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Abstract. This paper establishes a posteriori error analysis for the Stokes equations discretized
by an interior penalty type method using H (div) finite elements. The a posteriori error estimator
is then employed for designing two grid refinement strategies: one is locally based and the other
is globally based. The locally based refinement technique is believed to be able to capture local
singularities in the numerical solution. The numerical formulations for the Stokes problem make use
of H(div) conforming elements of the Raviart–Thomas type. Therefore, the finite element solution
features a full satisfaction of the continuity equation (mass conservation). The result of this paper
provides a rigorous analysis for the method’s reliability and efficiency. In particular, an H1-norm a
posteriori error estimator is obtained, together with upper and lower bound estimates. Numerical
results are presented to verify the new theory of a posteriori error estimators.
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1. Introduction. In this paper, the authors are concerned with a posteriori
error analysis for numerical solutions of the Stokes equations discretized by an interior
penalty type method using H (div) finite elements. The Stokes equations under study
seeks a velocity u and a pressure p satisfying

−∆u + ∇p = f in Ω,(1.1)

∇ · u = 0 in Ω,(1.2)

u = 0 on ∂Ω,(1.3)

where ∆, ∇, and ∇· denote the Laplacian, gradient, and divergence operators, re-
spectively; Ω ⊂ Rd, d = 2, 3 is the region occupied by the fluid; f ∈ (L2(Ω))d is the
unit external volumetric force acting on the fluid. For simplicity, the method will be
presented for two-dimensional problems (d = 2) on polygonal domains. An extension
to three dimensions can be made formally for general polyhedral domains.

In the engineering society, it is required for numerical schemes to retain the orig-
inal physical properties, such as mass and energy conservation. For the Stokes equa-
tions, such a requirement translates to a discretization scheme satisfying the incom-
pressible constraint equation (1.2) exactly on the computational domain. However,
constructing such a finite element space in H1 is quite challenging, and the resulting
spaces are often not computationally friendly. Recently, a new approach, which uses
H(div) conforming elements, has been developed for the Stokes [22] and Navier-Stokes
equations [23]. Numerical solutions of this method satisfy the continuity equation (1.2)
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exactly. The discrete velocity, which lies in an H(div) conforming finite element space,
has continuous normal component across internal edges. The tangential continuity is
imposed weakly, using the idea similar to the one in interior penalty methods.

The idea of employing H(div) conforming elements to the Stokes equations has
been explored by several researchers in the last two decades. All the existing work
applies the H(div) conforming elements to either a stress-velocity or a stress-velocity-
pressure formulation of Stokes and Navier-Stokes equations, where the stress is in
H(div). In [5, 6], a pseudostress-velocity formulation has been proposed and solved
by H(div) elements. Its extension to the pseudostress-velocity-pressure formulation
has been considered in [11], together with a priori and a posteriori error analysis.
In [10], an augmented formulation using the H(div) conforming element method has
been developed. Also, the dual-mixed method has been studied in [12, 13]. In all
these work, the H(div) element was used to approximate the stress or stress-type
dual variables. We would like to point out that our method is different from the
existing ones in that we use the velocity-pressure formulation and the H(div) element
is used to approximate the velocity directly.

The goal of this paper is to obtain an a posteriori error estimator for the H(div)
finite element method developed in [22], and to provide its upper and lower bound
estimates. In the analysis, we borrow many ideas from some previous a posteriori error
analysis for Stokes equations, including [20], which uses conforming finite elements,
and [8, 9, 7, 14, 15, 21], which use nonconforming finite elements. Our contributions
in this paper are: (1) successfully established a posteriori error estimator for the
H(div) finite element method, (2) proposed and tested a new grid refinement method
using local information in order to capture local singularities, (3) conducted a series
of numerical experiments for the refinement strategies. We hope that the numerical
results presented in this paper will shine some light on a further development of
computational techniques in fluid dynamics.

The paper is organized as follows. In Section 2, we introduce some notations for
scalar, vector, and matrix Sobolev spaces. In Section 3, the H(div) finite element
formulation and its a priori error estimate are stated. Section 4 is dedicated to an
establishment and analysis of an a posteriori error estimator. In Section 5, we shall
present two grid refinement strategies: one is locally based and the other is globally
based. Finally in Section 6, we present some numerical results and offer some of our
own observations.

2. Notations. Let D be a polygon. We use standard definitions for the Sobolev
spaces Hs(D) and their associated inner products (·, ·)s,D, norms ‖ · ‖s,D, and semi-
norms | · |s,D, for s ≥ 0. The space H0(D) coincides with L2(D), for which the norm
and the inner product are also denoted by ‖ · ‖D and (·, ·)D, respectively. For conve-
nience, when D = Ω, we usually suppress D in the subscript. Denote L2

0(Ω) to be the
subspace of L2(Ω) consisting of functions with mean value zero.

Notice that all above definitions can be extended to the case of vector-valued
or matrix-valued functions, through product spaces. We use the same notation for
their norms and inner products. Also, all these definitions can be transported from
a polygon D to an edge e. Similar notation system will be employed, for example,
‖ · ‖s,e and ‖ · ‖e.

Throughout the paper, we follow the convention that a bold face Latin character
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denotes a vector. For vector function v ∈ R2, define

∇v =

(

∂v1

∂x
∂v1

∂y
∂v2

∂x
∂v2

∂y

)

, curl v =

(

−∂v1

∂y
∂v1

∂x

−∂v2

∂y
∂v2

∂x

)

,

∇ · v =
∂v1

∂x
+

∂v2

∂y
.

Define the space H(div; Ω) to be the set of vector-valued functions on Ω which,
together with their divergence, are square integrable; i.e.,

H(div; Ω) =
{

v : v ∈ (L2(Ω))2, ∇ · v ∈ L2(Ω)
}

.

The norm in H(div; Ω) is defined by

‖v‖H(div;Ω) =
(

‖v‖2 + ‖∇ · v‖2
)

1

2 .

Let Th be a geometrically conformal triangulation of the domain Ω, i.e., the
intersection of any two triangles in Th is either empty, a common vertex, or a common
edge. Denote hK to be the diameter of triangle K ∈ Th, and h to be the maximum
of all hK . We also assume Th is shape regular, that is, for each K ∈ Th, the ratio
between hK and the diameter of the inscribed circle is bounded above. This ensures
that the scaling arguments and the inverse inequalities work on each triangle.

Define the finite element spaces Vh and Wh for the velocity and pressure variables,
respectively, by

Vh = {v ∈ H(div; Ω) : v|K ∈ Vk(K) ∀K ∈ Th; v · n|∂Ω = 0}

Wh = {q ∈ L2
0(Ω) : q|K ∈ Wk(K) ∀K ∈ Th},

where n is the outward normal direction, (Vk(K), Wk(K)) can be any existing H(div)
conforming finite element pairs [4] of order k ≥ 1. For example, the Raviart–Thomas
elements (RTk) [16] or the Brezzi–Douglas–Marini elements (BDMk) [3]. For BDM1

element, Wh consists of all piecewise constants on Th. Also, notice that for all v ∈ Vh,
it has continuous normal component v · n across internal edges, while its tangential
component is not necessarily continuous.

For vectors v, n ∈ R2, denote v ⊗ n = {vinj}1≤i,j≤2 to be the vector tensor

product. For matrices σ, τ ∈ R2×2, define σ : τ =
∑2

i,j=1 σijτij . Notice that

v · (σn) = (v ⊗ n) : σ .

Later we will use the above equation without explicit mentioning.
Let e be an interior edge shared by two elements K1 and K2 in Th. Denote unit

normal vectors n1, n2 and tangential directions t1, t2, respectively, on e for K1 and
K2 (as shown in Figure 2.1). Define the average {·} and jump [·] on e for scalar
function q, vector function v and matrix function σ, respectively, by

{q} =
1

2
(q|∂K1

+ q|∂K2
), [qn] = q|∂K1

n1 + q|∂K2
n2,

{v} =
1

2
(v|∂K1

+ v|∂K2
), {σ} =

1

2
(σ|∂K1

+ σ|∂K2
),

[σn] = σ|∂K1
n1 + σ|∂K2

n2, [σt] = σ|∂K1
t1 + σ|∂K2

t2.
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Fig. 2.1. Normal and tangential vectors for neighboring triangles.

We also define a scalar average {{ε(·)}} and a matrix valued jump [[ · ]] for a vector
function v by

{{ε(v)}} =
1

2
(n1 · ∇(v · t1)|∂K1

+ n2 · ∇(v · t2)|∂K2
) ,

[[v]] = v|∂K1
⊗ n1 + v|∂K2

⊗ n2.

If e is a boundary edge, the above definitions should be modified such that both the
average and the jump are equal to the one-sided values on e. For example

{q} = q|e, [qn] = q|en.

Other terms should be modified in the same fashion.
Denote by Eh the set of all edges in Th, and E0

h := {e ∈ Eh, e * ∂Ω} the set of all
interior edges. Let V (h) = Vh +(Hs(Ω)∩H1

0 (Ω))2, with s > 3
2 , where the summation

means the mathematical sum of functions from each subspace. For v ∈ V (h), define
∇hv to be the function whose restriction to each element K ∈ Th is given by the
standard gradient ∇v.

3. Finite element scheme and a priori error estimate. We use the numer-
ical scheme proposed and analyzed in [22], where details on convergence analysis can
be found. For simplicity of presentation, this paper uses a slightly different notation
in describing the numerical schemes. To this end, we introduce two bilinear forms on
V (h) × V (h) as follows

as(w,v) = (∇hw,∇hv) +
∑

e∈Eh

∫

e

(

αh−1
e [[w]] : [[v]] − {∇w} : [[v]] − {∇v} : [[w]]

)

ds,

ans(w,v) = (∇hw,∇hv) +
∑

e∈Eh

∫

e

(

αh−1
e [[w]] : [[v]] − {∇w} : [[v]] + {∇v} : [[w]]

)

ds,

where α > 0 is a parameter to be determined later, and he is the length of the edge e.
It is not hard to verify that the above two bilinear forms are exactly the same as those
stated in [22]. For reader’s convenience, a brief explanation is given in Appendix A
for such a verification.

As usual, there is a bilinear form on V (h) × L2
0(Ω) given by

b(v, q) = (∇ · v, q).

The H(div) finite element scheme for (1.1)–(1.3) seeks (uh; ph) ∈ Vh × Wh such that

a(uh,v) − b(v, ph) = (f ,v) ∀v ∈ Vh,(3.1)

b(uh, q) = 0 ∀q ∈ Wh,(3.2)
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where a(·, ·) can be taken as either as(·, ·) or ans(·, ·). It has been proved in [22] that
the above system (3.1)–(3.2) is well posed for non-symmetric bilinear form ans(·, ·)
with α > 0, and for symmetric bilinear form as(·, ·) with α large enough.

It is not hard to see that the solution (u; p) of (1.1)–(1.3) also satisfies

a(u,v) − b(v, p) = (f ,v) ∀v ∈ Vh,(3.3)

b(u, q) = 0 ∀q ∈ Wh.(3.4)

Subtracting (3.1)–(3.2) from (3.3)–(3.4) gives the following error equations

a(u − uh,v) − b(v, p − ph) = 0 ∀v ∈ Vh,(3.5)

b(u − uh, q) = 0 ∀q ∈ Wh.(3.6)

To investigate the approximation property of the above numerical scheme, we intro-
duce a norm on V (h) as follows:

|||v|||2 = ‖∇hv‖2 +
∑

e∈Eh

h−1
e ‖[[v]]‖2

e +
∑

e∈Eh

he‖{{ε(v)}}‖2
e.

Let Πh be the interpolation into Vh associated with the usual degrees of freedom (see
[4] for details), and Qh be the L2 projection from L2

0(Ω) onto Wh. It is well-known
that (∇·)Πh = Qh(∇·). Furthermore, the following a priori error estimate has been
proved in [22]:

Theorem 3.1. Let (u; p) be the solution of (1.1)–(1.3) and (uh; ph) ∈ Vh × Wh

be obtained from (3.1)–(3.2). Then, there exists a constant C independent of h such
that

(3.7) |||u − uh||| + ‖p − ph‖ ≤ C (|||u − Πhu||| + ‖p − Qhp‖) .

For example, Theorem 3.1 implies an error estimate of |||u−uh|||+‖p−ph‖ = O(h)
when the BDM1 element is used in the numerical discretization with an exact solution
(u; p) ∈ (H2 ∩ H1

0 )2 × (H1 ∩ L2
0).

4. A posteriori error estimator. The goal of this section is to derive an a pos-
teriori error estimator for the finite element formulation (3.1)–(3.2). A detailed pre-
sentation will be given only for the symmetric formulation as(·, ·); the non-symmetric
case of ans(·, ·) can be handled analogously without any difficulty. For simplicity of
notation, we use “.” to denote “less than or equal to up to a constant independent
of the mesh size, variables, or other parameters appearing in the inequality”.

On each edge e, we introduce the following “jumps”:

J1(∇uh · n − phn) =

{

[∇uhn] − [phn], if e ∈ E0
h,

0, otherwise,

and

J2(uh) =

{

[[uh]], if e ∈ E0
h,

2uh ⊗ n, otherwise.

Define a local error estimator on each element K ∈ Th by
(4.1)

η2
K = h2

K‖fh + ∆uh −∇ph‖2
K +

1

2

∑

e∈∂K

(

he‖J1(∇uh · n − phn)‖2
e + h−1

e ‖J2(uh)‖2
e

)

,
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and define a global error estimator η2 =
∑

K∈Th
η2

K . Here and in what follows of this

paper, fh is the L2 projection of the load function f into the velocity space defined
locally on each element. It will be seen that fh can be a projection of f into any
polynomial space defined on each individual element K.

For any K ∈ TK and one of its edges e, it can be proved by using the trace
theorem and the scaling argument that for every q ∈ H1(K), we have the following
estimate (see Theorem 3.10 in [1] or Equation (2.4) in [2])

(4.2) ‖q‖2
e . h−1

K ‖q‖2
K + hK‖∇q‖2

K .

Another useful estimate can be stated as follows.
Lemma 4.1. Let v ∈ Vh, then

(4.3) he‖[∇v t]‖2
e . h−1

e ‖[[v]]‖2
e.

Proof. First, let e be an interior edge shared by triangles K1 and K2 in Th. On
edge e, define q = v|K1

− v|K2
. Then, by the inverse inequality, we have

he‖[∇vt]‖2
e = he‖q′‖2

e . h−1
e ‖q‖2

e = h−1
e ‖[[v]]‖2

e.

The proof for boundary edges is similar.

4.1. Reliability of the estimator. Let e = u−uh and ǫ = p−ph. It has been
proved in [8] that every matrix-valued function in (L2(Ω))4, and hence ∇he, admits
the following decomposition:

(4.4) ∇he = ∇r − qI + curl s,

where r ∈ H1
0 (Ω)2 is divergence-free, s ∈ H1(Ω)2, q ∈ L2

0(Ω), and I is the 2 × 2
identity matrix. Furthermore, the following bound holds [8]

(4.5) ‖r‖1 + ‖s‖1 . ‖∇he‖Ω.

Since e is exactly divergence-free, it follows that

(4.6) (∇he, qI) = (∇ · e, q) = 0.

Therefore, we have from (4.4) and (4.6) that

(4.7) (∇he, ∇he) = (∇he, ∇r) + (∇he, curl s).

For any vector-valued function v ∈ (H1
0 (Ω))2, denote by vI the Clément type

interpolation onto continuous piecewise linears on Th, preserving the homogeneous
boundary condition; details for such an interpolation can be found from [17]. When
RTk or BDMk elements, with k ≥ 1, are used in the numerical discretization scheme,
we see that the above mentioned interpolation satisfies vI ∈ (H1

0 (Ω))2 ∩ Vh. Clearly,
the jump term [[vI ]] = 0 vanishes on every e ∈ Eh. Furthermore, we have the following
approximation property:

(4.8)

|vI |1,K . |v|1,K ,

‖v − vI‖K . hK |v|1,K ,

‖v − vI‖e . h1/2
e ‖v‖1/2,e.
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Theorem 4.2. Let (u; p) and (uh; ph) be the solution of (1.1)-(1.3) and (3.1)-
(3.2), respectively. Then we have the following upper bound for ‖∇he‖:

(4.9) ‖∇he‖ . η + (
∑

K∈Th

h2
K‖f − fh‖2

K)1/2.

Proof. Recall the decomposition (4.4). By setting v = rI in the error equation
(3.5) and using [[rI ]] = 0, we have

(4.10) (∇he, ∇rI) −
∑

e∈Eh

∫

e

{∇rI} : [[uh]] − (∇ · rI , ǫ) = 0.

Using (4.10), integration by parts, and the fact that r is divergence-free, we have

(∇he, ∇r) = (∇he, ∇r −∇rI) +
∑

e∈Eh

∫

e

{∇rI} : [[uh]]ds + (∇ · rI , ǫ)

=
∑

K∈Th

(−∆u + ∆uh, r − rI)K +
∑

K∈Th

∫

∂K

(∇en) · (r − rI)ds

+
∑

e∈Eh

∫

e

{∇rI} : [[uh]]ds − (∇ · (r − rI), ǫ)

=
∑

K∈Th

(−∆u + ∆uh, r − rI)K −
∑

e∈E0

h

∫

e

[∇uhn] · (r − rI)ds +
∑

e∈Eh

∫

e

{∇rI} : [[uh]]ds

+
∑

K∈Th

(∇p −∇ph, r − rI)K −
∑

K∈Th

∫

∂K

(r − rI) · n(p − ph) ds

=
∑

K∈Th

(f + ∆uh −∇ph, r − rI)K −
∑

e∈E0

h

∫

e

([∇uhn] − [phn]) · (r − rI)ds

+
∑

e∈Eh

∫

e

{∇rI} : [[uh]]ds

Applying equations (4.2), (4.5), (4.8), the trace theorem, and the standard inverse
inequality to the above gives

|(∇he, ∇r)| .

(

η + (
∑

K∈Th

h2
K‖f − fh‖2

K)1/2

)

‖∇he‖.

Next, it follows from the integration by parts that

(∇he, curl s) = −(∇huh, curl s)

= − (∇huh, curl (s − sI)) − (∇huh, curl sI)

=
∑

K∈Th

∫

∂K

(−(∇uh t) · (s − sI) − uh · (curl sI n)) ds

=
∑

e∈Eh

∫

e

(−[∇uht] · (s − sI) − [[uh]] : {curl sI}) ds.
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Thus, by using Lemma 4.1, we obtain

|(∇he, curl s)| .





(

∑

e∈Eh

he‖[∇uht]‖2
e

)1/2

+

(

∑

e∈Eh

h−1
e ‖[[uh]]‖2

e

)1/2


 ‖∇he‖

. η ‖∇he‖.
Combining (4.7) with the above estimates completes a proof of the lemma.

As to the pressure error, we have the following result.
Theorem 4.3. Let (u; p) and (uh; ph) be the solution of (1.1)-(1.3) and (3.1)-

(3.2), respectively. Then we have the following upper bound for ‖ǫ‖:

(4.11) ‖ǫ‖ . η + (
∑

K∈Th

h2
K‖f − fh‖2

K)1/2.

Proof. First, we recall the following continuous version of the inf-sup condition:

(4.12) ‖p − ph‖ . sup
v∈[H1

0
(Ω)]2

b(v, p − ph)

‖v‖1
.

For v ∈ H1
0 (Ω)2, using integration by parts, equations (3.1), (4.2), (4.5), (4.8), (4.9),

the trace theorem, and the inverse inequality, we have

(∇ · v, p − ph) = −(f ,v) + (∇u,∇v) − (∇ · v, ph)

= − (f ,v) + (∇he,∇v) + (∇huh,∇v) − (∇ · v, ph)

+ (f ,vI) − a(uh,vI) + b(vI , ph)

= − (f ,v) + (∇he,∇v) + (∇huh,∇v) − (∇ · v, ph)

+ (f ,vI) − (∇huh,∇vI) +
∑

e∈Eh

∫

e

{∇vI} : [[uh]]ds + (∇ · vI , ph)

= − (f ,v − vI) + (∇he,∇v) −
∑

K∈Th

(∆uh,v − vI)K +
∑

K∈Th

(∇ph, v − vI)K

+
∑

K∈Th

∫

∂K

(∇uh n − phn) · (v − vI)ds +
∑

e∈Eh

∫

e

{∇vI} : [[uh]]ds

= −
∑

K∈Th

(f + ∆uh −∇ph,v − vI) + (∇he,∇v)

+
∑

e∈E0

h

∫

e

([∇uh]n − [ph]) · (v − vI)ds +
∑

e∈Eh

∫

e

{∇vI} : [[uh]]ds.

Thus, we obtain from the standard Cauchy-Schwarz inequality that

|(∇ · v, p − ph)| .

(

η + (
∑

K∈Th

h2
K‖f − fh‖2

K)1/2

)

‖v‖1,

which, together with the inequality (4.12), completes the proof of Theorem 4.3.

By the definition of fh and the approximation property of L2 projection, it is not
hard to see that (

∑

K∈Th
h2

K‖f−fh‖2
K)1/2 has higher order in hK than ‖∇he‖+‖ǫ‖, as

long as f is smooth enough. Hence, theorems 4.2 and 4.3 imply that the a posteriori
error estimator η is reliable in that the error term ‖∇he‖ + ‖ǫ‖ must be small when
η is small. Moreover, the former is controlled by the latter in their magnitude.
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4.2. Efficiency of the estimator. For each triangular element K ∈ Th, denote
by φK the following bubble function

φK =

{

27λ1λ2λ3 in K,

0 in Ω\K,

where λi, i = 1; 2; 3, are barycentric coordinates on K. Needless to say, the finite
element partition Th is assumed to contain triangular elements only. It is clear that
φK ∈ H1

0 (Ω) and satisfies the following properties (Section I.2.12 in [19]):

• For any polynomial q with degree at most m, there exist positive constants
cm and CM , depending only on m, such that

cm‖q‖2
K ≤

∫

K

q2φK dx ≤ ‖q‖2
K ,(4.13)

‖∇(qφK)‖K ≤ Cmh−1
K ‖q‖K .(4.14)

For each e ∈ E0
h, we can analogously define an edge bubble function φe. Let K1

and K2 be two triangles sharing the edge e. To this end, denote by Ωe = K1 ∪ K2

the union of the elements K1 and K2. Assume that in Ki, i = 1, 2, the barycentric
coordinates associated with the two ends of e are λKi

1 and λKi

2 , respectively. The edge
bubble function can be defined as follows

φe =











4λK1

1 λK1

2 in K1,

4λK2

1 λK2

2 in K2,

0 in Ω\Ωe.

It is obviously that φe ∈ H1
0 (Ω) and satisfies the following properties (Section I.2.12

in [19]):

• For any polynomial q with degree at most m, there exist positive constants
dm, DM and Em, depending only on m, such that

dm‖q‖2
e ≤

∫

e

q2φe ds ≤ ‖q‖2
e,(4.15)

‖∇(qφe)‖Ωe
≤ Dmh−1/2

e ‖q‖e,(4.16)

‖qφe‖Ωe
≤ Emh1/2

e ‖q‖e.(4.17)

Regarding the efficiency of the numerical schemes under consideration, we have
the following result.

Theorem 4.4. For every K ∈ Th or e ∈ E0
h,

hK‖fh + ∆uh −∇ph‖K . ‖∇e‖K + ‖ǫ‖K + hK‖f − fh‖K ,(4.18)

h1/2
e ‖[∇uhn] − [phn]‖e .

∑

K∈Ωe

(‖∇e‖K + ‖ǫ‖K + hK‖f − fh‖K) .(4.19)

Proof. Let wK = (fh + ∆uh −∇ph)φK . It is clear that

(f , wK) = (∇u, ∇wK) − (∇ · wK , p),
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which implies

(f − fh, wK) + (fh, wK) − (∇uh, ∇wK) + (∇ · wK , ph)

= (∇e, ∇wK) − (∇ · wK , ǫ).

Using integration by parts, the above equation becomes

(fh + ∆uh −∇ph, wK) = (∇e, ∇wK) − (∇ · wK , ǫ) − (f − fh, wK).

By the definition of wK , the Cauchy-Schwartz inequality, and inequalities (4.13)-
(4.14), we have

‖fh + ∆uh −∇ph‖2
K . |(∇e, ∇wK) − (∇ · wK , ǫ) − (f − fh, wK)|

.
(

h−1
K ‖∇e‖K + h−1

K ‖ǫ‖K + ‖f − fh‖K

)

‖fh + ∆uh −∇ph‖K .

This completes the proof of inequality (4.18).
As to an estimate for the jump term ‖[∇uhn] − [phn]‖e, we consider a similar

function we defined by

we = ([∇uhn] − [phn])φe.

Here, in the multiplication, the function [∇uhn] − [phn] should be extended as a
constant function in the normal direction of the edge e; i.e., we takes the polynomial
[∇uhn] − [phn] on e and all lines parallel with e. It is not hard to see that

∑

K∈Ωe

((f , we)K − (∇uh,∇we)K + (∇ · we, ph))

=
∑

K∈Ωe

((∇e,∇we)K − (∇ · we, ǫ)K) .

Using integration by parts, we have

∑

K∈Ωe

((f+∆uh −∇ph, we)K −
∫

e

([∇uhn] − [phn]) · we ds

=
∑

K∈Ωe

((∇e,∇we)K − (∇ · we, ǫ)K) .

Therefore, by the definition of we, the Cauchy-Schwartz inequality, and inequalities
(4.15)-(4.17), we have

‖[∇uhn] − [phn]‖2
e . (h1/2

e ‖f − fh‖Ωe
+ h1/2

e ‖fh + ∆uh −∇ph‖Ωe

+ h−1/2
e ‖∇he‖Ωe

+ h−1/2
e ‖ǫ‖Ωe

)‖[∇uhn] − [phn]‖e.

Inequality (4.19) follows from the above, inequality (4.18), and the fact that Th is
shape regular. This completes the proof of the theorem.

Summing over all the elements yields the following lower bound for the error term
|||e||| + ‖ǫ‖.

Theorem 4.5. Let (u; p) and (uh; ph) be the solution of (1.1)-(1.3) and (3.1)-
(3.2), respectively. Then we have the following lower bound estimate:

η . |||e||| + ‖ǫ‖ +

(

∑

K∈Th

h2‖f − fh‖2
K

)1/2

.
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Combining theorems 4.2, 4.3 and 4.5, and noticing that (
∑

K∈Th
h2

K‖f − fh‖2
K)1/2

is a higher order term, we can conclude that, theoretically, η is a good indicator for
|||e||| + ‖ǫ‖.

5. Two strategies in local grid refinement. The local a priori error estimator
ηK as defined in (4.1) can be used to provide algorithms for local grid refinement. Two
different refinement strategies are considered in this study. The first one is based on
a comparison of each error ηK with the maximum value of all the error estimators.
The strategy can be described as follow.

Local Refinement by “Maximum Strategy”:
1. Given a current triangular mesh, error estimators ηK on each triangle, and

a threshold θ ∈ (0, 1) (e.g., θ = 0.5). One computes the maximum error
ηmax = max ηK .

2. For each triangle K, if ηK ≥ θ ηmax, refine this triangle uniformly by con-
necting the center of three edges.

3. The previous step will generate “hanging nodes”. Use bisection to get a
conformal mesh. More precisely, one needs to check every unrefined triangle
K and perform the following modifications:

• If K has one “hanging node”, then bisect it once.
• If K has two “hanging nodes”, then bisect it twice.
• Take a special care to prevent the occurrence of degenerated triangles;

i.e., to guarantee that the new mesh preserves the shape regularity. This
can be done by adding extra “hanging nodes” if the current bisection
results in degenerated triangles.

The second refinement strategy is based on a comparison of ηK with those for its
neighbors. To explain the main idea, let ρ > 0 be a prescribed distance parameter
and set

Tρ,K = {K̃ : 0 < ‖K − K̃‖ ≤ ρ},

where ‖K − K̃‖ stands for the distance of the centers of K and K̃. With a given
threshold θ > 1, we mark a triangle K for uniform refinement if

ηK ≥ θ ηN(K),

where ηN(K) is the average of the local error indicator on all the neighboring triangles

K̃ ∈ Tρ,K .
The following is such a refinement strategy that was numerically investigated in

this study.

Local Refinement by “Local Strategy”:
1. Given a current triangular mesh, error estimators ηK on each triangle, and a

threshold θ > 1.0 (e.g., θ = 1.3). One computes an error indicator ηN(K) as
the average of the local error indicator on neighboring triangles that share a
vertex or an edge with K, not including K itself.

2. For each triangle K, if ηK ≥ θ ηN(K), refine this triangle uniformly by con-
necting the center of three edges.

3. The previous step will generate “hanging nodes”. Use bisection to get a
conformal mesh. More precisely, one needs to check each unrefined triangle
K and perform the following modifications:
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• If K has one “hanging node”, then bisect it once.
• If K has two “hanging nodes”, then bisect it twice.
• Take a special care to prevent the occurrence of degenerated triangles;

i.e., to guarantee that the new mesh preserves the shape regularity. This
can be done by adding extra “hanging nodes” if the current bisection
results in degenerated triangles.

The refinement method by the “local strategy” is based on the observation that
local estimators on the exact location of the singularity tend to be much larger than
on surrounding regions. Since the singularity usually occurs on a lower dimensional
manifold, for example, a point or an edge in two dimension, it is safe to use such a
local strategy to locate singularities. In our numerical experiments to be presented in
the coming section, we have found that θ = 1.3 is a practical choice.

6. Some numerical results. The goal of this section is to report some numeri-
cal results for the refinement strategies as discussed in the previous section. Without
loss of generality, we discuss only numerical results arising from the non-symmetric
formulation with ans(·, ·). As mentioned before, the non-symmetric formulation is
well-posed for any α > 0, while the symmetric formulation is so only for α sufficiently
large. Although numerical tests in [24] have indicated that the symmetric form works
for α greater than a moderate number (usually between 1 and 5), they have also
suggested that the non-symmetric formulation is more stable than the symmetric one
with respect to the selection of α values (see examples given in [24]).

For the numerical results to be presented in this section, the parameter α is set to
be 5, and the Stokes equations are discretized by the BDM1 element for the velocity.
The GMRES iterative method is used for solving the resulting linear algebraic system,
and a relative residual of 10−8 is set to be the stopping criteria. It should be pointed
out that, for the test problems and the value of α chosen in this paper, numerical
results show that the a posteriori error indicators for both the symmetric and non-
symmetric formulations behave almost exactly the same. Hence the results for the
symmetric formulation are omitted. However, we did not explore the cases when α is
too small or too large.

The numerical formulation in this paper can be easily extended to problems with
non-homogeneous Dirichlet boundary conditions; details have been given in [24]. Ac-
cordingly, changes need to be made for the a posteriori error estimator ηK . For the
Dirichlet boundary condition u = g on ∂Ω, we must modify J2(uh) as follows:

J2(uh) =

{

[[uh]] if e ∈ E0
h,

(uh − g) ⊗ n otherwise.

Another small modification is that, in the definition of ηK , the term h2
K‖fh +

∆uh −∇ph‖2
K must be computed as 2|K| ‖fh + ∆uh −∇ph‖2

K , where |K| is the area
of the triangle K. This modification is purely for implementation purpose since the
two formulas are equivalent mathematically. For the BDM1 element, we also have
∆uh −∇ph = 0. In the experiment, ‖fh‖K is calculated by computing ‖f‖K using a
high order numerical integration, which is exact for up to 7th order polynomials. The
effect is equivalent to considering fh to be a piecewise cubic interpolation of f .

6.1. Test problems. We consider three test problems, all are defined on Ω =
(0, 1) × (0, 1). Two of them have exact solutions given as:

Test problem 1: u =

(

−2x2y(x − 1)2(2y − 1)(y − 1)
xy2(2x − 1)(x − 1)(y − 1)2

)

, p = 0,
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and

Test problem 2: u =

(

3
2

√
r
(

cos θ
2 − cos 3θ

2

)

3
2

√
r
(

3 sin θ
2 − sin 3θ

2

)

)

, p = −6r−1/2 cos
θ

2
.

The third one is a lid driven cavity problem. Clearly, the solution of test problem 1
is smooth and satisfies the homogeneous Dirichlet boundary condition. The solution
to test problem 2 satisfies

−∆u + ∇p = 0.

The Dirichlet boundary condition can be set by using the value of u on the boundary.
Test problem 2 has a corner singularity of order 0.5 at the origin (0, 0).

The 2D lid driven cavity problem describes the flow in a rectangular container
which is driven by the uniform motion of the top lid [18]. Because of the discontinuous
velocity boundary condition at two top corners, it is know that the exact solution
(u; p) does not even belong to (H1)2 × L2, if there is any in a certain sense. Indeed,
the weak formulation does not hold for this problem. However, the discrete problem
is still well-posed and provides a certain approximation to the actual solution. In
two dimensional case, the discontinuous boundary condition also results in corner
singularities at the two top corners.

6.2. On uniform meshes. In this experiment, test problems 1 and 2 are solved
on uniform meshes. The mesh is generated by dividing Ω into n × n sub-rectangles,
and then dividing each sub-rectangle into two triangles by connecting the diagonal
lines with the negative slope. For test problem 1, since the solution is smooth, we
expect theoretically that η = O(h), ‖∇e‖ = O(h), ‖ǫ‖ = O(h), and ‖e‖ = O(h2).
For test problem 2, only η and ‖e‖ are computed for each mesh. Due to the corner
singularity, we expect them to have asymptotic order between 0 ∼ 1 and 1 ∼ 2,
respectively. Numerical results for these two test problems are reported in Tables 6.1
and 6.2. They agree with the theoretical prediction.

Table 6.1

Error norms for test problem 1 on n× n uniform triangular meshes.

n η ‖∇he‖ ‖e‖ ‖ǫ‖
20 4.7471e-02 7.3535e-3 7.2677e-05 6.4306e-03
24 3.9947e-02 6.1326e-3 5.0784e-05 5.4066e-03
28 3.4465e-02 5.2582e-3 3.7477e-05 4.6615e-03
32 3.0298e-02 4.6016e-3 2.8790e-05 4.0957e-03
36 2.7025e-02 4.0904e-3 2.2807e-05 3.6518e-03
40 2.4388e-02 3.6813e-3 1.8512e-05 3.2944e-03
44 2.2219e-02 3.3464e-3 1.5326e-05 3.0005e-03
48 2.0403e-02 3.0674e-3 1.2897e-05 2.7546e-03
52 1.8860e-02 2.8312e-3 1.1002e-05 2.5459e-03

Asym. Order
O(hk), k =

0.9671 0.9991 1.9763 0.9707

6.3. Adaptive refinements for test problem 2. We perform adaptive re-
finements for test problem 2, which has a corner singularity. The two refinement
strategies as explained in Section 5 are employed in this investigation. The errors
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Table 6.2

Error norms for test problem 2 on n× n uniform triangular meshes.

n dofs GMRES iter. η ‖e‖
16 2112 1208 2.9080e+00 6.1029e-03
20 3280 1793 2.6112e+00 4.3923e-03
24 4704 2398 2.3893e+00 3.3533e-03
28 6384 3181 2.2138e+00 2.6698e-03
32 8320 4032 2.0685e+00 2.1894e-03
36 10512 4856 1.9438e+00 1.8528e-03
40 12960 5871 1.8384e+00 1.5957e-03
44 15664 6980 1.7417e+00 1.4233e-03
48 18624 8182 1.6540e+00 1.3460e-03

Asym. Order
O(hk), k =

-1.9819 -1.8270 0.5113 1.4136

from the “Maximum Strategy” are reported in Table 6.3, and corresponding meshes
are presented in Figure 6.1. The errors from the “Local Strategy” are reported in Ta-
ble 6.4, and corresponding meshes are given in Figure 6.2. We also draw the results
from tables 6.3-6.4 in Figure 6.3, to provide a direct image of the relation between η

and the number of degrees of freedom. After eliminating several starting levels, the
computed asymptotic orders of η in terms of the number of degrees of freedom are
O(N−0.5097) and O(N−0.4518), respectively, for the maximum strategy and the local
strategy.

By comparing Table 6.2, 6.3 and 6.4, it can be seen that the adaptive refinement
is much more efficient in reducing the error for this problem. The mesh refinements
shown in Figure 6.1 and 6.2 indicate that the local error indicator ηK has located the
singularity accurately. It seems that the “Local Strategy” gives similar refinements
to the “Maximum Strategy” for this test problem. The values of θ, when lying in a
reasonable range, controls the refinement scale in both strategies.

Table 6.3

Test problem 2, adaptive refinement using the “Maximum strategy”.

# Triangles dofs GMRES iter. η ‖e‖
128 544 360 4.0264 1.6785e-2
140 594 405 3.3045 9.8765e-3
152 644 454 2.9531 8.5347e-3
174 734 544 2.5339 6.7235e-3
191 805 635 2.3725 6.4171e-3
284 1180 969 1.9054 4.5336e-3
398 1642 1328 1.6162 4.1063e-3
1056 4296 3180 1.0208 2.2767e-3

We also draw the graph of the velocity and pressure on the finest mesh from the
“Local Strategy” in Figure 6.4. They agree well with the graph of the exact solution.
The graph of numerical solution using the “Maximum Strategy” is similar, and thus
omitted.

It has been known that an averaging post-processing of the pressure usually im-
proves the approximation for the pressure. Hence we would also like to check the
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Fig. 6.1. Test problem 2, adaptive refinement using the “Maximum strategy”. Initial mesh and
meshes after several refinements.

Table 6.4

Test problem 2, adaptive refinement using the “Local strategy”, θ = 1.3.

# Triangles dofs GMRES iter. η ‖e‖
128 544 360 4.0264 1.6785e-2
140 594 405 3.3045 9.8765e-3
178 748 532 2.6805 6.4625e-3
272 1130 834 2.1786 4.4451e-3
439 1803 1730 1.7596 3.5040e-3
820 3338 2537 1.3610 2.6289e-3

robustness of our adaptive mesh refinements under such a pressure-averaging process,
for which the main idea can be described as follows.

• After a solution has been computed on the current mesh, for each triangle
K in the mesh, identify a neighborhood of K including triangles sharing one
vertex or one edge with K, including K itself.

• Sum up the products of the computed pressure, which is piecewise constant,
with the area of triangles over all triangles in the neighborhood of K. Then
divide the summation by the total area of the involved triangles. Assign this
value to the post-processed pressure on K.

This pressure-averaging process is applied before one computes the error indicators.
The rest of the adaptive mesh refinement remains unchanged.

We report the results for test problem 2 with pressure-averaging, using both
maximum and local strategies, in Tables 6.5, 6.6 and Figures 6.5, 6.6, 6.7. We point
out that after the pressure-averaging process, the a posteriori error η is different from
the one without post-processing, while the L2 norm of the error for the velocity ‖e‖
remains unchanged. Our numerical results show that the error indicator works well
with the pressure-averaging method.

6.4. Adaptive refinements for the driven cavity problem. Since the exact
solution for driven cavity problem is not even in (H1)2×L2, we anticipate that η does
not decrease when the mesh is refined. Our numerical experiments show that the local
error indicator ηK is able to locate both corner singularities for this problem. The
meshes are plotted in Figure 6.8, 6.9, 6.10, 6.11, and 6.12.

Notice that when using the “Local Strategy”, changing the value of θ clearly
affects the refinement dramatically. Indeed, small oscillations of local error indicators
have been observed near the corner singularities such that the “Local Strategy” with
θ = 1.3 often locates an oscillation instead of the singularity. We pointed out that
such oscillations might be inherited from the numerical discretization scheme due to
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Fig. 6.2. Test problem 2, adaptive refinement using the “Local strategy”, θ = 1.3. Initial mesh
and meshes after several refinements.

Fig. 6.3. Test problem 2, adaptive refinement, relation between η and the number of degrees of
freedom, using both maximum and local strategy.
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the severe singularity of the boundary conditions. By setting θ = 1.5, the method can
focus more on the real singularity, as shown in Figure 6.10.

Next, we draw the velocity and pressure profiles for the driven cavity problem
computed by using different refinement strategies. The solutions in Tables 6.13, 6.14,
6.15 and 6.16 are drawn on the finest reported mesh of each adaptive strategy. We
would like readers to draw conclusions from reading the results.

Finally, we compare the present solutions with the numerical solution as com-
puted by using the popular Taylor-Hood finite element method. Figure 6.17 gives the
velocity profiles, which contain the plot of u1 on the vertical centerline of the domain
and u2 on the horizontal centerline. The solution of the Taylor-Hood element is com-
puted on a 64×64 triangular mesh, and is denoted by stars in the figure. The velocity
profile of the solutions from adaptive mesh refinements using different strategies are
drawn in curves. From the plots, one can see that the solutions match very well with
each other. This is of course a comparison of the solution at smooth areas. But it is
evident that the proposed local refinement methods do provide competitive numerical
solutions for the Stokes equation.

Appendix A. Equivalence of the weak formulation to the one stated in
[22]. For simplicity, we only consider the case for the symmetric bilinear form as(·, ·).
In [22], as(·, ·) is defined as following:

as(w,v) = (∇hw,∇hv)

+
∑

e∈Eh

∫

e

(

αh−1
e [w · t] [v · t] − {{ε(w)}}[v · t] − {{ε(v)}}[w · t]

)

ds,
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Fig. 6.4. Test problem 2, adaptive refinement using the “Local Strategy”, θ = 1.3. Velocity and
pressure.
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Table 6.5

Test problem 2, adaptive refinement using the “Maximum strategy”, with pressure-averaging.

# Triangles dofs GMRES iter. η ‖e‖
128 544 360 2.0492 1.6785e-2
156 660 452 1.7587 8.4449e-3
184 776 547 1.5944 6.6796e-3
230 964 709 1.4127 5.4049e-3
306 1272 977 1.2289 4.7228e-3
434 1788 1397 1.0421 3.4815e-3
651 2663 2046 0.8330 2.8027e-3
1484 6026 4441 0.5546 2.2096e-3

where on internal edge e,

[v · t] = v|∂K1
· t1 + v|∂K2

· t2,

and on boundary edges it only takes the value on one side. The definitions for Vh,
Wh and b(·, ·) remain the same.

Therefore, we only need to show that for all w, v ∈ V (h) and e ∈ Eh,

[[w]] : [[v]] = [w · t] [v · t],(A.1)

{∇w} : [[v]] = {{ε(w)}}[v · t].(A.2)

For v ∈ V (h), denote

δv =

{

v|∂K1
− v|∂K2

on internal edge e,

v|e on boundary edge e,

v̄ =

{

1
2 (v|∂K1

+ v|∂K2
) on internal edge e,

v|e on boundary edge e.

Since vectors in V (h) have continuous normal components across e, clearly δv ·n = 0
on internal edges. By the homogeneous boundary condition, we also know that both
δv · n and v̄ · n vanish on boundary edges.

Therefore, on every e ∈ Eh, we have

[[w]] : [[v]] = δw · δv = (δw · t1)(δv · t1) = [w · t] [v · t],

and

{{ε(w)}}[v · t] = (∇w̄ n1) · δv = (∇w̄) : (δv ⊗ n1) = {∇w} : [[v]].
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Fig. 6.5. Test problem 2, adaptive refinement using the “Maximum strategy”, with pressure-
averaging. Initial mesh and meshes after several refinements.

Table 6.6

Test problem 2, adaptive refinement using the “Local strategy”, θ = 1.3, with pressure-averaging.

# Triangles dofs GMRES iter. η ‖e‖
128 544 360 2.0492 1.6785e-2
138 584 397 1.6994 9.2067e-3
172 722 508 1.5129 6.4453e-3
250 1038 750 1.4051 4.8342e-3
370 1522 1129 1.2399 4.0372e-3
662 2698 2022 1.0375 2.9473e-3

Combining the above, the weak form given in in this paper is equivalent to the one
from [22]. Hence Theorem 3.1 follows directly from [22].
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Fig. 6.8. Driven cavity problem, adaptive refinement using the “Maximum strategy”. Initial
mesh and meshes after several refinements.

Fig. 6.9. Driven cavity problem, adaptive refinement using the “Local strategy”, θ = 1.3. Initial
mesh and meshes after several refinements.

Fig. 6.10. Driven cavity problem, adaptive refinement using the “Local strategy”, θ = 1.5.
Initial mesh and meshes after each refinement.

Fig. 6.11. Driven cavity problem, adaptive refinement using the “Maximum strategy”, with
pressure-averaging. Initial mesh and meshes after several refinements.
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Fig. 6.12. Driven cavity problem, adaptive refinement using the “Local strategy”, θ = 1.5, with
pressure-averaging. Initial mesh and meshes after several refinements.

Fig. 6.13. Driven cavity problem, adaptive refinement using the “Maximum strategy”. Velocity
and pressure.
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Fig. 6.14. Driven cavity problem, adaptive refinement using the “Local Strategy”, θ = 1.5.
Velocity and pressure.
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Fig. 6.15. Driven cavity problem, adaptive refinement using the “Maximum strategy”, with
pressure-averaging. Velocity and pressure.
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Fig. 6.16. Driven cavity problem, adaptive refinement using the “Local Strategy”, θ = 1.5, with
pressure-averaging. Velocity and pressure.
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Fig. 6.17. Velocity profiles of the driven cavity problem. The curves are velocity profiles of
present solutions after 5 refinements, using different strategies. The stars denote the velocity profile
of the solution using the Taylor-Hood element.
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