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Abstract. This paper is concerned with residual type a posteriori error estimators for finite
element methods for the Stokes equations. In particular, the authors established a unified approach
for deriving and analyzing a posteriori error estimators for velocity-pressure based finite element
formulations for the Stokes equations. A general a posteriori error estimator was presented with a
unified mathematical analysis for the general finite element formulation that covers conforming, non-
conforming, and discontinuous Galerkin methods as examples. The key behind the mathematical
analysis is the use of a lifting operator from discontinuous finite element spaces to continuous ones
for which all the terms involving jumps at interior edges disappear.
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1. Introduction. A posteriori error estimator refers to a computable formula
that offers a measure for judging the reliability and efficiency of a particular numerical
scheme employed for approximating the solution of partial differential equations or
alike. With a mathematically justified a posteriori error estimator, one would be
able to generate a mesh that is tailored at reducing computational errors at places of
great need. This process is commonly known as adaptive mesh refinement which has
become a useful and important tool in today’s scientific and engineering computing.
The goal of this paper is to offer a systematic framework for developing and analyzing
a posteriori error estimators for finite element methods for model Stokes equations.

This paper is concerned with residual type a posteriori error estimators. In other
words, the computable formula for judging the efficiency and reliability of numerical
schemes shall be given by functions of residuals. Along this avenue, several fine results
have been developed for finite element methods for the Stokes equations. For con-
forming finite element methods, some a posteriori error estimators have been derived
for mini-elements by Verfurth [21] and Bank-Welfert [4]. Ainsworth-Oden [3] and
Nobile [18] have considered more general conforming finite elements in their study.
For nonconforming finite elements, a posteriori error estimation for the Crouzeix-
Raviart element [8] has been developed by several researchers such as Verfurth [22],
Dari-Durán-Padra [9] and Doerfler-Ainsworth [10]. Carstensen, Gudi, and Jensen
[5] proposed and analyzed an a posteriori error estimator for discontinuous Galerkin
methods by using a stress-velocity-pressure formulation for the Stokes equations. Kay
and Silvester [16] established a posteriori error estimation for the stabilized finite el-
ement formulation. The recovery based a posteriori error estimate for the Stokes
equations is investigated in [12].
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In both [9] and [10], the analysis for their a posteriori error estimators was based
on a Helmholtz decomposition for decomposing the Crouzeix-Raviart element into two
parts: an exactly divergence-free part and the second as its orthogonal complement.
While the Helmholtz decomposition offers an applaudable approach for analyzing
the efficiency and reliability of a posteriori error estimators for the Stokes equations,
the method has difficulty in being extended to finite element approximations arising
from discontinuous Galerkin methods. The main difficulty comes from the fact that
the approximate velocity field from the discontinuous finite element methods is not
divergence-free in the classical sense. Therefore, other analytical techniques have been
developed for discontinuous finite elements; but most of them requires special and un-
necessary properties about the finite element mesh. For example, Houston, Schötzau
and Wihler [14] have developed an a posteriori error analysis for the discontinuous
Qk − Qk−1 element on partitions consisting of parallelograms only.

In this paper, we establish a unified approach for deriving and analyzing a pos-
teriori error estimators of residual type for velocity-pressure based formulations of
the Stokes equations. In particular, we shall develop a general finite element formu-
lation that covers conforming, non-conforming, and discontinuous Galerkin methods
as examples. Then, a general a posteriori error estimator shall be presented with
a unified mathematical analysis. The key behind the analysis is the use of a lifting
operator from discontinuous finite element spaces to continuous ones for which all
the terms involving jumps at interior edges disappear. A similar lifting operator was
employed by Karakashian and Pascal [15] for analyzing a posteriori error estimates
for a discontinuous Galerkin approximation to second order elliptic equations.

The paper is organized as follows. In Section 2, a model Stokes problem and
some notations are introduced. In Section 3, we shall first present a general finite
element formulation for the Stokes equations, and then illustrate how most existing
conforming, nonconforming, and discontinuous Galerkin methods be represented by
the general framework. In Section 4, we establish an analytical tool for analyzing the
general a posteriori error estimator of residual type. Finally in Section 5, we present
some numerical results to confirm the theory developed in previous sections.

2. Preliminaries and notations. Let Ω be an open bounded domain in Rd, d =
2, 3. Denote by ∂Ω the boundary of Ω. The model problem seeks a velocity function
u and a pressure function p satisfying

−∆u + ∇p = f in Ω, (2.1)

∇ · u = 0 in Ω, (2.2)

u = 0 on ∂Ω, (2.3)

where ∆, ∇, and ∇· denote the Laplacian, gradient, and divergence operators, re-
spectively, and f is the external volumetric force acting on the fluid.

For simplicity, the algorithm and its analysis will be presented for the model
Stokes problem (2.1)-(2.3) only in two-dimensional spaces (i.e.; d = 2) with polygonal
domains. An extension to the Stokes problem in three dimensions can be made
formally for general polyhedral domains.

For any given polygon D ⊆ Ω, we use the standard definition of Sobolev spaces
Hs(D) with s ≥ 0 (e.g., see [1, 6] for details). The associated inner product, norm, and
seminorms in Hs(D) are denoted by (·, ·)s,D, ‖·‖s,D, and |·|r,D, 0 ≤ r ≤ s, respectively.
When s = 0, H0(D) coincides with the space of square integrable functions L2(D).
In this case, the subscript s is suppressed from the notation of norm, semi-norm, and
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inner products. Furthermore, the subscript D is also suppressed when D = Ω. Denote
by L2

0(D) the subspace of L2(D) consisting of functions with mean value zero.
The above definition/notation can easily be extended to vector-valued and matrix-

valued functions. The norm, semi-norms, and inner-product for such functions shall
follow the same naming convention. In addition, all these definitions can be trans-
ferred from a polygonal domain D to an edge e, a domain with lower dimension.
Similar notation system will be employed. For example, ‖ · ‖s,e and ‖ · ‖e would
denote the norm in Hs(e) and L2(e) etc.

Throughout the paper, we follow the convention that a bold Latin letter denotes
a vector. Let u = [ui]1≤i≤2, v = [vi]1≤i≤2 be two vectors, and σ = [σij ]1≤i,j≤2,
τ = [τij ]1≤i,j≤2 be two matrices, define

∇v =

(

∂v1

∂x
∂v1

∂y
∂v2

∂x
∂v2

∂y

)

, ∇ · v =
∂v1

∂x
+

∂v2

∂y
,

u ⊗ v =

(

u1v1 u1v2

u2v1 u2v2

)

, σ : τ =

2
∑

i,j=1

σijτij ,

v · σ =

(

σ11v1 + σ12v2

σ21v1 + σ22v2

)

, v · σ · u =

2
∑

i,j=1

σijuivj .

It is not hard to see that

σ : (u ⊗ v) = v · σ · u.

Let Th be a geometrically conformal triangulation of the domain Ω; i.e., the
intersection of any two triangles in Th is either empty, a common vertex, or a common
edge. Denote by hT the diameter of triangle T ∈ Th, and h the maximum of all hT . We
assume that Th is shape regular in the sense that for each T ∈ Th, the ratio between hT

and the diameter of the inscribed circle is bounded from above. The shape regularity
of Th ensures a validity of the inverse inequality for finite element functions. In
addition, shape regularity allows one to apply the routine scaling arguments in finite
element analysis.

Let us introduce two finite dimensional spaces Vs and Pt as follows:

Vs = {v ∈ V : v|T ∈ [Ps(T )]2, for all T ∈ Th},
Pt = {q ∈ L2

0(Ω) : q|T ∈ Pt(T ), for all T ∈ Th},

where V = [L2(Ω)]2 or [H1
0 (Ω)]2, s and t are non-negative integers, and Pk(T ) is the

set of polynomials of degree no more than k on T . A finite element method usually
seeks discrete velocity and pressure approximations in some subspaces Vh ⊆ Vs and
Qh ⊆ Qt. Certain continuity condition may be imposed on Vh and Qh, depending on
the type of finite elements. For a posteriori error estimates only, Vh and Qh are not
required to satisfy the discrete inf-sup condition. However, we do need to make the
following assumption

{v ∈ [H1
0 (Ω)]2 : v|T ∈ [P1(T )]2, for all T ∈ Th} ⊆ Vh, (2.4)

in the analysis of the a posteriori error estimates. For a finite element partition Th,
with triangles only, (2.4) is satisfied as long as k, order of the polynomials, is no less
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than 1. Therefore, the assumption (2.4) is reasonable and examples that satisfy it
will be given later.

Denote by Eh the set of all edges in Th, and denote by E0
h := Eh\∂Ω the collection

of all interior edges. Next, we define the average and jump on edges for scalar-valued
function q, vector-valued function w, and matrix-valued function τ , respectively. For
any interior edge e ∈ E0

h, let T1, T2 be two triangles sharing e and n1 and n2 be the
unit outward normal vectors on e, associated with T1 and T2, respectively. Define the
average {·} and jump [·] on e by

{q} =
1

2
(q|T1

+ q|T2
), [[q]] = q|T1

n1 + q|T2
n2,

{w} =
1

2
(w|T1

+ w|T2
), [[w]] = w|T1

· n1 + w|T2
· n2,

{τ} =
1

2
(τ |T1

+ τ |T2
), [[τ ]] = n1 · τ |T1

+ n2 · τ |T2
.

We also define a matrix-valued jump [·] for w on e by

[w] = w|T1
⊗ n1 + w|T2

⊗ n2.

If e is a boundary edge, the above definitions need to be adjusted accordingly so that
both the average and the jump are equal to the one-sided values on e. That is,

{q} = q|e, {w} = w|e, {τ} = τ |e,
[[q]] = q|en, [[w]] = w|e · n, [[τ ]] = n · τ |e,
[w] = w|e ⊗ n,

where n is the unit outward normal of Ω.
Let q, v and τ be scalar-, vector-, and matrix-valued functions that are regular

enough to make all involving terms well-defined, then the following identities are
standard [2]:

∑

T∈Th

∫

∂T

q v · n ds =
∑

e∈E0

h

∫

e

[[q]] · {v} ds +
∑

e∈Eh

∫

e

{q}[[v]] ds, (2.5)

∑

T∈Th

∫

∂T

n · τ · v ds =
∑

e∈E0

h

∫

e

[[τ ]] · {v} ds +
∑

e∈Eh

∫

e

{τ} : [v] ds. (2.6)

3. Finite element formulation. We first derive a general weak formulation for
the Stokes equations that covers a set of existing numerical methods including discon-
tinuous Galerkin, conforming finite elements, and some nonconforming finite element
schemes. To this end, let v and w be vector-valued functions, and we introduce the
following notation

(v, w)Th
:=

∑

K∈Th

∫

K

v · w dx,

(v, w)Eh
:=
∑

e∈Eh

∫

e

v · w ds.

Testing the momentum equation (2.1) by v ∈ Vh yields

−(∆u, v) + (∇p, v) = (f , v). (3.1)
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Next, using integration by parts, Equation (2.6) and the fact that [[∇u]] = 0 on all
e ∈ E0

h, we have

−(∆u, v) = (∇u, ∇v)Th
−
∑

K∈Th

∫

∂K

n · ∇u · v ds

= (∇u, ∇v)Th
− ({∇u}, [v])Eh

.

Analogously, since [[p]] = 0 on all e ∈ E0
h, then by using Equation (2.5) we arrive at

(∇p, v) = −(∇ · v, p)Th
+
∑

K∈Th

∫

∂K

v · n p ds

= −(∇ · v, p)Th
+ ({p}, [[v]])Eh

.

Thus, (3.1) can be rewritten as

(∇u, ∇v)Th
− ({∇u}, [v])Eh

− (∇ · v, p)Th
+ ({p}, [[v]])Eh

= (f , v). (3.2)

The mass conservation equation (2.2) can be tested by using any q ∈ Qh, yielding

(∇ · u, q)Th
= 0. (3.3)

In order to derive a general weak formulation, we introduce the following bilinear
forms:

a(u,v) := (∇u,∇v)Th

−γ

(

({∇u}, [v])Eh
+ δ({∇v}, [u])Eh

− α(h−1
e [u], [v])Eh

)

, (3.4)

b(v, p) := −(∇ · v, p)Th
+ γ([[v]], {p})Eh

, (3.5)

where γ = 0 or 1, δ = 1, −1 or 0, and α ≥ 0 are parameters with various values. The
general weak formulation for the Stokes equations is then given as follows:

Algorithm G: Find (uh; ph) ∈ Vh × Qh such that

a(uh,v) + b(v, ph) = (f ,v), (3.6)

b(uh, q) = 0 (3.7)

for all (v; q) ∈ Vh × Qh.

When γ = 1, it is not hard to see that system (3.6)-(3.7) is consistent with the
system (3.2)-(3.3), as the exact solution of the Stokes problem satisfies [[u]] = 0 and
[u] = 0 on all e ∈ Eh. When γ = 0, these two systems are in general not consistent.
It should be pointed out that by choosing different values of γ and the spaces Vh

and Qh, Algorithm G represents different types of finite element formulations. For
illustrative purpose, we shall list three most important examples; all of which satisfy
the assumption (2.4) on Vh.

Example 1: Discontinuous Galerkin. Set γ = 1 and

Vh ⊆ {v ∈ [L2(Ω)]2 : v|T ∈ [Ps(T )]2, for all T ∈ Th},
Qh ⊆ {q ∈ L2

0(Ω) : q|T ∈ Pt(T ), for all T ∈ Th}.
5



When δ = 1, the corresponding formulation is symmetric. One example of
such a discontinuous Galerkin formulation was discussed in [25], where Vh,
Qh are chosen to be H(div) conforming elements and the well-known inf-sup
condition was inherited to be valid.

Example 2: Conforming finite element method. Set γ = 1 and

Vh ⊆ {v ∈ [H1
0 (Ω)]2 : v|T ∈ [Ps(T )]2, for all T ∈ Th},

Qh ⊆ {q ∈ L2
0(Ω) : q|T ∈ Pt(T ), for all T ∈ Th}.

By the continuity requirement on Vh, we easily see that the two bilinear forms
are simplified to

a(v,w) = (∇v,∇w),

b(v, q) = −(∇ · v, q).

The conforming finite element scheme is one of the most well-studied formula-
tions for the Stokes problems. Later in the section for numerical experiments,
we shall consider one such element, namely, the Taylor-Hood element [13].

Example 3: Nonconforming finite element method. Set γ = 0 and chose a
finite element space Vh such that Vh * [H1

0 (Ω)]2. This gives some noncon-
forming finite element methods, depending on the selection of Vh and Qh. In
this paper, we only consider nonconforming finite elements which satisfies the
following condition:

Assumption (H) ({∇u − pI}, [v])Eh
= 0 for all u, v ∈ Vh, p ∈ Qh,

where I is the 2 × 2 identity matrix. It is not hard to see that the Crouzeix-
Raviart type nonconforming elements [8, 11, 7] satisfy this assumption, be-
cause by its definition, {∇u − pI} is a polynomial one degree lower than [v]
and [v] vanishes at all Gaussian points on each edge e ∈ Eh.

The goal of this manuscript is to provide a tool that can be employed to analyze
a posteriori error estimators for the unified formulation (3.6)-(3.7). To this end, we
first derive an orthogonality property of the error between the exact solution and its
finite element approximation:

e = u − uh, ǫ = p − ph.

By subtracting (3.6) from (3.2) and using ({ph}, [[v]])Eh
= ({phI}, [v])Eh

, we have

(∇e,∇v)Th
− ({∇e}, [v])Eh

+ γ

(

δ({∇v}, [uh])Eh
− α(h−1

e [uh], [v])Eh

)

− (∇ · v, ǫ)Th
+ ({ǫ}, [[v]])Eh

− (1 − γ)({∇uh − phI}, [v])Eh
= 0.

Note that for all of the above-mentioned discontinuous Galerkin, conforming and
nonconforming cases, we must have

(1 − γ)({∇uh − phI}, [v])Eh
= 0. (3.8)

In fact, (3.8) follows from γ = 1 for the discontinuous Galerkin and the conforming
cases, and from Assumption (H) for the nonconforming case. Combining this and the
fact that [u] = 0 on all edges, the above equation can be rewritten as
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(∇e,∇v)Th
− ({∇e}, [v])Eh

− γ

(

δ({∇v}, [e])Eh
− α(h−1

e [e], [v])Eh

)

− (∇ · v, ǫ)Th
+ ({ǫ}, [[v]])Eh

= 0.

(3.9)

Moreover, if v ∈ Vh ∩ [H1
0 (Ω)]2, then (3.9) becomes

(∇e,∇v)Th
+ γδ({∇v}, [uh])Eh

− (∇ · v, ǫ)Th
= 0. (3.10)

Next, we introduce a norm ||| · ||| for the space [H1
0 (Ω)]2 + Vh as follows

|||v|||2 =
∑

T∈Th

|v|21,T +
∑

e∈Eh

h−1
e ‖[v]‖2

e. (3.11)

For a well-crafted numerical scheme, we usually expect to have an a priori error
estimate like the following

|||e||| + ‖ǫ‖ ≤ Chk+1 (|u|k+1 + |p|k) , (3.12)

where C is a positive constant and k is determined by the order of the corresponding
finite elements and the regularity of the exact solution (u; p). For some elements,
the a priori error estimate (3.12) may have variations on the right-hand side, but this
does not affect our analysis to be presented. A priori error estimation like (3.12) is
well known for conforming finite element methods, for which |||v||| = |v|1. Such an
estimate is also known for some discontinuous Galerkin formulations; e.g., see [24, 25]
for an approach with H(div)-elements. For nonconforming finite elements, such as
the Crouzeix-Raviart type elements, similar error estimates hold true due to the fact
that the jump term, [uh], vanishes at all Gaussian points on the edge e. In fact, for
any interior edge e shared by two elements T1 and T2, let ē be the average value of
e on edge e. Since [e] = −[uh] vanishes at all Gaussian points on the edge e, then ē

has the same value when the trace of e was taken from either T1 or T2. Hence,

h−1
e ‖[e]‖2

e = h−1
e ‖[e − ē]‖2

e

≤ 2h−1
e

∑

T1,T2

‖e − ē‖2
e∩∂Ti

≤ C
∑

T1,T2

|e|21,Ti
.

Consequently, we have

∑

e∈Eh

h−1
e ‖[e]‖2

e ≤ C
∑

T∈Th

|e|21,T .

Therefore, |||e||| is in the same order as
∑

T∈Th
|e|21,T for the Crouzeix-Raviart type

elements. The analysis here shows that the norm ||| · ||| as defined in (3.11) is a
reasonable one to use in the a priori and later the a posteriori error estimates for the
unified formulation (3.6)-(3.7).
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4. A posteriori error estimation. The goal of this section is to derive an a
posteriori error estimation for the Algorithm G by using a unified framework. For
simplicity of notation, we shall use “.” to denote “less than or equal to up to a
constant independent of the mesh size, variables, or other parameters appearing in
the inequality”. To this end, define

J1(∇uh − phI) =

{

[[∇uh − phI]] on e ∈ E0
h,

0 on boundary edges,

and

J2(uh) =

{

[uh] on e ∈ E0
h,

2uh ⊗ n on boundary edges.

Our residual-based global error estimator is given by

η2 =
∑

T∈Th

η2
T , (4.1)

where

η2
T =h2

T ‖fh + ∆uh −∇ph‖2
T + ‖∇ · uh‖2

T

+
1

2

∑

e∈Eh

∫

e

(

heJ1(∇uh − phI)2 + h−1
e J2(uh)2

)

ds,

with he being the length of edge e, and fh the L2 projection of the load function f

onto Vh. It is also convenient to introduce an oscillation quantity for the load function
f on Th as follows

osc(f) =

(

∑

T∈Th

h2
T ‖f − fh‖2

T

)1/2

.

Our ultimate goal is to establish the following result.
Theorem 4.1. Let (u; p) be the solution of (2.1)-(2.2), and (uh; ph) be its finite

element approximation arising from (3.6)-(3.7). Then, one has

(

∑

T∈Th

‖∇(u − uh)‖2
T

)1/2

+ ‖p − ph‖ . η + osc(f) (4.2)

and

η .

(

∑

T∈Th

‖∇(u − uh)‖2
T

)1/2

+ ‖p − ph‖ + osc(f). (4.3)

For convenience, the relation (4.2) is referred to as a reliability estimate and (4.3) as
an efficiency estimate.

4.1. A lifting operator and some technical estimates. Define H1(Th) =
∏

T∈Th
H1(T ) and Sk =

∏

T∈Th
Pk(T ). For any triangle T ∈ Th, denote by T (T )

the set of all triangles in Th having a nonempty intersect with T , including T itself.
Denote by E(T ) the set of all edges in Eh having a nonempty intersection with T ,
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including all three edges of T . Similarly, for any point x in Ω, denote by E(x) the set
of all edges that pass through x. Note that E(x) is nonempty only when x lies on Eh.
Let e be an edge of triangle T . For any v ∈ Sk, let us define a lifting operator

Lk : v → Lk(v) ∈ Sk ∩ H1
0 (Ω) (4.4)

that lifts a discontinuous piecewise polynomial to a continuous piecewise polynomial
with vanishing boundary trace as follows. Let Gk(T ) be the set of all Lagrangian
nodal points for Pk(T ). At all internal Lagrangian nodal points xj ∈ Gk(T ), we set
Lk(v)(xj) = v(xj). At boundary Lagrangian points xj ∈ Gk(T )∩∂T , we let Lk(v)(xj)
be either a trace of v from any side or a prescribed weighted average of all possible
traces. At global Lagrangian points xj ∈ ∂T ∩ ∂Ω, we set Lk(v)(xj) = 0.

Note that for any function g ∈ H1(T ) the following estimate holds:

‖g‖2
e . h−1

T ‖g‖2
T + hT ‖∇g‖2

T . (4.5)

Lemma 4.2. For any v ∈ Sk, k ≥ 1, the lifting operator Lk as defined in (4.4)
satisfies the following estimate:

‖v − Lk(v)‖2
T + h2

T ‖∇(v − Lk(v))‖2
T .

∑

e∈E(T )

he‖[[v]]‖2
e ∀T ∈ Th. (4.6)

Proof. The proof follows from a routine scaling argument and the fact that all
norms on finite dimensional spaces are equivalent. To this end, we observe that

‖v − Lk(v)‖2
T + h2

T ‖∇(v − Lk(v))‖2
T . h2

T

∑

xj∈Gk(T )

|(v − Lk(v))(xj)|2,

where Gk(T ) is the set of all Lagrangian nodal points for Pk(T ). For simplicity, let
Lk(v) be defined by taking a random one-sided trace on the boundary Lagrangian
points. It follows from the definition of Lk that v − Lk(v) vanishes at all internal
Lagrangian points in T . At Lagrangian points on ∂T , there are two possibilities: (1)
xj is in the interior of an edge e; (2) xj is a vertex of T . In the first case, we see that
|(v − Lk(v))(xj)| is either 0 or |[[v]]e(xj)|, where [[v]]e denotes the jump on e. In the
second case, we can use the triangle inequality to traverse through all edges e ∈ E(xj)
and to obtain

|(v − Lk(v))(xj)| ≤
∑

e∈E(xj)

|[[v]]e(xj)|.

The above analysis, together with the shape regularity of Th, implies that

∑

xj∈Gk(T )

|(v − Lk(v))(xj)|2 .
∑

e∈E(T )

∑

xj∈Gk(e)

|[[v]]e(xj)|2,

where Gk(e) was used to denote the corresponding Lagrangian points on edge e. Then,
using the routine scaling argument on edges, inequality (4.6) follows immediately.

The following is another result that turns out to be very useful in the forthcoming
analysis.
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Lemma 4.3. For any v ∈ H1(Th), there exists a vI ∈ Sk ∩ H1
0 (Ω), k ≥ 1,

satisfying

‖v − vI‖2
T + h2

T ‖∇(v − vI)‖2
T .

∑

T ′∈T (T )

h2
T ′‖∇v‖2

T ′ +
∑

e∈E(T )

he‖[[v]]‖2
e ∀T ∈ Th.

(4.7)

Proof. First of all, there exists a piecewise constant v0 ∈ Sk (e.g., the cell average
of v) such that

‖v − v0‖2
T + h2

T ‖∇(v − v0)‖2
T . h2

T ‖∇v‖2
T ∀T ∈ Th. (4.8)

Furthermore, by the approximation property, inequality (4.5) and the shape regularity
of Th, we have for each e ∈ E0

h

he‖[[v0]]‖2
e = he

∫

e

∣

∣

∣

∣

v0|T1
n1 + v0|T2

n2

∣

∣

∣

∣

2

ds

≤ he

∫

e

∣

∣

∣

∣

(v0 − v)|T1
n1

∣

∣

∣

∣

2

ds + he

∫

e

∣

∣

∣

∣

(v0 − v)|T2
n2

∣

∣

∣

∣

2

ds + he‖[[v]]‖2
e

. h2
T1
‖∇v‖2

T1
+ h2

T2
‖∇v‖2

T2
+ he‖[[v]]‖2

e,

(4.9)

where T1 and T2 are the two triangles sharing e as a common edge. On boundary
edges, similar result can obviously be obtained without any difficulty.

Since v0 ∈ Sk with k = 1, according to Lemma 4.2, one may lift v0 to a continuous
piecewise linear function L1(v0) ∈ S1 ∩ H1

0 (Ω) which satisfies (4.6). By taking vI =
L1(v0), we obtain from the usual triangle inequality, (4.8), and (4.9) that

‖v − vI‖2
T + h2

T ‖∇(v − vI)‖2
T ≤‖v − v0‖2

T + h2
T ‖∇(v − v0)‖2

T

+ ‖v0 − L1(v0)‖2
T + h2

T ‖∇(v0 − L1(v0))‖2
T

.h2
T ‖∇v‖2

T +
∑

e∈E(T )

he‖[[v0]]‖2
e

.
∑

T ′∈T (T )

h2
T ′‖∇v‖2

T ′ +
∑

e∈E(T )

he‖[[v]]‖2
e,

which completes the proof.

4.2. Reliability estimate. We first establish an estimate for the pressure error
in terms of the a priori error estimator and the velocity error. The result can be
stated as follows.

Lemma 4.4. Let (u; p) be the solution of (2.1)-(2.2) and (uh; ph) be its finite
element approximation arising from (3.6)-(3.7). Then, we have

‖p − ph‖ . η + osc(f) +

(

∑

T∈Th

‖∇(u − uh)‖2
T

)1/2

. (4.10)

Proof. Let v ∈ [H1
0 (Ω)]2 and vI ∈ Vh∩[H1

0 (Ω)]2 be an interpolation of v such that
both components satisfy (4.7). Observe that such an interpolation vI is possible if Vh

satisfies the assumption (2.4). Note that [[v]] = 0 on every edge since v ∈ [H1
0 (Ω)]2.

10



Let e = u− uh and ǫ = p − ph be the error for velocity and pressure approxima-
tions, respectively. Using integration by parts, (2.6), (3.10), (4.5), (4.7), and the fact
that both v and vI are continuous across each interior, we arrive at

(∇ · v, ǫ) = (∇ · (v − vI), ǫ) + (∇ · vI , ǫ)

= (∇ · (v − vI), ǫ) + (∇e, ∇vI)Th
+ γδ({∇vI}, [e])Eh

= (∇(v − vI), ǫI −∇e)Th
+ (∇e, ∇v)Th

+ γδ({∇vI}, [e])Eh

= −(f + ∆uh −∇ph, v − vI)Th
+ ({v − vI}, [[∇uh − phI]])E0

h

−γδ({∇vI}, [uh])Eh
+ (∇e, ∇v)Th

. ‖v‖1

(

(
∑

T∈Th

h2
T ‖f + ∆uh −∇ph‖2

T )1/2 + (
∑

e∈E0

h

he‖[[∇uh − phI]]‖2
e)

1/2

+(
∑

e∈Eh

h−1
e ‖[uh]‖2

e)
1/2 + (

∑

T∈Th

‖∇e‖2
T )1/2

)

,

which, together with the following inf-sup condition

‖p − ph‖ . sup
v∈[H1

0
(Ω)]2

(∇ · v, p − ph)

‖v‖1
(4.11)

yields the required estimate (4.10).

The next result is concerned with an estimate for the velocity approximation,
which can be stated as follow.

Theorem 4.5. Let (u; p) and (uh; ph) be the solutions of (2.1)-(2.2) and (3.6)-
(3.7). Then one has the following global reliability estimate:

(

∑

T∈Th

‖∇(u − uh)‖2
T

)1/2

. η + osc(f). (4.12)

Substituting (4.12) into (4.10) yields the following estimate for the pressure approxi-
mation:

‖p − ph‖ . η + osc(f). (4.13)

Thus, it follows from the definition of ||| · ||| that

|||e||| + ‖ǫ‖ . η + osc(f).

Proof. Let eI ∈ Vh ∩ [H1
0 (Ω)]2 be an interpolation of e satisfying (4.7). Again,

such a choice of eI is possible because Vh was assumed to satisfy (2.4). Observe that
[[e]] = −[[uh]]. Thus, it follows from (4.7) and the mesh regularity that

‖e−eI‖2
T +h2

T ‖∇(e−eI)‖2
T . h2

T





∑

T ′∈T (T )

‖∇e‖2
T ′ +

∑

e∈E(T )

h−1
e ‖J2(uh)‖2

e



 . (4.14)
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Using (3.10), integration by parts, (2.6), and the fact that eI , u, ∇u, p are
continuous across all interior edges, we obtain

(∇e, ∇e)Th
= (∇e, ∇(e − eI))Th

+ (∇e, ∇eI)Th

= (∇e, ∇(e − eI))Th
+ (∇ · eI , ǫ) − γδ({∇eI}, [e])Eh

= (∇(e − eI), ∇e − ǫI)Th
+ (∇ · e, ǫ)Th

− γδ({∇eI}, [e])Eh

= (f + ∆uh −∇ph, e − eI)Th
+ (∇ · e, ǫ)Th

− γδ({∇eI}, [e])Eh

−({e − eI}, [[∇uh − phI]])E0

h
− ({∇e − ǫI}, [uh])Eh

= (f + ∆uh −∇ph, e − eI)Th
+ (∇ · e, ǫ)Th

− γδ({∇eI}, [e])Eh

−({e − eI}, [[∇uh − phI]])E0

h
− ({∇e − ǫI}, [uh − χ])Eh

= I1 + I2 + I3 + I4 + I5; (4.15)

where χ = Lk(uh) ∈ Vh ∩ [H1
0 (Ω)]2 is a continuous interpolation of uh such that (4.6)

is satisfied, and Ij represents the corresponding term from the previous equation. The
first term I1 can be estimated by using the inequality (4.14) as follows

|I1| ≤
(

∑

T∈Th

h2
T ‖f + ∆uh −∇ph‖2

T

)
1

2

(

∑

T∈Th

h−2
T ‖e − eI‖2

T

)
1

2

.

(

∑

T∈Th

h2
T ‖f + ∆uh −∇ph‖2

T

)
1

2

(

∑

T∈Th

‖∇e‖2
T +

∑

e∈Eh

h−1
e ‖J2(uh)‖2

e

)
1

2

. (η + osc(f))



η +

(

∑

T∈Th

‖∇e‖2
T

)1/2


 . (4.16)

The term I2 can be handled by using (4.10) and the fact that ∇ · e = −∇ · uh as
follows

|I2| ≤
(

∑

T∈Th

‖∇ · uh‖2
T

)1/2

‖p − ph‖

. η



η + osc(f) +

(

∑

T∈Th

‖∇e‖2
T

)1/2


 . (4.17)

Using [e] = −[uh] and the estimate (4.14), the term I3 can be bounded as follows

|I3| ≤ |γδ|
(

∑

e∈Eh

he‖∇eI‖2
e

)
1

2

(

∑

e∈Eh

h−1
e ‖[uh]‖2

e

)
1

2

.

(

∑

T∈Th

‖∇eI‖2
T

)
1

2

(

∑

e∈Eh

h−1
e ‖[uh]‖2

e

)
1

2

.

(

∑

T∈Th

‖∇e‖2
T +

∑

e∈Eh

h−1
e ‖[uh]‖2

e

)
1

2

(

∑

e∈Eh

h−1
e ‖[uh]‖2

e

)
1

2

.





(

∑

T∈Th

‖∇e‖2
T

)
1

2

+ η



 η. (4.18)
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The same argument can be applied to provide an estimate for the term I4:

|I4| ≤





(

∑

T∈Th

‖∇e‖2
T

)
1

2

+ η



 η. (4.19)

As to I5, we first use (3.9) to obtain

−I5 =({∇e − ǫI}, [uh − χ])Eh

=({∇e}, [uh − χ])Eh
− ({ǫ}, [[uh − χ]])Eh

=(∇e, ∇(uh − χ))Th
− γδ({∇(uh − χ)}, [e])Eh

+ γα(h−1
e [uh − χ], [e])Eh

− (∇ · (uh − χ), ǫ)Th

=(∇e, ∇(uh − χ))Th
− γδ({∇(uh − χ)}, [e])Eh

− γα(h−1
e [uh], [uh])Eh

− (∇ · (uh − χ), ǫ)Th

=J1 + J2 + J3 + J4.

Recall that χ = Lk(uh) is a lift of uh so that the estimate (4.6) holds true. It follows
from (4.6) that

|J1| ≤ η

(

∑

T∈Th

‖∇e‖2
T

)
1

2

Next, we use [e] = −[uh] to obtain

|J2| ≤ |γδ|
∑

e∈Eh

‖∇(uh − Lk(uh))‖e‖[uh]‖e,

which, with the help of (4.5) and (4.6), can be bounded by

|J2| . η2.

It is obvious that |J3| . η2, and it follows from (4.10) and (4.6) that

|J4| . η
(

η + osc(f) + (∇e, ∇e)
1

2

Th

)

.

Collecting all the estimates for Js yields

|I5| . η
(

η + osc(f) + (∇e, ∇e)
1

2

Th

)

. (4.20)

Now we substitute all the estimates for Is into (4.15) to obtain

(∇e, ∇e)Th
. (η + osc(f))



η + osc(f) +

(

∑

T∈Th

‖∇e‖2
T

)1/2




≤ 3

2
(η + osc(f))2 +

1

2
(∇e, ∇e)Th

.

This completes the proof of (4.12).
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4.3. Efficiency. We first define two bubble functions, which are widely used in
a posteriori error estimations [23].

For each triangle T ∈ Th, denote by φT the following bubble function

φT =

{

27λ1λ2λ3 in T,

0 in Ω\T,

where λi, i = 1, 2, 3 are barycentric coordinates on T . It is clear that φT ∈ H1
0 (Ω)

and satisfies the following properties [23]:

• For any polynomial q with degree at most m, there exist positive constants
cm and Cm, depending only on m, such that

cm‖q‖2
T ≤

∫

T

q2φT dx ≤ ‖q‖2
T , (4.21)

‖∇(qφT )‖T ≤ Cmh−1
T ‖q‖T . (4.22)

For each e ∈ E0
h, we can analogously define an edge bubble function φe. Let T1

and T2 be two triangles sharing the edge e. To this end, denote by ωe = T1 ∪ T2

the union of the elements T1 and T2. Assume that in Ti, i = 1, 2, the barycentric
coordinates associated with the two ends of e are λTi

1 and λTi

2 , respectively. The edge
bubble function can be defined as follows

φe =











4λT1

1 λT1

2 in T1,

4λT2

1 λT2

2 in T2,

0 in Ω\ωe.

Then φe ∈ H1
0 (Ω) and satisfies the following properties [23]:

• For any polynomial q with degree at most m, there exist positive constants
dm, Dm and Em, depending only on m, such that

dm‖q‖2
e ≤

∫

e

q2φe ds ≤ ‖q‖2
e, (4.23)

‖∇(qφe)‖ωe
≤ Dmh−1/2

e ‖q‖e, (4.24)

‖qφe‖ωe
≤ Emh1/2

e ‖q‖e. (4.25)

Then we have the following efficiency bound.

Theorem 4.6. Let (u; p) and (uh; ph) be the solutions of (2.1)-(2.2) and (3.6)-
(3.7), respectively. Then for all T ∈ Th and e ∈ E0

h, we have

hT ‖fh + ∆uh −∇ph‖T . ‖∇e‖T + ‖ǫ‖T + hT ‖f − fh‖T , (4.26)

h1/2
e ‖J1(∇uh − phI)‖e . he‖f − fh‖ωe

+

(

∑

T∈ωe

‖∇e‖2
T

)1/2

+ ‖ǫ‖ωe
, (4.27)

‖∇ · uh‖T ≤ ‖∇e‖T . (4.28)

By summing the above estimates over all element T ∈ Th and edges e ∈ Eh, we obtain
the following efficiency estimate:

η . |||e||| + ‖ǫ‖ + osc(f).
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Proof. Let wT = (fh + ∆uh − ∇ph)φT . Since f = −∆u + ∇p and wT vanishes
on ∂T , we clearly have

(f − fh, wT )T + (fh + ∆uh −∇ph, wT )T = (∇e, ∇wT )T − (∇ · wT , ǫ )T .

Then, by inequalities (4.21)-(4.22),

‖fh + ∆uh −∇ph‖2
T . (fh + ∆uh −∇ph, wT )T

= (∇e, ∇wT )T − (∇ · wT , ǫ )T − (f − fh, wT )T

.

(

‖∇e‖T + ‖ǫ‖T

)

‖∇wT ‖T + ‖f − fh‖T ‖wT ‖T

.

(

h−1
T ‖∇e‖T + h−1

T ‖ǫ‖T + ‖f − fh‖T

)

‖fh + ∆uh −∇ph‖T .

This completes the proof of (4.26).

Similarly, for any e ∈ E0
h, let we = ([[∇uh − phI]])φe. Using integration by parts

and the fact that we = 0 on ∂ωe, we have

(∇uh,∇we)ωe
= −

∑

T∈ωe

(∆uh,we)T +

∫

e

[[∇uh]] · weds, (4.29)

and

(∇ · we, ph)ωe
= −

∑

T∈ωe

(∇ph,we)T +

∫

e

[[phI]] · weds. (4.30)

Testing (2.1) by using we over ωe and then using integration by parts give

(f , we)ωe
= (∇u,∇we)ωe

− (∇ · we, p)ωe
. (4.31)

Using the properties of φe and equations (4.29)-(4.31), we have

‖[[∇uh − phI]]‖2
e .

∫

e

[[uh − phI]] · weds

=
∑

T∈ωe

(

(f − fh, we)T + (fh + ∆uh −∇ph, we)T − (∇e,∇we)T + (ǫ, ∇ · we)T

)

.‖[[∇uh − phI]]‖e

(

h1/2
e ‖f − fh‖ωe

+ h1/2
e ‖fh + ∆uh −∇ph‖ωe

+ h−1/2
e (

∑

T∈ωe

‖∇e‖2
T )1/2 + h−1/2

e ‖ǫ‖ωe

)

Combining the above with (4.26) gives (4.27).

Finally, the estimate (4.28) holds true as ∇ · u = 0 and clearly

‖∇ · uh‖T = ‖∇ · uh −∇ · u‖T = ‖∇ · e‖T ≤ ‖∇e‖T .

This completes the proof of the theorem.
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5. Numerical results. Some numerical results for such a posteriori error esti-
mators have been reported in [10] for the Crouzeix-Raviart element, and in [24] for
an H(div) based discontinuous Galerkin formulation. In this section, we would like
to present some computational results for the conforming finite element method in
order to verify the theory established in previous Sections. To this end, we consider
the Taylor-Hood element [13] when applied to the Stokes problem. We use the Bi-
Conjugate Gradient (BICG) iterative solver for solving the resulting linear algebraic
equations, with a relative residual = 10−8 being set as a stopping criteria.

5.1. Test problems. Three problems are considered in the numerical test; all
are defined on the domain of unit square Ω = (0, 1)× (0, 1). Two of them have exact
solutions given by:

Test Problem 1: A first Stokes problem with exact solution

u =

(

−2x2y(x − 1)2(2y − 1)(y − 1)
xy2(2x − 1)(x − 1)(y − 1)2

)

,

p = sin
π(y − x)

2
,

Test Problem 2: A second Stokes problem with exact solution in the polar coor-
dinate system

u =

(

3
2

√
r
(

cos θ
2 − cos 3θ

2

)

3
2

√
r
(

3 sin θ
2 − sin 3θ

2

)

)

,

p = −6r−1/2 cos
θ

2
.

Observe that the solution has a corner singularity of order 0.5 at the origin
(0, 0).

Test Problem 3: 2D lid driven cavity. This is a Stokes problem which describes
the flow of fluid in a rectangular container driven by a uniform motion of the
top lid [20]. Note that the boundary condition features a discontinuity at two
top corners. The exact solution (u; p), if it exists, should not be sufficiently
smooth so that (u; p) ∈ [H1]2 × L2. However, the discrete problem is still
well-posed and should provide an approximation to the actual solution.

It must be pointed out that the finite element formulation was only presented
for the homogeneous Dirichlet boundary condition in the previous Sections. But
the formulation can be easily extended to problems with non-homogeneous Dirichlet
boundary conditions such as u = g on ∂Ω. In this case, the term J2(uh) in the a
posteriori error estimator needs to be modified as follows

J2(uh) =

{

[uh] on interior edge e ∈ E0
h,

(uh − g) ⊗ n on boundary edges.

Also, in the computational implementation, we had replaced h2
T ‖fh + ∆uh −∇ph‖2

T

by |T | ‖fh + ∆uh −∇ph‖2
T , where |T | stands for the area of triangle T .

5.2. Results with uniform meshes. In this experiment, we solve test prob-
lems 1 and 2 on uniform meshes and compute the asymptotic order of the error
estimator η. The coarsest mesh is generated by dividing Ω into 4 × 4 sub-rectangles,
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and then dividing each sub-rectangle into four triangles by connecting its two diago-
nal lines. We then use the routine uniform refinement procedure, which divides each
triangle into four sub-triangles by connecting the center of its three edges, to generate
several levels of fine meshes.

For test problem 1, we know theoretically that η = O(h2). For test problem 2,
the order of η is expected to be O(h0.5). Numerical results for these two test problems
are reported in tables 5.1 and 5.2. For test problem 2, the error of pressure is not
calculated since the pressure goes to infinity at the point (0, 0).

Table 5.1

Error profiles for test problem 1 on uniform triangular meshes.

h dofs η ‖∇(u − uh)‖ ‖u − uh‖ ‖p − ph‖
2−2 331 1.70e-02 4.15e-03 1.10e-04 3.08e-03
2−3 1235 4.94e-03 1.07e-03 1.38e-05 7.88e-04
2−4 4771 1.30e-03 2.71e-04 1.70e-06 1.96e-04
2−5 18755 3.33e-04 6.79e-05 2.13e-07 4.89e-05

Asym. Order
O(hk), k =

-1.9423 1.8956 1.9796 3.0064 1.9931

Table 5.2

Error profiles for test problem 2 on uniform triangular meshes.

h ndofs η ‖∇(u − uh)‖ ‖u − uh‖
2−2 331 2.39e+00 4.76e-01 1.54e-02
2−3 1235 1.63e+00 3.30e-01 5.83e-03
2−4 4771 1.12e+00 2.33e-01 2.17e-03
2−5 18755 7.97e-01 1.64e-01 8.09e-04

Asym. Order
O(hk), k =

-1.9423 0.5295 0.5094 1.4183

5.3. Results with adaptive refinement. We perform adaptive refinements
for test problems 2 and 3, which have corner singularities. Two different refinement
strategies are employed in this study. The first one is based on a comparison of each
error ηT with the maximum value of all the error estimators. The strategy can be
described as follows:

Local Refinement by “Maximum Strategy”:

1. Given a current triangular mesh, error indicators ηT on each triangle, and
a threshold θ ∈ (0, 1) (e.g., θ = 0.5). One computes the maximum error
ηmax = max ηT .

2. For each triangle T , if ηT ≥ θ ηmax, mark this triangle for refinement.
3. The actual refinement is done by the newest node bisection method [17, 19].

It has been proved that this method will not cause mesh degeneration. The
only requirement is that the “newest nodes” for the coarsest mesh must be
assigned carefully such that every triangle is compatibly divisible. This can
be easily checked.

The second refinement strategy is based on a comparison of ηT with those for its
neighbors. To explain the main idea, let ρ > 0 be a prescribed distance parameter

17



Table 5.3

Error profiles for test problem 2 using adaptive mesh refinements.

Strategy Refinement times dofs η ‖∇(u − uh)‖ ‖u − uh‖

Maximum
0 331 2.3955 0.4763 0.0154
8 432 0.9453 0.1968 0.0029
16 764 0.4021 0.0844 0.0012

Local
0 331 2.3955 0.4763 0.0154
8 545 0.7596 0.1519 0.0012
16 1117 0.2505 0.0618 0.0006

and set

Tρ,T = {T̃ : 0 < ‖T − T̃‖ ≤ ρ},

where ‖T − T̃‖ stands for the distance of the centers of T and T̃ . With a given
threshold θ > 1, we mark a triangle T for refinement if

ηT ≥ θ ηN(T ),

where ηN(T ) is the average of the local error indicator on all the neighboring tri-

angles T̃ ∈ Tρ,T . The following is such a refinement strategy that was numerically
investigated in this study.

Local Refinement by “Local Strategy”:

1. Given a current triangular mesh, error estimators ηT on each triangle, and a
threshold θ > 1.0 (e.g., θ = 1.5). One computes an error indicator ηN(T ) as
the average of the local error indicator on neighboring triangles that share a
vertex or an edge with T , not including T itself.

2. For each triangle T , if ηT ≥ θ ηN(T ), mark this triangle for refinement.
3. The actual refinement is again done by the newest node bisection method

[17, 19].

The residual estimator η and errors between the true solution and its finite element
approximations for test problem 2 are reported in Table 5.3. By comparing tables
5.2 and 5.3, one clearly sees the power of adaptive refinements in numerical methods
for PDEs. For example, the error in L2 and H1 norms are given by 6.0 × 10−4 and
6.18 × 10−2 with only 1117 degree of freedoms when the local adaptive refinement
strategy was used, while the uniform partition requires more than 18755 degree of
freedoms in order to reach a comparable accuracy.

The refined meshes after 0, 8, and 16 refinements are illustrated in Figures 5.1 and
5.2, which show that our residual estimator really captures the corresponding corner
singularity correctly, under both refinement strategies. Furthermore, in Figures 5.3
and 5.4, we examine the relation of η, ‖∇(u− uh)‖, and ‖u− uh‖ with the degree of
freedoms N during the process of the adaptive refinement. The plots start from the
coarsest mesh and ends after 16 refinements.

For the driven cavity problem, since the exact solution may not be sufficiently as
smooth as in [H1]2 × L2, the residual error η is not expected to decrease when the
mesh is refined. Our numerical experiments show that the error indicator ηT is able
to locate both corner singularities for this problem. The meshes after 0, 8, and 16
refinements are plotted in Figures 5.5 and 5.6. Readers are invited to make their own
conclusions for the numerical results illustrated in this Section.
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Fig. 5.1. Test problem 2, maximum strategy adaptive refinement. Meshes after 0, 8, and 16
refinements.

Fig. 5.2. Test problem 2, local strategy adaptive refinement. Meshes after 0, 8, and 16 refine-
ments.

Fig. 5.3. Test problem 2, maximum strategy adaptive refinement. Plot of η, ‖∇(u − uh)‖ and
‖u − uh‖, versus the degrees of freedom N .
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Fig. 5.4. Test problem 2, local strategy adaptive refinement. Plot of η, ‖∇(u − uh)‖ and
‖u − uh‖, versus the degrees of freedom N .
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Fig. 5.5. Test problem 3, maximum strategy adaptive refinement. Meshes after 0, 8, and 16
refinements.

Fig. 5.6. Test problem 3, local strategy adaptive refinement. Meshes after 0, 8, and 16 refine-
ments.
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