ds

=

∫

TS
e

∇(L(χe)φe)(T(uh,S , ph,S)− T(uS , pS)) dx

+

∫

TS
e

L(χe)φe∇ · (T(uh,S , ph,S)− T(uS , pS)) dx

.h1/2
e ‖χe‖e

(

h−1
TS
e
‖T(uh,S , ph,S)− T(uS , pS)‖TS

e
+ ‖∇ · T(uh,S , ph,S) + f‖TS

e

)

.h−1/2
e ‖χe‖e

(

‖∇εu‖TS
e
+ ‖εp‖TS

e
+ ηTS

e ,S + hTS
e
‖f − fT ‖TS

e

)

.

Using (4.1), we have

‖pD − ph,D‖e

. h−1/2
e ‖pD − ph,D‖TD

e
+ h1/2

e ‖∇(pD − ph,D)‖TD
e

= h−1/2
e ‖εp‖TD

e
+ h1/2

e ‖f −K−1u−∇ph,D‖TD
e

. h−1/2
e ‖εp‖TD

e
+ h1/2

e ‖f −K−1uh −∇ph,D‖TD
e

+ h1/2
e ‖K−1(u− uh)‖TD

e

. h−1/2
e

(

‖εp‖TD
e

+ ηTD
e ,D + he‖f − fTD

e
‖TD

e
+ he‖εu‖TD

e

)

.

Combining the above, using (5.2), the definition of ||| · |||h and R(f), we have

Theorem 5.1. The a posteriori error estimator η satisfies (5.1).

Remark 5.2. In both Theorem 4.1 and 5.1, the constant contained in “.” may
depend on σ, the stabilization parameter in the definition of the bilinear form
aS,h(·, ·). However, since σ is of O(1) and does not depend on h, its effect on the
stability and efficiency of the a posteriori error estimator η is restricted.

Appendix A. Definition and properties of ũh ∈ V h ∩ V

Given uh ∈ V h, here we define ũh ∈ V satisfying (4.2). Note that ũh is not
necessarily in V h. It is a commonly used technique to introduce such a ũh in a
posteriori error estimations for nonconforming or discontinuous Galerkin methods.
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Readers may refer to [12] and reference therein for similar usage. In [12], ũh is
constructed using the Helmholtz decomposition. Here we can not borrow their
results directly, for two reasons. First, we need an estimation of uh − ũh in the
V h norm while the construction in [12] only provides a broken H1 semi-norm
estimation. Second, special treatment needs to be taken in order to ensure that ũh

satisfies the interface condition (2.3) strongly.
Noticing that in each T ∈ Th, uh is a polynomial with degree less than or equal

to k + 1. Denote Pk+1(Th, S) to be the H1 conforming discrete functional space
which consists of piecewise polynomials of degree up to k+1 on each T ∈ Th,S . We
define ũh as following (as partly illustrated in Figure 3):

(1) ũh,S ∈ Pk+1(Th,S)
2 is defined by setting its values on all (k + 1)st order

Lagrange interpolation points in T ∈ T S
h . At Lagrange points interior to

any T ∈ T S
h , its value is inherited from the value of uh,S . At Lagrange

points on ΓS , including ΓS ∩ ΓSD, the value is set to be zero. At Lagrange
points located on edges in ES

0,h∪E
SD
h but not on ΓS , define the value of ũh,S

to be the value of uh,S from a prescribed triangle among all triangles in
T S
h sharing this Lagrange point. Note that by such a definition, the values

at Lagrange points on ΓSD are set by using only the Stokes side solution
uh,S .

(2) Now ũh,S has been defined. Next, define ũh,D in the H(div) conforming
RTk+1 space on Th,D by copying the values of uh,D on all degrees of freedom
except for those associated with e ∈ ESD

h , namely, the degrees of freedom
defined by

∫

e

(ũh,D · n)sr ds for all e ∈ ESD
h and 0 ≤ r ≤ k + 1.

At these degrees of freedom, to make sure that ũh,S · n̂ = ũh,D · n̂ on ΓSD,
we define

∫

e

(ũh,D · n̂)sr ds =

∫

e

(ũh,S · n̂)sr ds.

Clearly, ũh defined as above is in V , but not V h. We have the following lemma:

Lemma A.1. For all T ∈ T S
h ,

(A.1) ‖uh,S − ũh,S‖
2
T + h2

T ‖∇(uh,S − ũh,S)‖
2
T .

∑

e∈ES
h
(T )

he‖[uh,S ]‖
2
e,

where ES
h (T ) denotes the set of edges in ES

h who have non-empty intersections with
T . We especially point out that, benefited from the definition of ũh,S, E

S
h (T ) does

not contain edges that lie on ESD
h .

Proof. The proof follows from a routine scaling argument and the fact that all
norms on finite dimensional spaces are equivalent. To this end, we observe that

‖uh,S − ũh,S‖
2
T + h2

T ‖∇(uh,S − ũh,S)‖
2
T . h2

T

∑

xj∈Gk(T )

|(uh,S − ũh,S)(xj)|
2,

where Gk(T ) is the set of all (k + 1)st order Lagrange interpolation points in T
and | · | denotes the Euclidean norm of a vector. It follows from the definition of
ũh that uh,S − ũh,S vanishes at all internal Lagrange points in T . We only need
to examine the value of uh,S − ũh,S at Lagrange points on ∂T . There are several
different cases as illustrated in Figure 3.
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Figure 3. Setting the values of ũh,S at different type of Lagrange
points on edges. For each Lagrange point, the shaded triangle
means it is the designated triangle that defines the value of ũh,S

on this Lagrange point. On Lagrange points on ΓS , including the
intersection of ΓS and ΓSD, the value of ũh,S is simply set to be
zero.

ΩS

ΩS

ΩS

Γ

SD

Γ

ΓS

ΩD

ΩS

ΩD

SD

Γ

S

ΩS

ΩS

At Lagrange points on edges in ES
0,h ∪ ESD

h but not on ΓS , there are two possi-

bilities: (1) xj is in the interior of an edge e; (2) xj is a vertex of T . In the first
case, we see that |(uh,S − ũh,S)(xj)| is either 0 or |[uh,S ]e(xj)|, where [·]e denotes
the jump on edge e, on the two triangles sharing edge e. Furthermore, if xj lies in
the interior of an edge on ΓSD, then |(uh,S − ũh,S)(xj)| = 0. In the second case,
we can use the triangle inequality to traverse through all edges e ∈ ES

0,h that has

xj as one end point, which we shall denote as e ∈ ES
h (xj), and to obtain

(A.2) |(uh,S − ũh,S)(xj)| ≤
∑

e∈ES
h
(xj)

|[uh,S ]e(xj)|.

Notice that ES
h (xj) does not contain edges in ESD

h . Finally, consider Lagrange
points on ΓS . Clearly for all xj in the interior of edge e ⊂ ΓS ,

|(uh,S − ũh,S)(xj)| = |uh,S(xj)| = |[uh,S ]e(xj)|.

For xj at the end of edge e ⊂ ΓS , again by traversing through all edges e ∈ ES
0,h,

we have Inequality (A.2).
Combining the above analysis, we have for all T ∈ T S

h
∑

xj∈Gk(T )

|(uh,S − ũh,S)(xj)|
2 .

∑

e∈ES
h
(T )

∑

xj∈Gk(e)

|[uh,S ]e(xj)|
2,

where Gk(e) denotes the corresponding Lagrange points on edge e. Then, using the
routine scaling argument on edges, inequality (A.1) follows immediately. �

Using Lemma A.1, inequalities (4.1) and (A.1), we have

‖µ1/2K−1/4(uh,S − ũh,S) · t̂‖
2
ESD
h

.
∑

T∈T S
h

(

h−1
T ‖uh,S − ũh,S‖

2
T + hT ‖∇(uh,S − ũh,S)‖

2
T

)

.‖[uh,S ]‖
2
ES
h

. ‖h−1/2
e [uh,S ]‖

2
ES
h

.
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Next, consider the Darcy side. Clearly uh,D − ũh,D is only non-zero on triangles
who has at least an edge on ΓSD. Using the definition of ũh, the scaling argument,
the normal direction continuity on ΓSD, inequalities (4.1) and (A.1), we have on
such triangles

‖uh,D − ũh,D‖2T + h2
T ‖∇ · (uh,D − ũh,D)‖2T

.
∑

e⊂T̄∩ΓSD

he‖(uh,D − ũh,D) · n̂‖2e

=
∑

e⊂T̄∩ΓSD

he‖(uh,S − ũh,S) · n̂‖
2
e

.
∑

e∈ES
h
(T )

he‖[uh,S ]‖
2
e.

Here since T lies on the Darcy side, ES
h (T ) means the set of edges in ES

h who has
non-empty intersection with all triangles in T S

h that shares an edge with T .
Combining the above and using the fact that [ũh] = 0 on all e ∈ ES

h , this
completes the proof of (4.2).
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