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Nonconforming Immersed Finite Element Methods

for Interface Problems

Xu Zhang

(ABSTRACT)

In science and engineering, many simulations are carried out over domains consisting of
multiple materials separated by curves/surfaces. If partial differential equations (PDEs)
are used to model these simulations, it usually leads to the so-called interface problems of
PDEs whose coefficients are discontinuous. In this dissertation, we consider nonconforming
immersed finite element (IFE) methods and error analysis for interface problems.

We first consider the second order elliptic interface problem with a discontinuous diffusion
coefficient. We propose new IFE spaces based on the nonconforming rotated Q1 finite ele-
ments on Cartesian meshes. The degrees of freedom of these IFE spaces are determined by
midpoint values or average integral values on edges. We investigate fundamental properties
of these IFE spaces, such as unisolvency and partition of unity, and extend well-known trace
inequalities and inverse inequalities to these IFE functions. Through interpolation error
analysis, we prove that these IFE spaces have optimal approximation capabilities.

We use these IFE spaces to develop partially penalized Galerkin (PPG) IFE schemes whose
bilinear forms contain penalty terms over interface edges. Error estimation is carried out
for these IFE schemes. We prove that the PPG schemes with IFE spaces based on integral-
value degrees of freedom have the optimal convergence in an energy norm. Following a
similar approach, we prove that the interior penalty discontinuous Galerkin schemes based
on these IFE functions also have the optimal convergence. However, for the PPG schemes
based on midpoint-value degrees of freedom, we prove that they have at least a sub-optimal
convergence. Numerical experiments are provided to demonstrate features of these IFE
methods and compare them with other related numerical schemes.

We extend nonconforming IFE schemes to the planar elasticity interface problem with dis-
continuous Lamé parameters. Vector-valued nonconforming rotated Q1 IFE functions with
integral-value degrees of freedom are unisolvent with appropriate interface jump conditions.
More importantly, the Galerkin IFE scheme using these vector-valued nonconforming rotated
Q1 IFE functions are “locking-free” for nearly incompressible elastic materials.

In the last part of this dissertation, we consider potential applications of IFE methods to
time dependent PDEs with moving interfaces. Using IFE functions in the discretization in
space enables the applicability of the method of lines. Crank-Nicolson type fully discrete
schemes are also developed as alternative approaches for solving moving interface problems.

This work received support from NSF grants DMS-0713763 and DMS-1016313.
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Chapter 1

Introduction

In this chapter, we start with the introduction to the typical second order elliptic interface
problems and their applications. Next we provide a brief survey of numerical methods for
interface problems and a short review of the recently developed immersed finite element
(IFE) methods. Our motivations to work on nonconforming IFE methods are presented at
the end of this chapter.

1.1 Interface Problems and Their Applications

We consider the classic second order elliptic interface problem that appears in many appli-
cations:

−∇ · (β∇u) = f, in Ω, (1.1)

u = g, on ∂Ω, (1.2)

where the physical domain Ω ⊂ Rd, d = 1, 2, 3, is assumed to be formed by multiple materials.
Without loss of generality, we assume that the domain Ω is separated by an interface Γ into
two sub-domains Ω+, Ω−, such that Ω = Ω+ ∪ Ω− ∪ Γ, see Figure 1.1 for an illustration.
Each sub-domain contains only one material. The coefficient function β(X) is discontinuous
across the interface Γ due to the change in material properties. For simplicity, we assume
β(X) is a piece-wise constant function defined by

β(X) =

{
β−, if X ∈ Ω−,
β+, if X ∈ Ω+,

(1.3)

where β−, β+ > 0. Across the interface Γ, the solution u(x, y) is assumed to satisfy the jump
conditions:

[u]Γ = 0, (1.4)[
β∇u · n]Γ = 0, (1.5)

1



Xu Zhang Chapter 1. Introduction 2

where n is the unit normal vector of the interface Γ. Here, for every piece-wise function v
defined as

v(X) =

{
v−(X), if X ∈ Ω−,
v+(X), if X ∈ Ω+,

we let [v]Γ = v+|Γ − v−|Γ.

Figure 1.1: A sketch of solution domain for interface problems.

Γ

Ω−

Ω+

∂Ω

−→

−→

The elliptic interface problem arises in many applications, one of which is the plasma particle
simulations in ion thruster optics [24, 83, 84]. An ion thruster is a type of electric propulsion
device which emits a high-energy ion beam to propel a spacecraft. The standard algorithm to
model a plasma is particle-in-cell (PIC) in which the the propellant beam ions are represented
by macro particles. The trajectory of each ion plasma particle is determined by Newton’s
second law:

mp′′i = mai = Fi(Φ), i = 1, 2, · · · ,M, (1.6)

where pi is the position of each particle, M is the total number of particles, and Φ is the
electric potential. The electric field is governed by the elliptic equation:

−∇ · (β∇Φ) = f(Φ). (1.7)

These two sets of equations are coupled through F(Φ) and f(Φ) due to Lorentz force and
other pertinent physical laws [83]. Note that the simulation domain of the electric fields is
usually chosen as a three dimensional domain containing the ion thruster with parts formed
by different materials under investigation; hence, this simulation domain consists of multiple
materials and leads to the interface model problems (1.1) - (1.5).

Other applications for the elliptic interface problems include plasma simulations in spacecraft
charging in space [69, 141], the projection methods to solve the Navier-Stokes problems
involving multi-phase flows [40, 77], and topology optimization of heat conduction problems
[56], to name just a few.
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1.2 Survey of Numerical Methods for Interface Prob-

lems

A large number of numerical methods have been developed for interface problems such
as finite difference (FD) methods and finite element (FE) methods. These conventional
methods, especially finite element methods [26, 39, 149], can be applied to solve interface
problems, provided that solution meshes are tailored to fit the interface; otherwise, the
convergence of the numerical solutions might be impaired [9]. Such meshes are often called
body-fitting, as illustrated in the left plot of Figure 1.2. Geometrically, the body-fitting
restriction requires each element to be placed essentially on one side of a material interface.
Physically, it means each element in a mesh to be occupied mainly by one of the materials.

Figure 1.2: Comparison of a body-fitting triangular mesh (left) and non-body-fitting rect-
angular (middle) and triangular (right) meshes.

On the other hand, it is usually time consuming to generate a satisfactory body-fitting mesh
for an interface problem in which the interface separating the materials is geometrically com-
plicated. Such a difficulty becomes even more severe if the interface evolves in a simulation
because a new mesh has to be generated for each of the material configurations to be con-
sidered. For many applications, it is therefore desirable to develop numerical methods that
can be used with non-body-fitting meshes, such as the Cartesian meshes in the plot in the
middle and on right in Figure 1.2, to solve interface problems. A Cartesian mesh can also
be obviously advantageous in many simulations. Particle-In-Cell method for plasma particle
simulations [83, 84, 106, 107] is a typical example that prefers the electric potential interface
problem (1.7) to be solved on a Cartesian mesh for efficient particle tracking.

Many numerical methods based on Cartesian meshes have been developed for interface prob-
lems. In the finite difference formulation, Peskin developed the immersed boundary method
[120, 121, 128] in 1977 to study flow patterns around heart valves. Since then, various finite
difference schemes using Cartesian meshes were proposed, such as the immersed interface
method [51, 90, 92, 94], the ghost fluid method [54, 111, 112], the matched interface and
boundary method [154, 155, 156], and the Cartesian grid method [2, 32, 119], to name just a
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few.

In the finite element formulation, special treatments need to be taken for elements around
the interface. One way is to modify the weak formulation of finite element equations near
the interface. The penalty finite element method [9, 18] penalizes the solution jump around
interface. The unfitted finite element method [65, 66, 148] using Nitsche’s scheme, modifies
the bilinear form near interface by using the weighted average flux. Discontinuous Galerkin
formulation methods [20, 63] penalize the interface jump conditions to solve interface prob-
lems.

Another approach is to modify the finite element functions around the interface. The general
finite element method [10, 11, 14, 15] utilizes special shape functions to capture critical
features of the unknown solution and they can be non-polynomials for some cases. The
multi-scale finite element method [43, 52, 78] modifies the basis functions around the interface
by solving an auxiliary “subgrid” problem. Other methods in this category include the
extended finite element method [49, 80, 115, 135], the partition of unity method [12, 13, 17].
The recently proposed immersed finite element methods also fall into this framework. Since
they are closely related with the research presented in this dissertation, we will give a more
detailed introduction in the next section.

1.3 Survey of Previous Work for Immersed Finite El-

ement Methods

Immersed finite element (IFE) methods have been developed for over a decade since the
first article [93] was published. The main idea for IFE methods is to adapt finite element
functions instead of solution meshes for interface problems. IFE methods can use non-body-
fitting meshes for interface problems, such as Cartesian meshes, which are independent of
the interface. Consequently the interface are allowed to cut the interior of elements, in
other words, the interface can be immersed in some of the elements, and this is where the
name “immersed” originated. In an IFE method, elements are divided into two categories:
interface elements, whose interior intersects with the interface, and non-interface ele-
ments, consisting of the rest of elements. Standard finite element functions are utilized on
non-interface elements, while special IFE functions are constructed on interface elements.
According to the interface location, IFE functions are constructed in the form of piece-wise
polynomials on interface elements to incorporate interface jump conditions.

In this section, we give a short review of previous work on IFE methods for different types
of interface problems.
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IFE Methods for One Dimensional Elliptic Interface Problems

In 1998, Li introduced a linear IFE method for one dimensional two-point boundary value
problem with one interface point [93]:

−(β(x)u′(x))′ + q(x)u(x) = f(x), 0 < x < 1, (1.8)

u(0) = 0, u(1) = 0. (1.9)

The jump condition at the interface α ∈ (0, 1) is given by:

[u(α)] = 0, [βu′(α)] = 0. (1.10)

To capture essential features of the solution across the interface, IFE basis functions on
an interface element were defined by piece-wise linear polynomials satisfying interface jump
conditions (1.10). To be more specific, on an interface element T = (x1, x2), with T− =
(x1, α) and T+ = (α, x2), the local linear IFE space was defined as follows:

Sh(T ) = {φ : φ|T s ∈ P1(T s), s = +,−, and [φ(α)] = 0, [βφ′(α)] = 0}. (1.11)

Local linear IFE basis functions φi, i = 1, 2 were chosen from Sh(T ) such that

φi(xj) = δij, i, j = 1, 2. (1.12)

IFE spaces formed by higher degree polynomials have been constructed. In particular, several
types of quadratic IFE basis functions were introduced in [33, 99]. The approximation capa-
bility of corresponding IFE spaces was analyzed. IFE spaces with an arbitrary polynomial
degree p were developed in [1].

Figure 1.3: One dimensional linear IFE local basis functions
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We illustrate the linear, quadratic and cubic IFE local basis functions in Figure 1.3, Figure
1.4, and Figure 1.5, respectively. Global IFE basis functions are illustrated in Figure 1.6.

These one dimensional IFE functions are continuous; hence, they are in H1(Ω). A Galerkin
scheme using any of these IFE spaces is a conforming finite element method. Approximation
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Figure 1.4: One dimensional quadratic IFE local basis functions
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Figure 1.5: One dimensional cubic IFE local basis functions.
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Figure 1.6: One dimensional linear, quadratic, and cubic IFE global basis functions.
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capabilities of these IFE spaces and error estimates of related IFE solutions have been
proved to be optimal in both L2 and H1 norms [1]. We recall their results in the following
two theorems. Let

H̃p(Ω) =
{
u ∈ C(Ω) : u|Ωs ∈ Hp+1(Ωs), s = +,−, and

[
βu(j)(α)

]
= 0, j = 1, 2, · · · , p

}
.

Theorem 1.1. There exists a constant C independent of interface α, such that for all u ∈
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H̃p(Ω)

‖Ipu− u‖0 + h‖Ipu− u‖1 ≤ C
4p

(p− 1)!
hp+1|u|p+1. (1.13)

Here Ipu is the p-th degree IFE interpolation of u.

Theorem 1.2. There exists a constant C independent of interface α, such that

‖uh − u‖0 + h‖uh − u‖1 ≤ C
4p

(p− 1)!
hp+1|u|p+1. (1.14)

Here uh is the p-th degree IFE solution for 1D elliptic interface problems, and u ∈ H̃p(Ω) is
the solution to the interface problem defined by (1.8)-(1.10).

IFE Methods for Two Dimensional Elliptic Interface Problems

IFE methods for two dimensional elliptic interface problems have been extensively studied
in the past decade, see for instance, [41, 42, 60, 61, 69, 70, 73, 87, 95, 96, 98, 130, 147], and
the references therein.

Note that the above mentioned one dimensional IFE spaces [1, 93] are conforming, i.e.,
each of these IFE function spaces is a subset of the trial function space H1(Ω) of weak
formulation of the elliptic interface problem. However, for higher dimensional cases, the
global continuity of IFE functions cannot be guaranteed in general. In fact, locally imposing
the interface jump condition on each interface element only guarantees the continuity of IFE
functions within an element, but IFE functions are usually discontinuous across edges which
are cut by interfaces as those edges marked by red color in Figure 1.7.

In [96], both conforming and nonconforming linear IFE methods have been developed on
triangular meshes for the two dimensional elliptic interface problem. The nonconforming
linear IFE space is a natural extension of the one dimensional IFE spaces to two dimensional
case. The nonconforming IFE spaces have many advantages. First, the construction of
IFE functions is rather straightforward because one only need to consider a single element
and neglect the continuity between elements. Second, the resulting IFE linear system has
the same structure as standard FE linear system on the same mesh, which makes efficient
solvers for FEs applicable for solving interface problems. The disadvantages are due to its
nonconformity which makes the error estimation more challenging.

On the other hand, in the conforming IFE method proposed in [96], to maintain the continu-
ity along edges, each conforming IFE basis has an enlarged support and takes an average or
a weighted average value of nonconforming IFE basis with the same values at nodal points.
One benefit of the conforming IFEs is that convergence analysis can be established straight-
forward via Céa’s lemma [44]. However, one obvious drawback is that the construction of
its basis is more complicated than nonconforming linear IFE functions. Also, due to a larger
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Figure 1.7: Interface edges (marked by red color) on a Cartesian mesh.

1

support of every global basis function, the global stiffness matrix is usually denser than the
matrix from a nonconforming IFE method. Moreover, it is much more complicated to extend
this conforming IFE method to deal with more complicated PDEs or using higher degree
polynomials.

A comparison of the nonconforming linear FE and IFE local basis functions is illustrated
in Figure 1.8. Global FE and IFE functions are illustrated in Figure 1.9. These plots
demonstrate that linear IFE basis functions are continuous within an interface element, but
discontinuous across interface edges.

Figure 1.8: Two dimensional linear FE (left) and IFE (right) local basis functions.
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Figure 1.9: Two dimensional linear FE (left) and IFE (right) global basis functions.

Approximation capabilities of the nonconforming linear IFE spaces was studied in [95]. In-
stead of using the standard scaling argument, the authors extended the multi-point Taylor
expansion idea [28, 35] to prove that the Lagrange type IFE interpolation can achieve the
optimal convergence orders O(h2) in L2 norm and O(h) in H1 norm.

Higher degree IFEs for two dimensional elliptic interface problems based on triangular meshes
were studied in [129]. Their numerical experiments suggested that interior penalty terms are
required in the computational schemes in order to obtain the optimal convergence. For three
dimensional elliptic interface problem, nonconforming linear IFE spaces based on tetrahedra
meshes were constructed and applied to plasma simulation based on the particle-in-cell
formulation [82, 84].

When the solution domain is rectangular or polygonal that can be divided into several rect-
angles, it is often preferable and more natural to use a Cartesian mesh formed by rectangles,
see right plot in Figure 1.2 as an illustration. A bilinear IFE space on the Cartesian rectan-
gular meshes was introduced in [98]. Note that an interface curve may intersect a rectangle
at two adjacent edges of a rectangle or at two opposite edges of the rectangle. Procedures of
constructing bilinear IFE functions on these two types of interface rectangles were discussed
[70, 98].

Comparisons of local and global bilinear FE and IFE basis are illustrated in Figure 1.10
and Figure 1.11, respectively. Again, these bilinear IFE spaces are nonconforming because
functions in these spaces are not continuous across interface edges as illustrated by the plot in
the right in Figure 1.11. Approximation capabilities of the bilinear IFE spaces were studied
in [69, 70]. Their analysis indicated that bilinear IFE spaces retain optimal approximation
capabilities in L2 and H1 norms as the standard bilinear FE spaces. These bilinear IFE
functions have been used in Galerkin method [69], interior penalty discontinuous Galerkin
method [72], and finite volume method [71] for solving elliptic interface problems. For three
dimensional elliptic interface problem, a trilinear IFE method has been developed for solving
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the electroencephalography forward problem on parallelepiped meshes [139].

For elliptic interface problems with nonhomogeneous flux jump, local IFE spaces were en-
riched by adding another piece-wise polynomial function which vanishes at all nodes but
with discontinuous flux [73]. An alternative approach to handle nonhomogeneous flux jump
was introduced in [61].

Figure 1.10: Two dimensional bilinear FE/IFE local basis functions. From left to right: FE
basis, Type I IFE basis, Type II IFE basis.

Figure 1.11: Two dimensional bilinear FE (left) and IFE (right) global basis functions.
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IFE Methods for Other Interface Problems

IFE methods have been extended to other types of interface problems involving a system of
PDEs, time dependent PDEs, and higher order PDEs.

For planar elasticity interface problems, a nonconforming linear IFE method based on the
triangular Cartesian mesh was presented in [60, 97, 150] and the authors concluded that
this method has at least O(h) convergence in L∞ norm. In [60, 62], the authors developed a
conforming linear IFE method where the optimal convergence rate in L∞ norm was observed.
However, in this conforming IFE configuration, global IFE basis functions have a rather
complicated and larger support around the interface. In [108], a nonconforming bilinear
IFE method was developed for the elasticity interface problems. The authors studied error
behaviors for both linear and bilinear IFE methods in L2 and H1 norms. More importantly,
they discovered that linear and bilinear IFE functions for elasticity interface problems do
not always have the unisolvent property. As a result, in some configurations of interface
location elasticity materials, linear and bilinear IFE functions cannot be constructed. Also
in [108], the authors analyzed the unisolvent property and proposed an approach to identify
a class of elastic materials for which the linear and bilinear IFE functions are guaranteed
to be uniquely constructed. Their analysis indicated that the bilinear IFE functions are
guaranteed to be applicable for elasticity interface problems for a larger class of elasticity
material configurations than linear IFE functions.

For time dependent problems, IFE methods have been used to solve the parabolic interface
problems with static interfaces. In [8] the authors proposed a backward Euler scheme using
IFEs to solve a semi-linear parabolic interface problem and studied corresponding error
estimation. In [104], a novel approach was proposed using IFEs together with the Laplace
transform to solve a parabolic interface problem. Unlike classic time-marching algorithms,
for which solution on new time step necessitates information from previous time step, the
Laplace transformation in time led to a set of Helmholtz-like interface problems independent
of each other, which can be solved with IFE functions in parallel. In [142], an immersed
Eulerian-Lagrangian localized adjoint method was developed for transient advection-diffusion
interface problems.

IFE methods have been used also for time dependent problems with moving interfaces. In
[75], the authors developed several fully discrete Crank-Nicolson (CN) type IFE algorithms
for solving parabolic equation with moving interfaces. All of these algorithms have been
observed to have optimal convergence rates. These CN-IFE algorithms are consistent with
the standard CN-FE scheme for the parabolic equation in the sense that they become the
standard CN scheme if the coefficient function is continuous or if the interface Γ does not
change with time and a body-fitting mesh is used. In [102], the authors demonstrated
that IFEs methods can be used together with the method of lines (MoL) to solve parabolic
interface problems. They observed that using IFEs and a suitably chosen ODE solver can
efficiently and reliably solve parabolic moving interface problems on a fixed Cartesian mesh.
In particular, an adaptive IFE-MoL scheme can be a very effective and efficient approach for
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a moving interface problem where the interface changes with respect to time in a complicated
way. The IFE-MoL schemes were extended to handle the non-homogeneous flux jump in a
moving interface problem [101].

For interface problems involving fourth order PDEs, IFE methods were used to solve the one
dimensional beam interface problem and the two dimensional bi-harmonic interface problem
[100]. To avoid using higher degree polynomials (p ≥ 2), these methods used a mixed
formulation with linear IFE functions.

1.4 Motivations to Study Nonconforming IFE Meth-

ods

This dissertation focuses on nonconforming IFE methods for interface problems. First we
would like to clarify the terminology nonconforming. The nonconforming here is different
from the one used traditionally in the finite element literatures. Note that most of the two
and three dimensional IFE spaces in the literatures, except for the only one in [96], are
nonconforming in the traditional sense because their IFE functions are discontinuous across
interface edges. However, these nonconforming IFE spaces are constructed using linear or
bilinear polynomials with their degrees of freedom determined by the nodal values on vertices,
which is a key ingredient for “conforming” finite elements. In this dissertation, we propose
new IFE spaces with their DOF determined by the midpoint values or average integral values
over edges, which are nonconforming finite element ideas.

One can see this difference from another point of view. IFE spaces can be viewed as locally
modified finite element spaces for interface problems in the sense that finite element functions
are adjusted to satisfy interface jump conditions. Most of the IFE spaces in the literatures
modify conforming finite element spaces such as the usual linear or bilinear finite element
spaces. Functions in IFE spaces proposed in this dissertation are revised nonconforming
finite element functions according to specific interface problems; hence, they are called non-
conforming IFE spaces. To be specific, we adapt the simplest nonconforming finite elements
on rectangular meshes, i.e. the nonconforming rotated Q1 finite elements [36, 38, 85, 86, 123].

Nonconforming finite element methods have been widely used especially in the solid mechan-
ics and fluid mechanics due to their better stability than conforming finite element methods.
The simplest nonconforming finite element on a triangular mesh, known as nonconforming P1

element or Crouzeix-Raviart element, was first introduced in 1973 by Crouzeix and Raviart
[47]. The simplest nonconforming finite elements on a rectangular mesh are called noncon-
forming rotated Q1 elements which were first introduced by Rannacher and Turek [123] for
solving the Stokes problem. Degrees of freedom for these nonconforming finite elements are
determined by

• the midpoint values on edges, or
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• the average integral values over edges.

In the following discussion, we will use SPh (Ω) to denote the nonconforming FE/IFE space of
the first type, with P in SPh (Ω) to emphasize that the degrees of freedom of this finite element
is determined by point values. We will use SIh(Ω) to denote the nonconforming FE/IFE space
of the second type, with I in SIh(Ω) to emphasize that the degrees of freedom of this finite
element is determined by integral values over element edges. Note that the nonconforming
P1 element [47] coincides for both cases, i.e., SPh (Ω) = SIh(Ω). For nonconforming rotated
Q1 finite elements, these two types are different.

Nonconforming finite element methods are used for solving elliptic problems [50, 85, 118]
and elasticity problems [29, 53, 88]. We refer readers to [25, 28, 37, 44] and the reference
therein for more details about nonconforming finite elements methods. In [87], Kwak, Wee
and Chang developed IFE methods based on nonconforming P1 finite element for the second
order elliptic interface problem. According to the authors, the difficulty of dealing with
nonconformity in the error analysis seems to be significantly reduced.

Our motivations to study nonconforming IFE methods are from three aspects. First, the
convergence and error estimation for conforming type IFE methods are usually challenging.
There have been a few attempts [42, 69, 74, 143] in the study of error estimates of linear
[95] and bilinear IFE [70] solutions to the two dimensional elliptic interface problem. The
difficulties in the analysis stem from the error estimation of the integrations over interface
edges. The estimation is challenging because conforming type IFE functions, such as linear
and bilinear IFE functions, are discontinuous across interface edges. Nonconforming finite
elements, such as Crouzeix-Raviart element and rotated Q1 element, impose the degrees of
freedom, in other words the continuity of IFE functions, through edges instead of vertices;
hence, we hope the continuity conditions of the IFE functions can be improved on interface
edges. These nonconforming IFE functions with improved continuity condition may further
help us in the error analysis of IFE methods.

The second motivation to study nonconforming IFE methods is with regard to improving
the numerical performance. It has been observed that conforming type IFE solutions are not
as accurate around the interface as places away from the interface. For instance, we plot the
error of a bilinear IFE solution to an elliptic problem with a circular interface in Figure 1.12.
The numerical solution error is observed to have the “crown” effect, i.e., the bilinear IFE
solution has much larger error near the interface than the rest of the domain. We guess this
is caused by the poor continuity condition of conforming type IFE functions on interface
edges. This might be the reason that the convergence of conforming type IFE solutions
cannot achieve optimal rate in L∞ norm. Since nonconforming finite elements strengthen
continuity condition on edges, therefore we hope that using nonconforming IFE methods can
eliminate this “crown” effect and improve the overall numerical performance.

The third motivation to study nonconforming IFE methods is that nonconforming finite
elements are usually preferable to deal with more complicated PDEs arising from solid and
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Figure 1.12: The left plot is a rectangular domain with a circular interface. The right plot is
the point-wise error of a bilinear IFE solution to an elliptic interface problem define on the
geometry on the left.

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
0

1

2

3

4

5

x 10
−4

 

x

Galerkin IFE

y
 

P
o

in
tw

is
e 

E
rr

o
r

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−5

fluid mechanics due to their reliability and simplicity. In linear elasticity system, low order
conforming FE methods usually encounter the so-called “locking” phenomenon as the elastic
material becomes nearly incompressible [16, 45]. Nonconforming finite elements, on the other
hand, are usually “locking” free and are tested to be more robust for these applications. In
Stokes system, the fluid velocity field is assumed to be divergence free which characterizes
an incompressible fluid flow. There are no conforming finite element spaces with piecewise
polynomials of degree less than five that can satisfy the divergence free condition [37]; hence it
is usually very expensive to use conforming finite element methods to solve Stokes equations.
On the other hand, divergence free nonconforming finite element spaces can be constructed
with lowest order polynomials, such as nonconforming P1 element [27] on triangular meshes
and nonconforming rotated Q1 element [25, 37] on rectangular meshes. When we deal with
interface problems involving more complicated PDE models such as the linear elasticity
system and Stokes equations, it is desirable to develop IFE methods based on nonconforming
rather than conforming finite elements.

1.5 Outline of the Dissertation

In this dissertation, we focus on the nonconforming rotated Q1 IFE methods and their error
analysis for elliptic and elasticity interface problems. The rest of the dissertation is organized
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as follows.

In Chapter 2, we construct IFE spaces based on nonconforming rotated Q1 finite elements
on Cartesian meshes for second order elliptic interface problems. The discussion covers both
midpoint value and integral value degrees of freedom of these IFE spaces.

In Chapter 3, we investigate properties of these nonconforming IFE spaces. Fundamental
properties such as partition of unity, trace inequalities, and inverse inequalities are proved.
The approximation capabilities of these IFE spaces will be analyzed via the error estimation
of interpolations. Some numerical examples will be provided at the end of this chapter.

In Chapter 4, we develop numerical schemes based on nonconforming IFE spaces for solv-
ing the elliptic interface problems. Error estimation for these schemes will be carried out.
Numerical experiments are provided to demonstrate features of these new IFE methods.
Related numerical methods are compared at the end of this chapter.

In Chapter 5, we extend these nonconforming IFE methods to planar elasticity interface
problems. We discuss how to construct vector-valued IFE spaces for the elasticity system
and investigate fundamental features of these IFE spaces. Numerical examples are provided
to demonstrate the “locking” free property of the new IFE methods.

In Chapter 6, we extend IFE methods to parabolic type moving interface problems. Both
semi-discrete and fully discrete schemes are developed. Numerical results are provided to
demonstrate performance of these schemes.

In Chapter 7, we briefly discuss our future research plan.



Chapter 2

Nonconforming IFE Spaces

In this chapter, we develop nonconforming IFE spaces SPh (Ω) and SIh(Ω) with midpoint-value
and integral-value degrees of freedom, respectively. These new IFE functions are derived
from the well-known nonconforming rotated Q1 finite elements [123]. In Section 2.1, we
introduce some preliminary results and notations that will be frequently used throughout
this dissertation. In Section 2.2, we recall the basic framework of nonconforming rotated Q1

finite elements which are used on non-interface elements of a Cartesian mesh. In Section 2.3,
we construct local IFE spaces SPh (T ) on interface elements using the midpoint-value degrees
of freedom, and then form the corresponding global IFE space SPh (Ω). In Section 2.4, we
construct local IFE spaces SIh(T ) on interface elements using the integral-value degrees of
freedom, and then form the corresponding global IFE space SIh(Ω).

2.1 Preliminaries and Notations

Throughout the dissertation, Ω ⊂ R2 denotes a bounded domain formed by a union of
rectangles. Let D(Ω) denote the space of C∞ functions with compact support in Ω. The dual
space D′(Ω) is the space of distributions. For any multi-index α = (α1, α2) and |α| = α1 +α2,
the weak derivative Dα is defined by [28]:

Dαv(φ) = (−1)|α|
∫

Ω

v
∂|α|φ

∂xα1∂yα2
dxdy, ∀ φ ∈ D(Ω).

We use the Sobolev space
W k,p(Ω) = {v : ‖v‖k,p,Ω <∞} ,

with non-negative integer index k and 1 ≤ p ≤ ∞. The associated norm ‖ · ‖k,p,Ω is defined

16
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by

‖v‖k,p,Ω =


∑

|α|≤k
‖Dαv‖p0,p,Ω




1/p

,

where

‖v‖0,p,Ω =

(∫

Ω

|v|pdX
)1/p

,

in the case 1 ≤ p <∞. If p =∞, we define

‖v‖k,∞,Ω = max
|α|≤k
‖Dαv‖0,∞,Ω,

where
‖v‖0,∞,Ω = ess sup{|v(X)| : X ∈ Ω}.

The Sobolev semi-norm | · |k,p,Ω associated with W k,p(Ω) is defined by |v|k,p,Ω = ‖Dαv‖0,p,Ω,
where |α| = k. In the case p = 2, the Sobolev space W k,p(Ω) becomes a Hilbert space and
we denote it by Hk(Ω) = W k,2(Ω). We omit the index 2 in associated norms for simplicity,
i.e. ‖v‖k,2,Ω = ‖v‖k,Ω, and |v|k,2,Ω = |v|k,Ω.

For interface problem, we assume that the physical domain Ω ⊂ R2 is formed by multiple
materials. Without loss of generality, Ω is assumed to be separated by an interface curve Γ
into two sub-domains Ω+, Ω−, such that Ω = Ω+ ∪ Ω− ∪ Γ, see Figure 1.1. Each sub-domain
contains only one material. The solution spaces of interface problems usually have low
global regularity due to changes of solution properties across interfaces. If v|Ωs ∈ W k,p(Ωs),
s = +,−, and v /∈ W k,p(Ω), then the notations of norm ‖v‖k,p,Ω and semi-norm |v|k,p,Ω
should be understood as follows

‖v‖k,p,Ω =
(
‖v‖2

k,p,Ω+ + ‖v‖2
k,p,Ω−

)1/2
, |v|k,p,Ω =

(
|v|2k,p,Ω+ + |v|2k,p,Ω−

)1/2
, (2.1)

for 1 ≤ p <∞, and

‖v‖k,∞,Ω = max (‖v‖k,∞,Ω+ , ‖v‖k,∞,Ω−) , |v|k,∞,Ω = max (|v|k,∞,Ω+ , |v|k,∞,Ω−) , (2.2)

for p =∞.

Let Th be a Cartesian mesh of the solution domain Ω with the maximum length of edge h.
For each element T ∈ Th, we call it an interface element if the interior of T intersects with
the interface Γ; otherwise, we name it a non-interface element. Without loss of generality,
we assume that interface elements in Th satisfy the following hypotheses when the mesh size
h is small enough [70]:

(H1) The interface Γ cannot intersect an edge of any rectangular element at more than two
points unless the edge is part of Γ;
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(H2) If Γ intersects the boundary of a rectangular element at two points, these intersection
points must be on different edges of this element.

We let T ih be the collection of interface elements, and T nh = Th/T ih be the collection of non-
interface elements. Moreover, we denote the collection of all edges in the mesh Th by Eh and
denote the collections of interface edges and non-interface edges by E ih and Enh , respectively.

2.2 Nonconforming Rotated Q1 Functions

In this section, we recall the nonconforming rotated Q1 finite elements [123]. In our IFE
methods, standard nonconforming rotated Q1 finite element functions are used on all non-
interface elements. On interface elements, these functions are locally modified to satisfy
interface jump conditions.

We first consider a typical non-interface element T ∈ T nh with the following vertices:

A1 = (0, 0)t, A2 = (h, 0)t, A3 = (0, h)t, A4 = (h, h)t. (2.3)

We label four edges of T as follows:

b1 = A1A2, b2 = A2A4, b3 = A4A3, b4 = A3A1, (2.4)

and let Mi be the midpoint of bi, i = 1, 2, 3, 4, respectively. See Figure 2.1 for an illustration
of a non-interface element.

Figure 2.1: A non-interface rectangular element.
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As proposed in [123], there are two types of degrees of freedom for nonconforming rotated
Q1 finite elements. Here we follow Ciarlet’s triplet definition [44] of a finite element to
differentiate these two finite elements. The first type of nonconforming rotated Q1 finite
elements is defined by (T,ΠT ,Σ

P
T ), where

ΠT = Span{1, x, y, x2 − y2}, (2.5)

and
ΣP
T = {ψPT (Mi) : i = 1, 2, 3, 4,∀ψPT ∈ ΠT}. (2.6)

We use the superscript P to emphasize that the degrees of freedom are determined by the
point values at the midpoints. It is easy to check that this Lagrange type finite element
(T,ΠT ,Σ

P
T ) is unisolvent, i.e., for given values vi ∈ R, i = 1, 2, 3, 4, there exists a unique

function ψPT ∈ ΠT such that

ψPT (Mi) = vi, ∀ i = 1, 2, 3, 4. (2.7)

The local finite element basis functions ψPj,T , j = 1, 2, 3, 4 are chosen such that

ψPj,T (Mi) = δij, ∀ i, j = 1, 2, 3, 4. (2.8)

In particular, if the vertices of T are given by (2.3), then

ψP1,T =
1

4h2
(3h2 + 4hx− 8hy − 4(x2 − y2)), (2.9a)

ψP2,T =
1

4h2
(−h2 + 4hy + 4(x2 − y2)), (2.9b)

ψP3,T =
1

4h2
(−h2 + 4hx− 4(x2 − y2)), (2.9c)

ψP4,T =
1

4h2
(3h2 − 8hx+ 4hy + 4(x2 − y2)). (2.9d)

The second type of nonconforming rotated Q1 finite elements is defined by the triplet
(T,ΠT ,Σ

I
T ), where

ΣI
T =

{
1

|bi|

∫

bi

ψIT (X)ds : i = 1, 2, 3, 4,∀ψIT ∈ ΠT

}
, (2.10)

and |bi| denotes the length of the edge bi. Here we use superscript I to emphasize that the
degrees of freedom are given by average integral values over edges. Again, it is not hard to
verify that (T,ΠT ,Σ

I
T ) is unisolvent. We choose the local basis functions ψIj,T , j = 1, 2, 3, 4,

such that
1

|bi|

∫

bi

ψIj,T (X)ds = δij. (2.11)
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In particular, if the vertices of T are given by (2.3), then

ψI1,T =
1

4h2
(3h2 + 6hx− 10hy − 6(x2 − y2)), (2.12a)

ψI2,T =
1

4h2
(−h2 − 2hx+ 6hy + 6(x2 − y2)), (2.12b)

ψI3,T =
1

4h2
(−h2 + 6hx− 2hy − 6(x2 − y2)), (2.12c)

ψI4,T =
1

4h2
(3h2 − 10hx+ 6hy + 6(x2 − y2)). (2.12d)

We define nonconforming rotated Q1 local finite element spaces with midpoint-value and
integral-value degrees of freedom by

SP,nh (T ) = Span{ψPi,T : i = 1, 2, 3, 4}, (2.13)

SI,nh (T ) = Span{ψIi,T : i = 1, 2, 3, 4}. (2.14)

Direct comparison shows that these local basis function ψPj,T , and ψIj,T , j = 1, 2, 3, 4 are
different. Nevertheless, on each non-interface element T ∈ T nh , it can be easily verified that
SP,nh (T ) = SI,nh (T ) = ΠT . From now on, we use the uniform notation Snh (T ) to represent the
local nonconforming rotated Q1 finite element space on an element T .

2.3 Nonconforming IFE Space SPh (Ω)

In an IFE method, we modify the local basis functions and local IFE spaces on interface
elements to accomodate the interface jump conditions. In this section, we construct IFE
basis functions whose degrees of freedom are determined by midpoint values on each interface
element T ∈ T ih , and then use them to form local and global IFE spaces.

We exemplify the procedure of constructing an IFE function with a typical interface element
T ∈ T ih whose geometrical configuration is specified in (2.3) - (2.4). Based on the Hypotheses
(H1) and (H2), we assume that an interface curve Γ intersects T at two different points D,
E, and the segment DE separates T into two sub-elements T+ and T−. We call an element
T a Type I interface element if Γ intersects with T at two adjacent edges, or a Type II
interface element if Γ intersects with T at two opposite edges. For the degrees of freedom
determined by midpoint values, there are three geometric configurations of the midpoints of
a Type I interface element:

Case 1: all the midpoints Mi, i = 1, 2, 3, 4 are on one side of DE.

Case 2: three midpoints are on one side of DE, and one midpoint is on the other side.

Case 3: two midpoints are on one side of DE, and two midpoints are on the other side.
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Similarly, there are two geometric configurations of the midpoints of a Type II interface
element:

Case 1: three midpoints are on one side of DE, and one midpoint is on the other side.

Case 2: two midpoints are on one side of DE, and two midpoints are on the other side.

See Figures 2.2 and Figure 2.3 for illustrations of interface elements of different types and
cases.

Figure 2.2: Type I interface rectangles: Case 1,2,3 (midpoint-value degrees of freedom).
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Figure 2.3: Type II interface rectangles: Case 1,2 (midpoint-value degrees of freedom).
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IFE basis functions are constructed via a similar approach for interface elements with dif-
ferent types and cases. In the following discussion we exemplify the approach for a Type
I Case 2 interface element. We assume that the interface points D and E in this case are
specified as follows

D = (dh, 0)t, E = (0, eh)t,
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where 1/2 ≤ d ≤ 1, and 0 < e ≤ 1/2. We define an IFE function φPT to be a piece-wise
rotated Q1 polynomial:

φPT (x, y) =

{
φP,+T (x, y) = v1ψ

P
1,T + c2ψ

P
2,T + c3ψ

P
3,T + c4ψ

P
4,T , if (x, y)t ∈ T+,

φP,−T (x, y) = c1ψ
P
1,T + v2ψ

P
2,T + v3ψ

P
3,T + v4ψ

P
4,T , if (x, y)t ∈ T−.

(2.15)

Here vi, i = 1, 2, 3, 4 are point values at midpoints Mi, i = 1, 2, 3, 4. The function ψPi,T ,
i = 1, 2, 3, 4 are nonconforming rotated Q1 finite element local basis functions defined in
(2.8). The coefficients ci, i = 1, 2, 3, 4 are determined by imposing the following interface
jump conditions to interpret (1.4) and (1.5). We enforce the continuity of φPT through

• two intersection points D and E:

[φPT (xD, yD)] = 0, [φPT (xE, yE)] = 0, (2.16)

• the second order terms in φPT : [
∂2φPT
∂x2

]
= 0, (2.17)

• the flux in the following sense:
∫

DE

[β∇φPT (x, y) · nDE]ds = 0. (2.18)

We will show that these conditions are linearly independent so that they can uniquely de-
termine a nonconforming rotated Q1 local IFE function φPT on an interface element T . Note
that, to maintain the continuity across DE, instead of (2.17), it seems to be more natural
to impose the following condition:

[
φPT

(
xD + xE

2
,
yD + yE

2

)]
= 0, (2.19)

because
[
φPT
]
|DE is a quadratic polynomial which can usually be determined by its values at

three points. However, when the slope of DE is −1 in a Type I Case 2 interface element,
conditions (2.16) and (2.19) lose their linear independence. On the other hand, conditions
(2.16) and (2.17) are always linearly independent. In addition, when the slope of DE is
not −1, conditions (2.16) and (2.17) are equivalent to (2.16) and (2.19). These observations
suggest us to use (2.17) instead of (2.19).

Equations (2.16), (2.17), and (2.18) lead to the following algebraic system McC = MvV to
solve coefficients ci, i = 1, 2, 3, 4, i.e.,




(3/4) + d− d2 1/4− d2 1/4− d+ d2 −(3/4) + 2d− d2

(3/4)− 2e+ e2 1/4− e+ e2 1/4− e2 −(3/4)− e+ e2

2/h2 2/h2 −(2/h2) 2/h2

β−d(2d− e)h β+d2h β+deh β+d(d− 2e)h







c1

c2

c3

c4


 =
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(3/4) + d− d2 1/4− d2 1/4− d+ d2 −(3/4) + 2d− d2

(3/4)− 2e+ e2 1/4− e+ e2 1/4− e2 −(3/4)− e+ e2

2/h2 2/h2 −(2/h2) 2/h2

β+d(2d− e)h β−d2h β−deh β−d(d− 2e)h







v1

v2

v3

v4


 . (2.20)

Note that for all numbers d, e, satisfying 0 < e ≤ 1/2 ≤ d < 1, the determinant of Mc is
strictly negative, i.e.,

det(Mc) =
−2d

h

(
β−(2d− 1)(2d− e)e+ β+(d2(2− 4e) + e2 + 2de(1 + e))

)
< 0. (2.21)

Thus, the IFE functions φPT is uniquely determined by its midpoint values vi, i = 1, 2, 3, 4.

To form IFE basis functions, we let V = Vi = (v1, · · · , v4)t ∈ R4 be the i-th canonical unit
vector such that vi = 1 and vj = 0 if j 6= i. Then we solve for Ci = (c1, · · · , c4)t from (2.20)
and apply its values in (2.15) to form the i-th nonconforming rotated Q1 local IFE basis
function φPi,T .

A nonconforming rotated Q1 local FE basis function and the corresponding IFE basis func-
tions on Type I and Type II interface elements are illustrated in Figure 2.4. Note that
the IFE basis functions are made by piece-wise polynomials and satisfying interface jump
conditions (2.16) - (2.18).

Figure 2.4: Nonconforming rotated Q1 FE (left), Type I (middle) and Type II (right) IFE
local basis functions with midpoint-value degrees of freedom.

We define the nonconforming rotated Q1 local IFE space on an interface element T ∈ T ih to
be

SP,ih (T ) = Span{φPi,T : i = 1, 2, 3, 4}. (2.22)

The corresponding global IFE space is defined by enforcing the continuity through interior
midpoints

SPh (Ω) =
{
v ∈ L2(Ω) : v|T ∈ Snh (T ) if T ∈ T nh , v|T ∈ SP,ih (T ) if T ∈ T ih ;

if T1 ∩ T2 = b whose midpoint is Mb, then v|T1(Mb) = v|T2(Mb)
}
. (2.23)
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Each global IFE function φPi is associated with an edge bi ∈ Eh. The support of a global
IFE basis function is one or two elements depending on whether the associated edge is a
boundary edge or an interior edge. Note that a global nonconforming rotated Q1 IFE basis
function is usually supported on a smaller region compared with the global bilinear IFE basis
function whose support is four elements that sharing a common vertex [70]. A comparison
of a nonconforming rotated Q1 global FE and IFE basis functions associated with an interior
edge is provided in Figure 2.5. We note that a global IFE basis function is continuous at
the midpoint on the associated edge but not continuous throughout the entire edge as the
standard FE basis function.

Figure 2.5: Nonconforming rotated Q1 FE (left) and IFE (right) global basis functions with
midpoint-value degrees of freedom.

2.4 Nonconforming IFE Space SIh(Ω)

In this section, we construct the nonconforming rotated Q1 IFE function φIT on each interface
element T ∈ T ih using degrees of freedom determined by integral values over edges, and then
form the corresponding IFE space SIh(Ω).

Likewise, there are two types of interface elements depending on the location of interface
points D and E. However, it is unnecessary to subdivide each type of interface elements
into different cases as we did for IFE functions with midpoint-value degrees of freedom in
Section 2.3, because it does not matter how many midpoints are in each piece of an interface
element if the degrees of freedom are determined by edge integral values. As before, we
denote an element as Type I interface element if Γ intersects with it at two adjacent edges,
and Type II interface element if Γ intersects with it at two opposite edges. See Figure 2.6
for an illustration of the different types of interface elements.
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Figure 2.6: Type I and Type II interface rectangles (integral-value degrees of freedom).
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We use Type II interface element as an example to demonstrate the construction of its local
IFE space. Assume that the interface points D and E are

D = (dh, 0)t, E = (eh, h)t,

with 0 < d < 1 and 0 < e < 1. The IFE function φIT is defined as follows:

φIT (x, y) =

{
φI,+T (x, y) = c1ψ

I
1,T + c2ψ

I
2,T + c3ψ

I
3,T + v4ψ

I
4,T , if (x, y)t ∈ T+,

φI,−T (x, y) = c4ψ
I
1,T + v2ψ

I
2,T + c5ψ

I
3,T + c6ψ

I
4,T , if (x, y)t ∈ T−. (2.24)

Here vi, i = 2, 4 are average values over edges bi, i = 2, 4. Coefficients ci, i = 1, · · · , 6 are
determined by the following conditions:

• average values vi, i = 1, 3:

1

|bi|

∫

bi

φIT (x, y)ds = vi, i = 1, 3, (2.25)

• the continuity at two intersection points:

[φIT (xD, yD)] = 0, [φIT (xE, yE)] = 0, (2.26)

• the second derivative continuity:
[
∂2φIT
∂x2

]
= 0, (2.27)

• the weak flux jump continuity:
∫

DE

[β∇φIT (x, y) · nDE]ds = 0. (2.28)
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Combining (2.25) - (2.28) leads to the following algebraic system

McC = MvV, (2.29)

where C = (c1, c2, · · · , c6)t, V = (v1, · · · , v4)t, Mc = (M1
c ,M

2
c ), and

M1
c =




d(3 + 3d− 2d2) d(−1− d+ 2d2) −d(1− 3d+ 2d2)
−e(1− 3e+ 2e2) e(−1− e+ 2e2) e(3 + 3e− 2e2)
3(−1− 2d+ 2d2) 1 + 2d− 6d2 1− 6d+ 6d2

1− 6e+ 6e2 1 + 2e− 6e2 3(−1− 2e+ 2e2)
12/h2 −(12/h2) 12/h2

2β+(3− 5d− e)h 2β+(−1 + 3d+ 3e)h 2β+(3− d− 5e)h



,

M2
c =




4− 3d− 3d2 + 2d3 d(1− 3d+ 2d2) −d(3− 5d+ 2d2)
e(1− 3e+ 2e2) 4− 3e− 3e2 + 2e3 −e(3− 5e+ 2e2)

3 + 6d− 6d2 −1 + 6d− 6d2 3− 10d+ 6d2

−1 + 6e− 6e2 3 + 6e− 6e2 3− 10e+ 6e2

−(12/h2) −(12/h2) 12/h2

2β−(−3 + 5d+ e)h 2β−(−3 + d+ 5e)h 2β−(5− 3d− 3e)h



,

and

Mv =




4 d(−1− d+ 2d2) 0 −d(3− 5d+ 2d2)
0 e(−1− e+ 2e2) 4 −e(3− 5e+ 2e2)
0 1 + 2d− 6d2 0 3− 10d+ 6d2

0 1 + 2e− 6e2 0 3− 10e+ 6e2

0 −(12/h2) 0 12/h2

0 2β−(−1 + 3d+ 3e)h 0 −2β+(−5 + 3d+ 3e)h



.

Note that for 0 < d < 1 and 0 < e < 1, the determinant of Mc satisfies

det(Mc) =
3

2h

(
β+(4− 5d+ 10d2 − 5d3 − 5e− 2de− d2e+ 10e2 − de2 − 5e3)

+β−(5d− 6d2 + 5d3 + 5e− 6de+ d2e− 6e2 + de2 + 5e3)

)
> 0. (2.30)

Thus, the IFE function φIT is uniquely determined by its average values vi over edges bi,
i = 1, 2, 3, 4. To form the local IFE basis function φIi,T , we let V = Vi = (v1, · · · , v4)t ∈ R4

be the i-th canonical unit vector such that vi = 1 and vj = 0 for j 6= i. Then we solve for
Ci = (c1, · · · , c6)t in (2.29) and use these values in (2.24) to form φIi,T . See Figure 2.7 for an
illustration of nonconforming rotated Q1 local FE and IFE basis functions.

Denote the nonconforming rotated Q1 local IFE space to be

SI,ih (T ) = Span{φIj,T : j = 1, 2, 3, 4}. (2.31)
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Figure 2.7: Nonconforming rotated Q1 FE (left), Type I (middle) and Type II (right) IFE
local basis functions with integral-value degrees of freedom.

The global IFE space with integral-value degrees of freedom is defined as follows

SIh(Ω) =
{
v ∈ L2(Ω) : v|T ∈ Snh (T ) if T ∈ T nh , v|T ∈ SI,ih (T ) if T ∈ T ih ;

if T1 ∩ T2 = b, then

∫

b

v|T1ds =

∫

b

v|T2ds
}
. (2.32)

Each global IFE function φIi is associated with an interior or boundary edge bi ∈ Eh. A com-
parison of the nonconforming rotated Q1 global FE and IFE basis functions associated with
an interior edge is illustrated in Figure 2.8. We can observe that a global IFE basis function
is discontinuous across the common edge of the two elements in its support. However, the
average values of a global IFE basis on the common edge calculated from either of these two
elements in its support are the same.

Remark 2.1. It can be easily shown that for every interface element, the nonconforming ro-
tated Q1 local IFE spaces with midpoint-value and integral-value degrees of freedom coincide,
i.e.,

SP,ih (T ) = SI,ih (T ), ∀T ∈ T ih . (2.33)

From now on, we use the uniform notation Sih(T ) to denote the local IFE space on an
interface element T .

Remark 2.2. The nonconforming rotated Q1 global IFE spaces with midpoint-value and
integral-value degrees of freedom differ, i.e.,

SPh (Ω) 6= SIh(Ω). (2.34)

To see (2.34), Assume φI ∈ SIh(Ω) is a global IFE basis function associated with an interior
edge, as illustrated on the right plot in Figure 2.8. It can be easily observed that φI is not
zero at the midpoint on right side edge of the element on the right. On the other hand, this
IFE function is zero outside these two elements. This means φI is not continuous at the
midpoint mentioned above; hence, it is not in SPh (Ω). Therefore, (2.34) is true.
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Figure 2.8: Nonconforming rotated Q1 FE (left) and IFE (right) global basis functions with
integral-value degrees of freedom.



Chapter 3

Properties of IFE Spaces

In this chapter, we investigate properties of nonconforming rotated Q1 IFE spaces SPh (Ω) and
SIh(Ω). In Section 3.1, we show that these IFE functions inherit a few desirable features from
the standard nonconforming rotated Q1 finite element spaces such as unisolvency, continuity
within an element, partition of unity and so forth. We derive trace inequalities and inverse
inequalities for IFE functions which play important roles in error estimation in Chapter 4.
In Section 3.2, we discuss the approximation capabilities of these IFE spaces by analyzing
the corresponding IFE interpolation errors. In Section 3.3, we use numerical examples to
confirm our error analysis of IFE interpolations.

3.1 Fundamental Properties

In this section, we present several fundamental and useful properties for local IFE spaces
Sih(T ) and global IFE spaces SPh (Ω) and SIh(Ω).

First, as we mentioned in Section 2.3 and 2.4, a nonconforming rotated Q1 IFE function
possesses the unisolvent property.

Lemma 3.1. (Unisolvency) On each interface element T ∈ T ih , an IFE function φPT ∈
Sih(T ) (resp. φIT ∈ Sih(T )) can be uniquely determined by its midpoint values on edges (resp.
average values over edges) and interface jump conditions.

Proof. It can be verified straightforwardly that the coefficient matrix Mc in (2.21) for the
midpoint-value degrees of freedom or (2.30) for the integral-value degrees of freedom is
non-singular for arbitrary configuration of the diffusion coefficient β and interface location,
reflected by d and e. Thus, an IFE function φPT ∈ Sih(T ) (resp. φIT ∈ Sih(T )) can be uniquely
determined by its midpoint values (resp. average values) and interface jump conditions.

29
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The following lemma shows that an IFE function is continuous within each interface element.

Lemma 3.2. (Continuity) On each interface element T ∈ T ih , the local IFE space Sih(T )
is a subspace of C(T ).

Proof. Since each function φT ∈ Sih(T ) is a piece-wise polynomial on T+ and T−, then
it suffices to show that φT is continuous across the straight line DE. For each function
φT ∈ Sih(T ), using continuity of the second order derivative condition (2.17) or (2.27) we can
write it as follows:

φT (x, y) =

{
φ+
T (x, y) = a+ + b+x+ c+y + d(x2 − y2), if (x, y)t ∈ T+,
φ−T (x, y) = a− + b−x+ c−y + d(x2 − y2), if (x, y)t ∈ T−,

where a+, a−, b+, b−, c+, c− and d are coefficients. Therefore, the jump of the function φT is
a linear function as follows

[φT (x, y)] = φ+
T (x, y)− φ−T (x, y) = (a+ − a−) + (b+ − b−)x+ (c+ − c−)y.

By definition, the function [φT ] vanishes at two different points D and E; hence, it vanishes
on the whole line segment DE. Thus φT is continuous across DE.

The next lemma shows that the nonconforming IFE functions inherit the partition of unity
property from standard finite element functions.

Lemma 3.3. (Partition of Unity) On each interface element T ∈ T ih , IFE basis functions
φPi,T and φIi,T satisfy the partition of unity property, i.e.,

4∑

i=1

φPi,T (x, y) = 1, ∀ (x, y)t ∈ T, (3.1a)

and
4∑

i=1

φIi,T (x, y) = 1, ∀ (x, y)t ∈ T. (3.1b)

Proof. We prove (3.1a) for the Type I Case 2 interface elements, and the other types and
cases can be verified similarly. We define an IFE function φPT to be the sum of four local
IFE basis functions, i.e.,

φPT (x, y) =
4∑

i=1

φPi,T (x, y).

Then function φPT can be determined by letting V = (1, 1, 1, 1)t in (2.20), solving for C and
plugging these values to (2.15). Direct calculation leads to C = (1, 1, 1, 1)t. Hence, we obtain
the two pieces φP,+T and φP,−T of φPT satisfying

φP,+T (x, y) = φP,−T (x, y) =
4∑

i=1

ψPi,T (x, y).
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Note that the standard nonconforming finite element basis functions ψPi,T possess the partition
of unity which can be verified by summing up the four basis functions given in (2.9a) - (2.9d);
hence,

φPT (x, y) = 1.

The result (3.1b) can be verified similarly.

One of the important features of nonconforming rotated Q1 IFE functions is that they can
weakly preserve the flux continuity across the actual interface curve Γ although the flux
continuity is enforced on the line segment DE.

Lemma 3.4. (Flux continuity on Γ) Let T be an interface element. For every IFE
function φT ∈ Sih(T ), we have

∫

Γ∩T
[β∇φT · n]ds = 0, (3.2)

where n is the normal vector of Γ.

Proof. Let T ∗ be the region enclosed by Γ ∩ T with DE. Then we have

∫

T ∗
[−div (β∇φT )] dxdy

=

∫

T ∗

(
−div

(
β+∇φ+

T

))
−
(
−div

(
β−∇φ−T

))
dxdy

=

∫

T ∗

(
−β+

(
∂2φ+

T

∂x2
+
∂2φ+

T

∂y2

))
−
(
−β−

(
∂2φ−T
∂x2

+
∂2φ−T
∂y2

))
dxdy

= 0.

The last equality is due to

∂2φsT
∂x2

+
∂2φsT
∂y2

= 0, s = +,−,

for every function φT ∈ Sih(T ). By divergence theorem, we obtain

∫

Γ∩T
[β∇φT · n]ds =

∫

∂T ∗
[β∇φT · n]ds−

∫

DE

[β∇φT · n]ds =

∫

T ∗
[−div (β∇φT )] dxdy = 0.

The following theorem states that the nonconforming rotated Q1 IFE functions are consistent
with standard FE functions.
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Theorem 3.1. (Consistency) IFE basis functions on each interface element T ∈ T ih are
consistent with the finite element basis functions in the sense that

1. if the coefficient has no discontinuity, i.e., β+ = β−, the IFE basis functions φPi,T and
φIi,T become the standard FE basis functions ψPi,T and ψIi,T , respectively.

2. if min{|T+|, |T−|} shrinks to zero, then IFE basis functions φPi,T and φIi,T become the
standard FE basis functions ψPi,T and ψIi,T , respectively. Here |T s| denotes the area of
T s, s = +,−.

Proof. We prove the consistency of the IFE basis functions φPi,T only, and the consistency of
IFE basis functions φIi,T can be shown similarly.

For the first property, if we let β+ = β− in (2.20) for the Type I Case 2 interface elements,
then by straightforward calculation we obtain Mc = Mv. Solve the linear system (2.20) we
obtain C = V in these equations, and this leads to φP,+i,T = φP,−i,T = ψPi,T , i = 1, 2, 3, 4. The

first property follows from this result and the definition of φPi,T . The consistency of interface
elements of other types and cases can be verified similarly.

For the second property, without loss of generality, we assume that the sub-element T+

shrinks to zero. We prove the consistency for Type I Case 2 interface elements, and the
other types and cases can be shown in a similar argument. Note that |T+| → 0 implies
e→ 0. Letting e = 0 in (2.20), we obtain c1 = v1; hence,

φPT = φP,−T =
4∑

i=1

viψ
P
i,T .

By choosing suitable values for vi, we have φPi,T = ψPi,T .

Remark 3.1. The first consistency property in Theorem 3.1 indicates that if β+ = β−,
then IFE spaces SPh (Ω) and SIh(Ω) become standard FE spaces. Corresponding IFE methods,
which will be introduced in Section 4.1, become standard finite element methods.

Remark 3.2. The second consistency property in Theorem 3.1 is critical when applying IFE
functions to solve moving interface problems, which will be discussed in Chapter 6, because the
consistency implies that once an interface curve moves out of an element, the IFE functions
on that element will continuously become the standard finite element functions.

The following theorem is about bounds on the rotated Q1 IFE basis functions.

Theorem 3.2. (Bound of IFE basis functions) There exists a constant C, independent
of interface location but depending on the diffusion coefficient, such that for i = 1, 2, 3, 4, and
k = 0, 1, 2, the IFE basis functions on every interface element T have the following bounds:

|φPi,T |k,∞,T ≤ Ch−k, (3.3a)
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and
|φIi,T |k,∞,T ≤ Ch−k. (3.3b)

Proof. We prove (3.3a) only, and (3.3b) can be verified using similar arguments. For the
Type I Case 2 interface elements, note that the coefficients ci of the IFE function φPT can be
calculated explicitly from (2.20) as follows

c1 =
1

WI,2

(
2(β− − β+)(v2 + v4)d2e+ 2(β− − β+)(v3 − 2v4)de2

+2β+v1d
2 + (β+ − β−)(v2 + v4)de+ ((β+ − β−)(v3 − 2v4) + 2β+v1)e2

)
,

c2 =
1

WI,2

(
2(β− − β+)(2v1 + v2 − v4)d2e+ 2(β− − β+)(v3 − 2v4)de2

+2β+v1d
2 + (β+ − β−)(v2 + v4)de+ ((β+ − β−)(v3 − 2v4) + 2β+v1)e2

)
,

c3 =
1

WI,2

(
2(β− − β+)(2v1 − v2 + 2v3 − v4)d2e+ 2(β− − β+)(v3 − 2v4)de2

+2β+v1d
2 + (β+ − β−)(v2 + v4)de+ ((β+ − β−)(v3 − 2v4) + 2β+v1)e2

)
,

c4 =
1

WI,2

(
2(β− − β+)(2v1 − v2 + v4)d2e+ 2(β− − β+)(v3 − 2v4)de2

+2β+v1d
2 + (β+ − β−)(v2 + v4)de+ ((β+ − β−)(v3 − 2v4) + 2β+v1)e2

)
,

where

WI,2 = (β−(−1 + 2d)(2d− e)e+ β+(d2(2− 4e) + e2 + 2de(1 + e))) > 0.

Note that

WI,2 ≥ β+(d2(2− 4e) + e2 + 2de(1 + e)) ≥
{
β+(d2(2− 4e)) ≥ β+d2 ≥ 1

4
β+, if 0 < e ≤ 1

4
,

β+(e2 + 2de(1 + e)) ≥ 3
8
β+, if 1

4
≤ e ≤ 1

2
.

Thus there exists a constant C depends only on βs, s = +,−, and midpoint values vi,
i = 1, 2, 3, 4, such that

ci ≤ C.

Note that for standard nonconforming FE basis ψPi,T , it can be verified directly from (2.9a)
- (2.9d) that

|ψPi,T |k,∞,T ≤ Ch−k, k = 0, 1, 2.

The bound of IFE basis functions (3.3a) follows from that the IFE basis function φPi,T are
linear combination of ψPi,T with coefficient vi, and ci. Interface elements of other types and
cases can be verified by similar arguments.
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Trace Inequalities

Trace inequalities are important for the finite element analysis, especially for the estimation
on the boundary terms. It is well-known [125] that the following trace inequalities hold on
each non-interface element T ∈ T nh : There exists a constant C such that

‖v‖0,b ≤ C|b|1/2|T |−1/2 (‖v‖0,T + hT‖∇v‖0,T ) , ∀v ∈ H1(T ), (3.4)

‖∇v · n‖0,b ≤ C|b|1/2|T |−1/2
(
‖∇v‖0,T + hT‖∇2v‖0,T

)
, ∀v ∈ H2(T ). (3.5)

Here b ⊂ ∂T is an edge of T and hT is the diameter of T . |b| and |T | denotes the length of
b and area of T , respectively.

We note from Lemma 3.2 that on each T ∈ T ih , the IFE space Sih(T ) ⊂ H1(T ); hence the
trace inequality (3.4) is true for IFE functions in Sih(T ). However, Sih(T ) * H2(T ) since an
IFE function φT ∈ Sih(T ) is not C1; hence, the result (3.5) cannot be applied to IFE function
v ∈ Sih(T ) in general.

In the following discussion, we derive a trace inequality similar to (3.5) for IFE functions.
Let φT ∈ Sih(T ) be a rotated Q1 IFE function defined on T = �A1A2A3A4 whose vertices
are given by

A1 = (x0, y0)t, A2 = (x0 + h, y0)t, A3 = (x0, y0 + h)t, A4 = (x0 + h, y0 + h)t.

Then, we can write φT in the following form:

φT (x, y) =

{
c−1 + c−2 (x− x0) + c−3 (y − y0) + c−4 ((x− x0)2 − (y − y0)2), in T−,
c+

1 + c+
2 (x− x0) + c+

3 (y − y0) + c+
4 ((x− x0)2 − (y − y0)2), in T+.

(3.6)

To simplify the notations, we only consider the case x0 = y0 = 0 and a general interface
element can be mapped to this element via translation. Thus (3.6) becomes

φT (x, y) =

{
φ−T (x, y) = c−1 + c−2 x+ c−3 y + c−4 (x2 − y2), if (x, y) ∈ T−,
φ+
T (x, y) = c+

1 + c+
2 x+ c+

3 y + c+
4 (x2 − y2), if (x, y) ∈ T+.

(3.7)

Without loss of generality, we assume that the interface points D, E satisfy

D = (dh, 0)t ∈ A1A2, E = (0, eh)t ∈ A1A3,

for Type I interface element with 0 < d ≤ 1, 0 < e ≤ 1, and

D = (dh, 0)t ∈ A1A2, E = (eh, h)t ∈ A3A4,

for Type II interface element with 0 < d < 1, 0 < e < 1. First we derive a bound for the
coefficients csj , j = 1, 2, 3, 4, s = +,− of an IFE function φT defined in (3.7).
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Lemma 3.5. There exists a constant C > 1, depending on the diffusion coefficient β but
independent of interface location D, E and the element size h, such that for every IFE
function φT defined by (3.7) on any interface element T , we have

1

C

(
|c+

2 |+ |c+
3 |+ h|c+

4 |
)
≤ |c−2 |+ |c−3 |+ h|c−4 | ≤ C

(
|c+

2 |+ |c+
3 |+ h|c+

4 |
)
, (3.8)

and

|c+
1 | ≤ C

(
|c−1 |+ h|c−2 |+ h|c−3 |+ h2|c−4 |

)
, |c−1 | ≤ C

(
|c+

1 |+ h|c+
2 |+ h|c+

3 |+ h2|c+
4 |
)
. (3.9)

Proof. Since φT ∈ Sih(T ), then the two pieces φ−T and φ+
T satisfy the interface jump conditions

(2.16) - (2.18), or (2.26) - (2.28). By direct calculation, we have




c−1
c−2
c−3
c−4


 =




1 (β−−β+)de2

β−(d2+e2)
h (β−−β+)d2e

β−(d2+e2)
h 0

0 β−d2+β+e2

β−(d2+e2)
(β+−β−)de
β−(d2+e2)

0

0 (β+−β−)de
β−(d2+e2)

β+d2+β−e2

β−(d2+e2)
0

0 0 0 1







c+
1

c+
2

c+
3

c+
4


 , (3.10)

for Type I interface element, and




c−1
c−2
c−3
c−4


 =




1 (β−−β+)d
β−(1+(d−e)2)

h (β−−β+)d(d−e)
β−(1+(d−e)2)

h 2(β−−β+)de
β−(1+(d−e)2)

h2

0 β−(d−e)2+β+

β−(1+(d−e)2)
(β+−β−)(d−e)
β−(1+(d−e)2)

2(β+−β−)e
β−(1+(d−e)2)

h

0 (β+−β−)(d−e)
β−(1+(d−e)2)

β−+β+(d−e)2

β−(1+(d−e)2)
2(β+−β−)(d−e)e
β−(1+(d−e)2)

h

0 0 0 1







c+
1

c+
2

c+
3

c+
4


 , (3.11)

for Type II interface element. It is easy to check that every entry in the coefficient matrices
in (3.10) and (3.11), regardless of h, can be bounded above by a constant C independent of
d, e, with the assumption d, e ∈ [0, 1]. Then using (3.10) or (3.11) we can obtain the second
parts of the estimates in (3.8) and (3.9). The first parts of the estimates (3.8) and (3.9) can
be proved similarly.

To extend the trace inequality (3.5) to an interface element T , we first work on a sub-element
T̃ ⊂ T . We partition T into four congruent squares Ti, i = 1, 2, 3, 4, by connecting two pairs
of midpoints on opposite edges of T . It is easy to verify that, for either Type I or Type II
interface element, there exists a sub-element Ti which is completely inside of either T− or
T+, and we denote this sub-element by T̃ . The following lemma provides an estimate of φT
on T̃ .

Lemma 3.6. There exists a constant C independent of interface location and the element
size hT such that for every IFE function φT defined by (3.7) on any interface element T , we
have

hT

|T̃ |
‖∇φT‖2

0,T̃
≥ ChT

(
(cs2)2 + (cs3)2 + h2

T (cs4)2
)
, s = +,−, (3.12)
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where T̃ is a sub-element defined above.

Proof. Without loss of generality, we assume T̃ = T4 which is the upper right sub-element
and T̃ ⊂ T−. By Young’s inequality, there exists a positive σ1 such that

‖∂xφT‖2
0,T̃

=
h2
T

12

(
3(c−2 )2 + 9c−2 c

−
4 hT + 7(c−4 )2h2

T

)

≥ h2
T

12

((
3− 9

2σ1

)
(c−2 )2 +

(
7− 9σ1

2

)
(c−4 )2h2

T

)
.

Similarly, there exists a positive σ2 such that

‖∂yφT‖2
0,T̃

=
h2
T

12

(
3(c−3 )2 − 9c−3 c

−
4 hT + 7(c−4 )2h2

T

)

≥ h2
T

12

((
3− 9

2σ2

)
(c−3 )2 +

(
7− 9σ2

2

)
(c−4 )2h2

T

)
.

Let σi ∈ (3
2
, 14

9
), i = 1, 2, then by direct calculation we obtain

‖∇φT‖2
0,T̃
≥ Ch2

T

(
(c−2 )2 + (c−3 )2 + h2

T (c−4 )2
)
. (3.13)

Applying the coefficients equivalence result (3.8) in Lemma 3.5 to the above inequality, we
obtain

‖∇φT‖2
0,T̃
≥ Ch2

T

(
(c+

2 )2 + (c+
3 )2 + h2

T (c+
4 )2
)
. (3.14)

Note that |T̃ | = h2
T

4
, then (3.12) follows from (3.13) and (3.14).

Now we are ready to establish the trace inequality for IFE functions on an interface element
T .

Theorem 3.3. (Trace Inequality) There exists a constant C depending only on the dif-
fusion coefficient β such that for every nonconforming rotated Q1 IFE function φT on any
interface element T , we have

‖β∇φT · n‖0,b ≤ Ch
1/2
T |T |−1/2‖

√
β∇φT‖0,T , (3.15)

where b ⊂ ∂T is an interface edge of T , and n is the unit outer normal of T .

Proof. Without loss of generality, we consider an interface element T whose vertices are given
by (2.3); hence, φT can be written as (3.7). Let b = A1A3, with b+ = A1E, and b− = EA3.
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By direct calculations, we obtain

‖φ+
T,x‖2

0,b+ = (c+
2 )2ehT ≤ (c+

2 )2hT ,

‖φ+
T,y‖2

0,b+ = (c+
3 )2ehT − 2c+

3 c
+
4 e

2h2
T +

4

3
(c+

4 )2e3h3
T ≤

7

3

(
(c+

3 )2 + (c+
4 hT )2

)
hT ,

‖φ−T,x‖2
0,b− = (c−2 )2(1− e)hT ≤ (c−2 )2hT ,

‖φ−T,y‖2
0,b− = (c−3 )2(1− e)hT − 2c−3 c

−
4 (1− e2)h2

T +
4

3
(c−4 )2(1− e3)h3

T

≤ 7

3

(
(c−3 )2 + (c−4 hT )2

)
hT .

Applying the estimate (3.12) to the above inequalities, we obtain

‖φT,p‖2
0,bs ≤ C

hT

|T̃ |
‖∇φT‖2

0,T̃
, p = x, y, s = +,−.

Hence,

‖β∇φT · n‖2
0,b ≤ βmax(‖φT,x‖2

0,b + ‖φT,y‖2
0,b)

≤ C
βmax
βmin

4hT
|T | ‖

√
β∇φT‖2

0,T̃

≤ C
hT
|T |‖

√
β∇φT‖2

0,T , (3.16)

where βmax = max{β−, β+} and βmin = min{β−, β+}. The estimate in (3.15) follows from
taking square root of both sides in (3.16).

Inverse Inequalities

Another important property of finite element functions is the inverse inequalities [28]: There
exists a constant C such that for all v ∈ Sh(T )

‖v‖l,p,T ≤ Chm−l+
n
p
−n
q ‖v‖m,q,T , (3.17)

where Sh(T ) is a finite element subspace of W l,p(T )∩Wm,q(T ) with 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞,
and 0 ≤ m ≤ l. In (3.17), n is the dimension of T , i.e., T ⊂ Rn and h is the diameter of T .

The above inverse estimates are true for finite element functions which are uniform polyno-
mials in each element. However, the IFE functions are piece-wise polynomials in interface
elements; hence, the inverse inequality (3.17) cannot be applied for IFE functions directly.
The following theorem establishes inverse inequalities for IFE functions.
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Theorem 3.4. (Inverse Inequalities) There exists a constant C depending only on the
diffusion coefficient β such that every nonconforming rotated Q1 IFE function φT on any
interface element T satisfies

|φT |k,∞,T ≤ Ch−1
T |φT |k,T , (3.18)

and
|φT |k,T ≤ Chl−kT |φT |l,T (3.19)

for all 0 ≤ l ≤ k ≤ 2.

Proof. For (3.18), we prove the case k = 1, the other cases can be verified similarly. Consider
the typical interface element T = �A1A2A3A4 whose vertices are given in (2.3). By the
coefficient equivalent property (3.8) in Lemma 3.5 and (3.12) in Lemma 3.6, we obtain,

|φT |1,∞,T = max{|φT |1,∞,T− , |φT |1,∞,T+}
≤ max{|c−2 |+ |c−3 |+ 4h|c−4 |, |c+

2 |+ |c+
3 |+ 4h|c+

4 |}
≤ C(|c−2 |+ |c−3 |+ h|c−4 |)
≤ Ch−1

T ‖∇φT‖0,T̃

≤ Ch−1
T |φT |1,T .

For (3.19), we prove the case k = 1, l = 0, and the other cases can be verified similarly.
Using the coefficient equivalent property (3.8) again, we obtain

|φT |21,T = |φT |21,T+ + |φT |21,T−

=

∫

T+

(c+
2 + 2c+

4 x)2 + (c+
3 − 2c+

4 y)2dxdy +

∫

T−
(c−2 + 2c−4 x)2 + (c−3 − 2c−4 y)2dxdy

=

∫

T

(c+
2 + 2c+

4 x)2 + (c+
3 − 2c+

4 y)2 + (c−2 + 2c−4 x)2 + (c−3 − 2c−4 y)2dxdy

= h2

(
(c+

2 )2 + (c+
3 )2 + 2hc+

2 c
+
4 − 2hc+

3 c
+
4 +

8

3
h2(c+

4 )2

)

+h2

(
(c−2 )2 + (c−3 )2 + 2hc−2 c

−
4 − 2hc−3 c

−
4 +

8

3
h2(c−4 )2

)

≤ Ch2
(
(c−2 )2 + (c−3 )2 + h2(c−4 )2

)
.

≤ C|φT |21,T̃ . (3.20)

On the other hand, we note that φT on T̃ is a uniform polynomial; hence the standard inverse
inequality (3.17) can be applied on T̃ to have

|φT |21,T̃ ≤ Ch−2|φT |20,T̃ ≤ Ch−2|φT |20,T . (3.21)

Combining the estimates (3.20) and (3.21), we obtain

|φT |1,T ≤ Ch−1|φT |0,T .
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The trace inequality (3.15) and inverse inequalities (3.18), (3.19) for IFE functions play
important roles in the error estimation of related IFE methods, which we will discuss in
Chapter 4.

Remark 3.3. Similar trace inequalities and inverse inequalities for linear and bilinear IFE
functions can be proved in a similar approach. We refer a recent article [103] for more
details.

3.2 Approximation Capabilities

In this section, we discuss the approximation capabilities of nonconforming rotated Q1 IFE
spaces SPh (Ω) and SIh(Ω).

Recall that on each non-interface element T ∈ T nh , the local interpolation can be defined in
two ways based on two different types of finite element basis {ψPi,T}4

i=1 and {ψIi,T}4
i=1. The

first type is associated with midpoint-value degrees of freedom and the local interpolation
operator IPh,T : H2(T )→ Snh (T ) is defined as follows:

IPh,Tu =
4∑

i=1

u(Mi)ψ
P
i,T , (3.22)

where Mi, i = 1, 2, 3, 4 are midpoints of edges of T . Using the local basis of integral-value
degrees of freedom, the local interpolation operator IIh,T : H2(T ) → Snh (T ) is defined as
follows:

IIh,Tu =
4∑

i=1

(
1

|bi|

∫

bi

uds

)
ψIi,T . (3.23)

Error estimation for both of these interpolations are analyzed in [123] using the standard
scaling argument:

‖IPh,Tu− u‖0,T + h‖IPh,Tu− u‖1,T ≤ Ch2|u|2,T , ∀T ∈ T nh , (3.24a)

and
‖IIh,Tu− u‖0,T + h‖IIh,Tu− u‖1,T ≤ Ch2|u|2,T , ∀T ∈ T nh . (3.24b)

The interpolations operators IPh,T and IIh,T can be defined similarly on an interface element
T ∈ T ih by replacing the FE local basis functions with the IFE local basis functions. In the
following subsections, we focus on the error analysis for ‖IPh,Tu−u‖k,T and ‖IIh,Tu−u‖k,T on
an interface element T ∈ T ih . The main ideas of our analysis are

• Using multi-point Taylor expansion techniques to derive a uniform bound for IPh,Tu−u
on each interface element T

‖IPh,Tu− u‖k,T ≤ Ch2−k‖u‖2,T , k = 0, 1,
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where C is independent of the interface location.

• Deriving a uniform error bound for the difference of the two interpolations

‖IPh,Tu− IIh,Tu‖k,T ≤ Ch2−k‖u‖2,T , k = 0, 1,

then we apply the triangular inequality and the two estimates above to obtain a uniform
error bound for IIh,Tu− u:

‖IIh,Tu− u‖k,T ≤ Ch2−k‖u‖2,T , k = 0, 1.

3.2.1 Error Analysis of Interpolation on SPh (Ω)

We use the multi-point Taylor expansion idea [28, 35] to analyze the interpolation error
IPh,Tu − u. We note that this idea has been used for error analysis of the linear [95] and
bilinear IFE interpolations [70].

On each interface element T ∈ T ih , we assume that the interface Γ intersects T at two points,
denoted by D and E. We use the line segment DE to approximate the actual interface
Γ ∩ T . The segment DE separates T into two sub-elements, denoted by T+ and T− where
T = T+ ∪ T− ∪DE. Note that there is a small region enclosed by Γ ∩ T and DE, denoted
by T ∗ where T ∗ = (Ω+ ∩ T−) ∪ (Ω− ∩ T+). Then, an interface element T is subdivided into
up to four pieces, i.e.,

T =
(
Ω+ ∩ T+

)
∪
(
Ω− ∩ T−

)
∪
(
Ω+ ∩ T−

)
∪
(
Ω− ∩ T+

)
. (3.25)

For every interface element T ∈ T ih , we define the following space

PHm(T ) = {u : u|Ωs∩T ∈ Hm(Ωs ∩ T ), s = +,−} .

The equipped norm for every function u ∈ PHm(T ) is defined as follows

‖u‖2
m,T = ‖u‖2

m,Ω−∩T + ‖u‖2
m,Ω+∩T ,

and the semi-norm is defined by

|u|2m,T = |u|2m,Ω−∩T + |u|2m,Ω+∩T .

Then we define the following spaces on an interface element T ∈ T ih whose functions satisfy
the interface jump conditions (1.4) and (1.5).

PHm
int(T ) = {u ∈ C(T ), u|Ωs∩T ∈ Hm(Ωs ∩ T ), s = +,−, [β∇u · nΓ] = 0 on Γ ∩ T} ,

PCm
int(T ) = {u ∈ C(T ), u|Ωs∩T ∈ Cm(Ωs ∩ T ), s = +,−, [β∇u · nΓ] = 0 on Γ ∩ T} .
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Similarly, we define the following spaces on the whole domain Ω:

PHm
int(Ω) = {u ∈ C(Ω), u|Ωs ∈ Hm(Ωs), s = +,−, [β∇u · nΓ] = 0 on Γ} ,

PCm
int(Ω) = {u ∈ C(Ω), u|Ωs ∈ Cm(Ωs), s = +,−, [β∇u · nΓ] = 0 on Γ} .

Here m ≥ 2. Clearly, we have the inclusion PC2
int(T ) ⊂ PH2

int(T ), for every T ∈ T ih .

On an interface element T , we consider the interpolation IPh,T : PH2
int(T ) → Sih(T ) defined

by

IPh,Tu(X) =
4∑

i=1

u(Mi)φ
P
i,T (X), (3.26)

where φPi,T , i = 1, 2, 3, 4, are nonconforming rotated Q1 local IFE basis functions with
midpoint-value degrees of freedom. We define the global IFE interpolation IPh : PH2

int(Ω)→
SPh (Ω) as follows

(IPh u)|T = IPh,Tu, ∀ T ∈ Th, (3.27)

where the local interpolation IPh,T is defined in (3.22) or (3.26) depending on whether T is a
non-interface or an interface element.

We assume that the interface Γ and the partition Th satisfy the following assumptions [70, 95]:

(H3) The interface Γ is defined by a piecewise C2 function, and the partition Th is formed
such that the subset of Γ in every interface element T ∈ T ih is C2.

(H4) The interface Γ is smooth enough so that PC3
int(T ) is dense in PH2

int(T ) for every
interface element T ∈ T ih .

Note that the hypothesis (H4) holds if the interface is smooth enough [114, 146].

Let ρ̃ = β−

β+ , and ρ = β+

β−
. For any point M̃ ∈ Γ ∩ T , let M̃⊥ be the orthogonal projection of

M̃ onto DE. We first recall several results in [70].

Lemma 3.7. Let M̃ be an arbitrary point on Γ ∩ T and XDE be an arbitrary point on

DE. Assume n(M̃) = (nx(M̃), ny(M̃))t is the unit normal vector of Γ at M̃ , and n(DE) =
(n̄x, n̄y)

t is the unit normal vector of DE. Then, for any u ∈ PC2
int(T ), we have

∇u+(M̃) = N−(M̃)∇u−(M̃), ∇u−(M̃) = N+(M̃)∇u+(M̃), (3.28)

where

N−(M̃) =

(
ny(M̃)2 + ρnx(M̃)2 (ρ− 1)nx(M̃)ny(M̃)

(ρ− 1)nx(M̃)ny(M̃) nx(M̃)2 + ρny(M̃)2

)
,

N+(M̃) =

(
ny(M̃)2 + ρ̃nx(M̃)2 (ρ̃− 1)nx(M̃)ny(M̃)

(ρ̃− 1)nx(M̃)ny(M̃) nx(M̃)2 + ρ̃ny(M̃)2

)
.
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Moreover, for any v ∈ Sih(T ), we have

∇v+(XDE) = N−
DE
∇v−(XDE), ∇v−(XDE) = N+

DE
∇v+(XDE), (3.29)

where

N−
DE

=

(
n̄2
y + ρn̄2

x (ρ− 1)n̄xn̄y
(ρ− 1)n̄xn̄y n̄2

x + ρn̄2
y

)
,

N+

DE
=

(
n̄2
y + ρ̃n̄2

x (ρ̃− 1)n̄xn̄y
(ρ̃− 1)n̄xn̄y n̄2

x + ρ̃n̄2
y

)
.

Lemma 3.8. For any point M̃ ∈ Γ ∩ T , there exists a constant C > 0 such that

‖M̃ − M̃⊥‖ ≤ Ch2, (3.30)

and
‖N s

DE
−N s(M̃)‖ ≤ Ch, s = +,−. (3.31)

Figure 3.1: A sketch of interface rectangle: Type I, Case 2.
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We use the Type I Case 2 interface element, illustrated in Figure 3.1, to present our analysis
and interface elements of other types and cases can be discussed similarly. First we consider
the interpolation error estimation on Ω− ∩ T−. Let X = (x, y)t ∈ Ω− ∩ T−. Assume the
line segments XMi, i = 2, 3, 4 do not intersect with the interface Γ and DE, whereas XM1
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meets Γ and DE at M̃1, and M1, respectively. One can find an illustration of the related
geometry in Figure 3.1 . We also assume that

M̃1 = t̃M1 + (1− t̃)X = (x̃1, ỹ1)t, M1 = t̄M1 + (1− t̄)X = (x̄1, ȳ1)t,

for some positives 0 ≤ t̃, t̄ ≤ 1. Therefore,

t̃(M1 − M̃1) = (1− t̃)(M̃1 −X), t̄(M1 −M1) = (1− t̄)(M1 −X).

We define the operator 	 by

X1 	X2 , (x1 − x2, y2 − y1)t, (3.32)

for any two points X1 = (x1, y1)t, X2 = (x2, y2)t.

Lemma 3.9. For any number p, r ∈ R, any vector q ∈ R2, and any point X ∈ Ω− ∩ T−,
XDE ∈ DE, there exists an IFE function v ∈ Sih(T ) such that

v(X) = p, ∇v(X) = q,
∂2v(X)

∂x2
= 2r, (3.33)

and

q ·
4∑

i=1

(Mi −X)φPi,T (X) (3.34)

= −(N−
DE
− I)q · (M1 − M̃1)φP1,T (X)− (N−

DE
− I)q · (M̃1 −XDE)φP1,T (X)− rF0(X),

where

F0(X) =
4∑

i=2

((xi − x)2 − (yi − y)2)φPi,T (X)

+2N−
DE

(XDE 	X) · (M1 −XDE)φP1,T (X) (3.35)

+((xDE − x)2 − (yDE − y)2)φP1,T (X) + ((x1 − xDE)2 − (y1 − yDE)2)φP1,T (X).

Proof. Note that a local IFE function v ∈ Sih(T ) can be written as

v(Y ) =

{
v−(Y ) = a− + b−x+ c−y + d−(x2 − y2), if Y ∈ T−,
v+(Y ) = a+ + b+x+ c+y + d+(x2 − y2), if Y ∈ T+,

for every point Y = (x, y)t ∈ T . Since the point X is in T−, then we can uniquely determine
coefficients a−, b−, c−, d− by solving a small linear system defined by (3.33). The coefficients
a+, b+, c+, d+ in the plus piece v+ of the IFE function v, can be determined by the following
interface jump conditions

v+(D) = v−(D), v+(E) = v−(E), d+ = d−,
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and ∫

DE

β+∇v+(Y ) · nDEds =

∫

DE

β−∇v−(Y ) · nDEds.

We then apply the Taylor expansion to express v(Mi), i = 2, 3, 4 at X as follows

v(Mi) = v−(Mi) = v−(X)+∇v−(X)·(Mi−X)+d−((xi−x)2−(yi−y)2), i = 2, 3, 4. (3.36)

Next we expand v(M1) at X using the interface jump conditions (1.4) - (1.5) and the deriva-
tive relation (3.29) given in Lemma 3.7 as follows

v(M1) = v+(M1)

= v+(XDE) +∇v+(XDE) · (M1 −XDE) + d+((x1 − xDE)2 − (y1 − yDE)2)

= v−(XDE) +N−
DE
∇v−(XDE) · (M1 −XDE) + d−((x1 − xDE)2 − (y1 − yDE)2)

= v−(X) +∇v−(X) · (XDE −X) + d−((xDE − x)2 − (yDE − y)2)

+N−
DE
∇v−(XDE) · (M1 −XDE) + d−((x1 − xDE)2 − (y1 − yDE)2)

= v−(X) +∇v−(X) · (M1 −X)−∇v−(X) · (M1 −XDE)

+d−((xDE − x)2 − (yDE − y)2) +N−
DE
∇v−(XDE) · (M1 −XDE)

+d−((x1 − xDE)2 − (y1 − yDE)2)

= v−(X) +∇v−(X) · (M1 −X) + (N−
DE
− I)∇v−(X) · (M1 −XDE)

+N−
DE

(∇v−(XDE)−∇v−(X)) · (M1 −XDE)

+d−((xDE − x)2 − (yDE − y)2) + d−((x1 − xDE)2 − (y1 − yDE)2)

= v−(X) +∇v−(X) · (M1 −X) + (N−
DE
− I)∇v−(X) · (M1 − M̃1)

+(N−
DE
− I)∇v−(X) · (M̃1 −XDE) + 2d−N−

DE
(XDE 	X) · (M1 −XDE)

+d−((xDE − x)2 − (yDE − y)2) + d−((x1 − xDE)2 − (y1 − yDE)2). (3.37)

Here the last equality is due to

∇v−(XDE)−∇v−(X) =

(
b− + 2d−xDE
c− − 2d−yDE

)
−
(
b− + 2d−x
c− − 2d−y

)
= 2d−(XDE 	X).
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Applying (3.36) and (3.37) to the IFE local interpolation (3.26) yields

IPh,Tv(X) =
4∑

i=1

v(Mi)φ
P
i,T (X)

=
4∑

i=1

v(X)φPi,T (X) +
4∑

i=1

∇v(X) · (Mi −X)φPi,T (X)

+d−
4∑

i=2

((xi − x)2 − (yi − y)2)φPi,T (X)

+(N−
DE
− I)∇v−(X) · (M1 − M̃1)φP1,T (X)

+(N−
DE
− I)∇v−(X) · (M̃1 −XDE)φP1,T (X)

+2d−N−
DE

(XDE 	X) · (M1 −XDE)φP1,T (X)

+d−((xDE − x)2 − (yDE − y)2)φP1,T (X)

+d−((x1 − xDE)2 − (y1 − yDE)2)φP1,T (X). (3.38)

Using the partition of unity property (3.1a) in Lemma 3.3, we obtain

4∑

i=1

v(X)φPi,T (X) = v(X) = IPh,Tv(X). (3.39)

Applying (3.39) to the first term on the right hand side of (3.38) yields

4∑

i=1

∇v(X) · (Mi −X)φPi,T (X)

= −(N−
DE
− I)∇v−(X) · (M1 − M̃1)φP1,T (X)

−(N−
DE
− I)∇v−(X) · (M̃1 −XDE)φP1,T (X)− rF0(X). (3.40)

The identity (3.34) follows from substituting q for ∇v(X) in (3.40).

The next lemma provides upper bounds of F0(X) and ∇F0(X).

Lemma 3.10. There exists a constant C > 0 such that F0(X) given in (3.35) satisfies

|F0(X)| ≤ Ch2, (3.41)

and
‖∇F0(X)‖ ≤ Ch, (3.42)

for every point X ∈ Ω− ∩ T−, and XDE ∈ DE.
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Proof. We recall the upper bounds of the IFE basis functions (3.3a) in Theorem 3.2. Then
by direct calculations we obtain

|F0(X)| ≤
4∑

i=2

|((xi − x)2 − (yi − y)2)||φPi,T (X)|

+2‖N−
DE
‖‖XDE 	X‖‖M1 −XDE‖|φP1,T (X)|

+|(xDE − x)2 − (yDE − y)2||φP1,T (X)|+ |(x1 − xDE)2 − (y1 − yDE)2||φP1,T (X)|

≤ C

4∑

i=2

|((xi − x)2 − (yi − y)2)|+ C‖N−
DE
‖‖XDE 	X‖‖M1 −XDE‖

+C|(xDE − x)2 − (yDE − y)2|+ C|(x1 − xDE)2 − (y1 − yDE)2|
≤ Ch2, (3.43)

which proves (3.41). For estimate (3.42), first we note that

∂xF0(X)

=
4∑

i=2

−2(xi − x)φPi,T (X) +
4∑

i=2

((xi − x)2 − (yi − y)2)φPi,T,x(X)

+2N−
DE

(−1, 0)t · (M1 −XDE)φP1,T (X) + 2N−
DE

(XDE 	X) · (M1 −XDE)φP1,T,x(X)

+− 2(xDE − x)φP1,T (X) + ((xDE − x)2 − (yDE − y)2)φP1,T,x(X)

+((x1 − xDE)2 − (y1 − yDE)2)φP1,T,x(X).

Then we use Theorem 3.2 again and follow similar arguments in (3.43) to obtain

|∂xF0(X)| ≤ Ch. (3.44)

Similarly, we can obtain the bound |∂yF0(X)| ≤ Ch. The estimate (3.42) follows immedi-
ately.

Now we are ready to derive an expansion of the IFE interpolation error.

Theorem 3.5. Let T ∈ T ih be an interface element, and u ∈ PC2
int(T ). For every point

X ∈ Ω− ∩ T−, and XDE ∈ DE, we have

IPh,Tu(X)− u(X) = (F1 + F2)φP1,T (X)− 1

2
F0uxx(X) +

4∑

i=1

Iiφ
P
i,T (X), (3.45)
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where

F1(X) = (N−(M̃1)−N−
DE

)∇u−(X) · (M1 − M̃1), (3.46a)

F2(X) = −(N−
DE
− I)∇u−(X) · (M̃1 −XDE), (3.46b)

I1,1(X) = (N−(M̃1)− I)

∫ 1

0

d

dt
(∇u−(tM̃1 + (1− t)X))(M1 − M̃1) dt, (3.46c)

I1,2(X) =

∫ t̃

0

(1− t) d
2

dt2
u(tM1 + (1− t)X)dt, (3.46d)

I1,3(X) =

∫ 1

t̃

(1− t) d
2

dt2
u(tM1 + (1− t)X)dt, (3.46e)

I1(X) = I1,1(X) + I1,2(X) + I1,3(X), (3.46f)

Ii(X) =

∫ 1

0

(1− t) d
2

dt2
u(tMi + (1− t)X)dt, i = 2, 3, 4. (3.46g)

Proof. First we note that u(Mi), i = 2, 3, 4 can be expanded at X as follows

u(Mi) = u(X) +∇u(X) · (Mi−X) +

∫ 1

0

(1− t) d
2

dt2
u(tMi + (1− t)X)dt, i = 2, 3, 4. (3.47)

For u(M1), the expansion is derived as follows

u(M1)

= u(X) +

∫ t̃

0

d

dt
u(tM1 + (1− t)X)dt+

∫ 1

t̃

d

dt
u(tM1 + (1− t)X)dt

= u(X) +∇u−(X) · (M1 −X)− (1− t̃)∇u−(M̃1) · (M1 −X)

+

∫ t̃

0

(1− t) d
2

dt2
u−(tM1 + (1− t)X)dt+ (1− t̃)∇u+(M̃1) · (M1 −X)

+

∫ 1

t̃

(1− t) d
2

dt2
u+(tM1 + (1− t)X)dt

= u(X) +∇u−(X) · (M1 −X) + (N−(M̃1)− I)∇u−(M̃1) · (M1 −X)(1− t̃)

+

∫ t̃

0

(1− t) d
2

dt2
u−(tM1 + (1− t)X)dt+

∫ 1

t̃

(1− t) d
2

dt2
u+(tM1 + (1− t)X)dt

= u(X) +∇u−(X) · (M1 −X) + (N−(M̃1)− I)∇u−(X) · (M1 −X)(1− t̃)

(N−(M̃1)− I)

∫ 1

0

d

dt
(∇u−(tM̃1 + (1− t)X)) · (M1 −X)(1− t̃)dt (3.48)

+

∫ t̃

0

(1− t) d
2

dt2
u−(tM1 + (1− t)X)dt+

∫ 1

t̃

(1− t) d
2

dt2
u+(tM1 + (1− t)X)dt.
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Using the expansions (3.47) and (3.48) to substitute u(Mi) in (3.26), and letting p = u(X),
q = ∇u−(X), 2r = u−xx(X) in (3.34), then we can see (3.45) follows from applying (3.34) to
(3.26).

Now we are ready to derive the interpolation error in L2 norm.

Theorem 3.6. There exists a constant C > 0 independent of interface location such that

‖IPh,Tu− u‖0,Ω−∩T− ≤ Ch2‖u‖2,T , (3.49)

for every u ∈ PH2
int(T ) on any interface element T ∈ T ih .

Proof. First we assume u ∈ PC2
int(T ). Then by Theorem 3.5 we can expand IPh,Tu(X)−u(X)

as (3.45). Taking the absolute value of both sides on (3.45) and applying triangle inequality
we have

∣∣IPh,Tu(X)− u(X)
∣∣ ≤ (|F1|+ |F2|)

∣∣φP1,T (X)
∣∣+ |F0||uxx(X)|

+(|I1,1|+ |I1,2|+ |I1,3|)
∣∣φP1,T (X)

∣∣+
4∑

i=2

|Ii|
∣∣φPi,T (X)

∣∣

Note that in Theorem 3.2 we have shown that IFE basis functions are bounded (3.3a); hence

∥∥IPh,Tu− u
∥∥

0,Ω−∩T− ≤ C

(
‖F1‖0,Ω−∩T− + ‖F2‖0,Ω−∩T− + |F0|0,∞,Ω−∩T−‖uxx‖0,Ω−∩T−

‖I1,1‖0,Ω−∩T− + ‖I1,2‖0,Ω−∩T− + ‖I1,3‖0,Ω−∩T− +
4∑

i=2

‖Ii‖0,Ω−∩T−

)
.

(3.50)

To estimate the term involving F1 in (3.50), we apply (3.31) from Lemma 3.8 to obtain

‖F1‖0,Ω−∩T− ≤ ‖N−(M̃1)−N−
DE
‖ ‖M1 − M̃1‖ ‖∇u−‖0,Ω−∩T− ≤ Ch2‖u‖2,Ω−∩T− . (3.51)

To bound the term involving F2 in (3.50), we let XDE = M̃⊥
1 in (3.46b), and use the estimate

(3.30) from Lemma 3.8 to obtain

‖F2‖0,Ω−∩T− ≤ ‖N−DE − I‖ ‖M̃1 − M̃⊥
1 ‖ ‖∇u−‖0,Ω−∩T− ≤ Ch2‖u‖2,Ω−∩T− . (3.52)

Applying the estimate of F0 in (3.41) from Lemma 3.10, we have

|F0|0,∞,Ω−∩T−‖uxx‖0,Ω−∩T− ≤ Ch2|u|2,Ω−∩T− . (3.53)
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To bound the term involving I1,1, we let ξ = tx̃1 + (1− t)x, η = tỹ1 + (1− t)y, and note that

d

dt
(∇u−(tM̃1 + (1− t)X)) · (M1 − M̃1)

=
d

dt

(
uξ(tM̃1 + (1− t)X), uη(tM̃1 + (1− t)X)

)
· (M1 − M̃1)

= uξξ(ξ, η)(x̃1 − x)(x1 − x̃1) + uξη(ξ, η)(ỹ1 − y)(x1 − x̃1)

+uηξ(ξ, η)(x̃1 − x)(y1 − ỹ1) + uηη(ξ, η)(ỹ1 − y)(y1 − ỹ1)

≤ h2|uξξ(ξ, η)|+ 2h2|uξη(ξ, η)|+ h2|uηη(ξ, η)|.

Therefore, by Cauchy-Schwarz inequality, we have

|I1,1|2 ≤ C‖N−(M̃1)− I‖2

(∫ 1

0

h2|uξξ(ξ, η)|+ 2h2|uξη(ξ, η)|+ h2|uηη(ξ, η)|dt
)2

≤ Ch4

∫ 1

0

|uξξ(ξ, η)|2 + |uξη(ξ, η)|2 + |uηη(ξ, η)|2dt. (3.54)

Note that the point (ξ, η) is in Ω−∩T− since the entire line segment XM̃1 is inside Ω−∩T−.
Thus, we integrate (3.54) over Ω− ∩ T− to have the following bound

‖I1,1‖2
0,Ω−∩T− =

∫

Ω−∩T−
|I1,1|2dξdη

≤ Ch4

∫ 1

0

(∫

Ω−∩T−
|uξξ(ξ, η)|2 + |uξη(ξ, η)|2 + |uηη(ξ, η)|2dξdη

)
dt

≤ Ch4‖u‖2
2,Ω−∩T− , (3.55)

Similarly, we bound I1,2 as follows

|I1,2|2

≤ C

(∫ t̃

0

(1− t) d
2

dt2
u−(tM1 + (1− t)X)dt

)2

≤
(∫ t̃

0

(1− t)
(
u−ξξ(ξ, η)(x1 − x)2 + 2u−ξη(ξ, η)(x1 − x)(y1 − y) + u−ηη(ξ, η)(y1 − y)2

)
dt

)2

≤ Ch4

∫ t̃

0

(1− t)2
(
|u−ξξ(ξ, η)|2 + |u−ξη(ξ, η)|2 + |u−ηη(ξ, η)|2

)
dt. (3.56)

Hence, by integrating (3.56) over Ω− ∩ T−

‖I1,2‖2
0,Ω−∩T− ≤ Ch4

∫ t̃

0

(1− t)2

∫

Ω−∩T−

(
|u−ξξ(ξ, η)|2 + |u−ξη(ξ, η)|2 + |u−ηη(ξ, η)|2

)
dξdηdt

≤ Ch4|u|22,Ω−∩T− . (3.57)
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We bound |I1,3| as follows

|I1,3|2

≤
(∫ 1

t̃

(1− t) d
2

dt2
u+(tM1 + (1− t)X)dt

)2

≤
(∫ 1

t̃

(1− t)
(
u+
ξξ(ξ, η)(x1 − x)2 + 2u+

ξη(ξ, η)(x1 − x)(y1 − y) + u+
ηη(ξ, η)(y1 − y)2

)
dt

)2

≤ Ch4

∫ 1

t̃

(1− t)2
(
|u+
ξξ(ξ, η)|2 + |u+

ξη(ξ, η)|2 + |u+
ηη(ξ, η)|2

)
dt. (3.58)

Hence, integrating (3.58) over Ω− ∩ T− yields

‖I1,3‖2
0,Ω−∩T− ≤

∫

T

Ch4

∫ 1

t̃

(1− t)2
(
|u+
ξξ(ξ, η)|2 + |u+

ξη(ξ, η)|2 + |u+
ηη(ξ, η)|2

)
dtdξdη

≤ Ch4

∫ 1

t̃

(1− t)2

(∫

T/Ω−
|u+
ξξ(ξ, η)|2 + |u+

ξη(ξ, η)|2 + |u+
ηη(ξ, η)|2dξdη

)
dt

≤ Ch4|u|22,T/Ω− ,
i.e.,

‖I1,3‖2
0,Ω−∩T− ≤ Ch2|u|2,T/Ω− ≤ Ch2|u|2,T . (3.59)

Similarly, we can show

‖Ii‖2
0,Ω−∩T− ≤ Ch2|u|2,Ω−∩T− , i = 2, 3, 4. (3.60)

Applying the above estimates (3.51), (3.52), (3.53), (3.55), (3.57), (3.59), and (3.60) to
(3.50), we obtain (3.49) for u in PC2

int(T ). Finally, we apply the density hypothesis (H4)
to obtain the estimate (3.49) for u in PH2

int(T ).

Now we estimate the interpolation error using semi-H1 norm. The following theorem gives
the Taylor expansion of the first order derivatives of the interpolation error.

Theorem 3.7. Let T ∈ T ih be an interface element, and u ∈ PC3
int(T ). For every point

X ∈ Ω− ∩ T−, and XDE ∈ DE, we have

∂x
(
IPh,Tu(X)− u(X)

)
= (F1 + F2)φP1,T,x(X)− 1

2
F0,xuxx(X) +

4∑

i=1

Iiφ
P
i,T,x(X), (3.61)

and

∂y
(
IPh,Tu(X)− u(X)

)
= (F1 + F2)φP1,T,y(X)− 1

2
F0,yuxx(X) +

4∑

i=1

Iiφ
P
i,T,y(X), (3.62)

where F0, F1, F2, and Ii, i = 1, · · · , 4 are defined in (3.35), (3.46a) - (3.46g), and F0,x =
∂xF0, and F0,y = ∂yF0.
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Proof. We only prove (3.61), and similar arguments can be used to establish (3.62). Taking
the x-derivative on both sides of the equation (3.45), we obtain

∂x
(
IPh,Tu(X)− u(X)

)

= (F1,x + F2,x)φ
P
1,T (X) + (F1 + F2)φP1,T,x(X)− 1

2
F0,xuxx(X)− 1

2
F0uxxx(X)

+
4∑

i=1

(
Ii,xφ

P
i,T (X) + Iiφ

P
i,T,x(X)

)
. (3.63)

Taking the x-derivative of (3.47) and (3.48) yields

I1,x = −∇ux(X) · (M1 −X)− ∂

∂x

(
(N−(M̃1)− I)(∇u−(X)) · (M1 − M̃1)

)
,

Ii,x = −∇ux(X) · (Mi −X), i = 2, 3, 4.

Therefore,

4∑

i=1

Ii,xφ
P
i,T (X) = −

4∑

i=1

∇ux(X) · (Mi −X)φPi,T (X)

− ∂

∂x

(
(N−(M̃1)− I)(∇u−(X)) · (M1 − M̃1)

)
φP1,T (X). (3.64)

We let q = ∇ux(X) = (uxx(X), uxy(X))t, 2d = uxxx(X) and use them in (3.34) from Lemma
3.9, then we obtain

4∑

i=1

∇ux(X) · (Mi −X)φPi,T (X)

= −(N−
DE
− I)∇ux(X) · (M1 − M̃1)φP1,T (X)

−(N−
DE
− I)∇ux(X) · (M̃1 −XDE)φP1,T (X)− 1

2
uxxx(X)F0(X). (3.65)

Replacing the first term on the right hand side of (3.64) by (3.65) yields

4∑

i=1

Ii,xφ
P
i,T (X)

= (N−
DE
− I)∇ux(X) · (M1 − M̃1)φP1,T (X)

+(N−
DE
− I)∇ux(X) · (M̃1 −XDE)φP1,T (X)

+
1

2
uxxx(X)F0(X)− ∂x

(
(N−(M̃1)− I)(∇u−(X)) · (M1 − M̃1)

)
φP1,T (X). (3.66)

Plugging (3.66) in (3.63) we have

∂x
(
IPh,Tu(X)− u(X)

)
= (F1,x + F2,x + F4 + F5 + F6,x)φ

P
1,T (X) + (F1 + F2)φP1,T,x(X)

−1

2
F0,xuxx(X) +

4∑

i=1

Iiφ
P
i,T,x(X), (3.67)
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where

F4 = (N−
DE
− I)∇ux(X) · (M1 − M̃1),

F5 = (N−
DE
− I)∇ux(X) · (M̃1 −XDE),

F6,x = −∂x
(

(N−(M̃1)− I)(∇u−(X)) · (M1 − M̃1)
)
.

Note that

F1,x + F2,x + F6,x

= ∂x

(
(I −N−

DE
)∇u−(X) · (M1 − M̃1)− (N−

DE
− I)∇u−(X) · (M̃1 −XDE)

)

= (N−
DE
− I)∇u−x (X) · (XDE −M1).

Then, it can be verified by direct calculations that

F1,x + F2,x + F4 + F5 + F6,x = 0. (3.68)

Plugging (3.68) in (3.67), we obtain the result (3.61).

Now we can derive the semi-H1 norm error for interpolation function.

Theorem 3.8. There exists a constant C > 0 independent of interface location such that

|IPh,Tu− u|1,Ω−∩T− ≤ Ch‖u‖2,T , (3.69)

for every u ∈ PH2
int(T ) on any interface element T ∈ T ih .

Proof. First we assume u ∈ PC3
int(T ). By Theorem 3.7 we can expand the first order

derivatives of IPh,Tu − u as (3.61) and (3.62). Following a similar approach in the proof of
Theorem 3.6, we can derive upper bounds for F1, F2, and Ii, i = 1, 2, 3, 4 from (3.51) -
(3.60). A bound of F0,x is given by (3.42) in the Lemma 3.10. Applying these estimates to
(3.61) and (3.62) establishes (3.69) for u ∈ PC3

int(T ). Then (3.69) follows for u ∈ PH2
int(T )

according to the density hypothesis (H4).

For estimates on Ω+ ∩ T+, Ω+ ∩ T− and Ω− ∩ T+, similar results can be obtained. For
interface elements of other types and cases, the analysis is also similar. Putting all of these
error estimates together leads to the following theorem.

Theorem 3.9. There exists a constant C > 0 independent of interface location such that

‖IPh,Tu− u‖0,T + h|IPh,Tu− u|1,T ≤ Ch2‖u‖2,T , (3.70)

for every u ∈ PH2
int(T ) on any interface element T ∈ T ih .
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The global interpolation error bound, stated in the next theorem, follows from summing over
the estimate (3.24a) on non-interface elements and estimate (3.70) on interface elements.

Theorem 3.10. For u ∈ PH2
int(Ω), we have the following estimate for the interpolation

error
‖IPh u− u‖0,Ω + h|IPh u− u|1,Ω ≤ Ch2‖u‖2,Ω. (3.71)

We will provide numerical verification of the interpolation error estimates (3.71) in Section
3.3.

3.2.2 Error Analysis of Interpolation on SIh(Ω)

In this subsection, we analyze interpolation error ‖IIh,Tu − u‖k,T , k = 0, 1 on an interface
element T , and then derive a global interpolation error bound for IIhu− u.

For an interface element T ∈ T ih , we define the local interpolation IIh,T : PH2
int(T )→ Sih(T )

using the set of IFE basis function {φIi,T}4
i=1 as follows

IIh,Tu(X) =
4∑

i=1

(
1

|bi|

∫

bi

u(X)ds

)
φIi,T (X). (3.72)

Then we define the global IFE interpolation IIh : PH2
int(Ω)→ Sh(Ω) piece-wisely by

(IIhu)|T = IIh,Tu. (3.73)

First we derive an error bound for IFE basis function φIi,T in the following lemma.

Lemma 3.11. There exists a constant C > 0, independent of the interface location, such
that

‖φIi,T‖0,T + h|φIi,T |1,T ≤ Ch, i = 1, 2, 3, 4, (3.74)

for every interface element T ∈ T ih .

Proof. Using the point-wise bound (3.3b) of the IFE basis function stated in Theorem 3.2,
we have the following estimate

‖φIi,T‖2
0,T =

∫

T

(
φIi,T (x, y)

)2
dxdy ≤ ‖φIi,T‖2

0,∞,T

∫

T

1dxdy ≤ Ch2.

Similarly

|φIi,T |21,T =

∫

T

∇φIi,T (x, y) · ∇φIi,T (x, y)dxdy ≤ |φIi,T |21,∞,T
∫

T

1dxdy ≤ C.

Here we use the fact that the size of an element is |T | = O(h2). Finally, the estimate (3.74)
follows from combining the above estimates.
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Now we are ready to derive an error bound for the interpolation error IIh,Tu− u.

Theorem 3.11. There exists a constant C > 0 independent of interface location such that

‖IIh,Tu− u‖0,T + h|IIh,Tu− u|1,T ≤ Ch2‖u‖2,T , (3.75)

for every u ∈ PH2
int(T ) on any interface element T ∈ T ih .

Proof. By triangular inequality, we have

|IIh,Tu− u|k,T ≤ |IIh,Tu− IPh,Tu|k,T + |IPh,Tu− u|k,T , k = 0, 1, (3.76)

where the notation | · |0,T means the regular L2 norm on T , i.e., ‖ · ‖0,T . A bound of the
second term on the right hand side of (3.76) is given in (3.70); hence, it suffices to derive an
error bound for |IIh,Tu− IPh,Tu|k,T . Using the Cauchy-Schwarz inequality on (3.72) yields

∣∣IIh,Tu(X)
∣∣ =

4∑

i=1

1

|bi|

∣∣∣∣
∫

bi

u(X)ds

∣∣∣∣
∣∣φIi,T (X)

∣∣

≤
4∑

i=1

1

|bi|

∣∣∣∣
∫

bi

|u(X)|2ds

∣∣∣∣
1/2 ∣∣∣∣

∫

bi

1ds

∣∣∣∣
1/2 ∣∣φIi,T (X)

∣∣

≤
4∑

i=1

1

|bi|1/2
‖u‖0,bi

∣∣φIi,T (X)
∣∣ . (3.77)

For k = 0, 1, we integrate (3.77) on T , using the IFE basis function bounds (3.74) stated in
Lemma 3.11 and standard trace inequality (3.4) to obtain

∣∣IIh,Tu
∣∣
k,T
≤

4∑

i=1

1

|bi|1/2
‖u‖0,bi

∣∣φIi,T
∣∣
k,T

≤ Ch1−k
4∑

i=1

1

|bi|1/2
‖u‖0,bi

≤ Ch1−k
4∑

i=1

1

|bi|1/2
C
(
h−1/2‖u‖0,T + h1/2|u|1,T

)

≤ C
(
h−k‖u‖0,T + h1−k|u|1,T

)
. (3.78)

Here the last inequality is due to |bi| = O(h). We note that

IIh,Tu− IPh,Tu = IIh,Tu− IIh,T (IPh,Tu) = IIh,T (u− IPh,Tu).

Also, function u− IPh,Tu is in H1(T ). Substituting u by u− IPh,Tu in (3.78) yields

|IIh,Tu− IPh,Tu|k,T ≤ C
(
h−k‖u− IPh,Tu‖0,T + h1−k|u− IPh,Tu|1,T

)
. (3.79)
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Applying the error bounds (3.70) in Theorem 3.9, we obtain

|IIh,Tu− IPh,Tu|k,T ≤ C
(
h−kh2‖u‖2,T + h1−kh‖u‖2,T

)
≤ Ch2−k‖u‖2,T . (3.80)

Then (3.75) follows immediately from combining (3.80) and (3.70).

The global interpolation error bound, stated in the next theorem, follows from summing over
the estimate (3.24b) on non-interface elements and estimate (3.75) on interface elements.

Theorem 3.12. For u ∈ PH2
int(Ω), we have the following estimate for the interpolation

error
‖IIhu− u‖0,Ω + h|IIhu− u|1,Ω ≤ Ch2‖u‖2,Ω. (3.81)

3.3 Numerical Experiments

In this section, we provide numerical verifications for error estimates of the nonconforming
rotated Q1 IFE interpolations. We let the simulation domain be a unit square, i.e., Ω =
(−1, 1) × (−1, 1), and assume that the interface curve Γ is a circle centered at the origin
with radius r0 = π/6.28. The interface curve Γ separates the domain into the following two
sub-domains

Ω− = {(x, y)t : x2 + y2 < r2
0}, Ω+ = {(x, y)t : x2 + y2 > r2

0}.

We compute two types IFE interpolants IPh u and IIhu of the following function

u(x, y) =





rα

β−
, if r < r0,

rα

β+
+

(
1

β−
− 1

β+

)
rα0 , if r > r0,

(3.82)

where α = 5, r =
√
x2 + y2. The interface jump conditions (1.4) and (1.5) can be easily

verified for this function u. We note that this numerical example have been used in [69, 70].

In our computation, we use a family of Cartesian meshes {Th}. Each mesh Th is formed by
partitioning Ω into N×N congruent squares such that the edge length of square is h = 2/N .
Errors of interpolations are given in L∞, L2, and semi-H1 norms. Errors in the L∞ norm
are defined by

‖Ikhu− u‖0,∞,Ω = max
T∈Th

(
max

(x,y)∈T̃⊂T
|Ikhu(x, y)− u(x, y)|

)
, k = P, I, (3.83)

where T̃ consists of the 49 uniformly distributed points in T as illustrated in Figure 3.2. The
L2 and semi-H1 norms are computed by suitable Gaussian quadratures. In the following
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error tables, rates of convergence are computed by applying the formulas:

1

ln(2)
ln

(
‖Ikhu− u‖
‖Ikh/2u− u‖

)
, k = P, I, (3.84)

for a specific norm ‖ · ‖.

Figure 3.2: Points selected to calculate the L∞ norm on a rectangular element T.

We compute errors of these interpolants with the coefficient (β−, β+) = (1, 10) which repre-
sents a moderate discontinuity in the diffusion coefficient. Table 3.1 and Table 3.2 contain
errors of nonconforming rotated Q1 IFE interpolations IIhu and IPh u, respectively. Data in
these tables confirm that both interpolants IIhu and IPh u have optimal approximation ca-
pabilities in L2 and semi-H1 norms which are consistent with our error estimates given in
Theorem 3.10 and Theorem 3.12. Moreover, the optimal point-wise convergence of these
interpolations can be observed in L∞ norm.

Table 3.1: Errors of IFE interpolations IIhu with β− = 1, β+ = 10.

N ‖ · ‖0,∞,Ω rate ‖ · ‖0,Ω rate | · |1,Ω rate
10 2.5948E−2 9.0458E−3 1.9610E−1
20 7.3237E−3 1.8250 2.3194E−3 1.9635 9.9238E−2 0.9826
40 1.9438E−3 1.9137 5.8358E−4 1.9908 4.9913E−2 0.9914
80 5.0059E−4 1.9572 1.4637E−4 1.9953 2.5028E−2 0.9959
160 1.2701E−4 1.9787 3.6653E−5 1.9976 1.2532E−2 0.9979
320 3.1988E−5 1.9894 9.1718E−6 1.9986 6.2705E−3 0.9989
640 8.0266E−6 1.9947 2.2939E−6 1.9994 3.1363E−3 0.9995
1280 2.0101E−6 1.9975 5.7361E−7 1.9997 1.5685E−3 0.9997

We also experiment with a larger coefficient discontinuity, i.e., (β−, β+) = (1, 10000). Table
3.3 and Table 3.4 contain errors of nonconforming rotated Q1 IFE interpolations IIhu and
IPh u, respectively. Data in these tables again agree with our error estimates given in Theorem
3.10 and Theorem 3.12.
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Table 3.2: Errors of IFE interpolations IPh u with β− = 1, β+ = 10.

N ‖ · ‖0,∞,Ω rate ‖ · ‖0,Ω rate | · |1,Ω rate
10 3.1141E−2 6.7927E−3 1.9985E−1
20 8.7089E−3 1.8383 1.7281E−3 1.9748 9.9536E−2 1.0056
40 2.3010E−3 1.9202 4.3411E−4 1.9930 4.9993E−2 0.9935
80 5.9128E−4 1.9604 1.0877E−4 1.9968 2.5050E−2 0.9969
160 1.4986E−4 1.9803 2.7227E−5 1.9982 1.2539E−2 0.9985
320 3.7721E−5 1.9901 6.8099E−6 1.9993 6.2720E−3 0.9994
640 9.4625E−6 1.9951 1.7029E−6 1.9996 3.1367E−3 0.9997
1280 2.3697E−6 1.9975 4.2579E−7 1.9998 1.5685E−3 0.9999

Table 3.3: Errors of IFE interpolations IIhu with β− = 1, β+ = 10000.

N ‖ · ‖0,∞,Ω rate ‖ · ‖0,Ω rate | · |1,Ω rate
10 6.0241E−3 1.7879E−3 4.1565E−2
20 2.5141E−3 1.2607 6.3808E−4 1.4864 2.7186E−2 0.6125
40 7.4878E−4 1.7474 1.6818E−4 1.9237 1.4347E−2 0.9220
80 2.0398E−4 1.8761 4.3539E−5 1.9496 7.4222E−3 0.9509
160 5.3209E−5 1.9487 1.1102E−5 1.9715 3.7778E−3 0.9743
320 1.3902E−5 1.9363 2.8079E−6 1.9832 1.9058E−3 0.9872
640 3.5127E−6 1.9846 7.0567E−7 1.9924 9.5702E−4 0.9937
1280 8.8287E−7 1.9923 1.7691E−7 1.9960 4.7959E−4 0.9967

Table 3.4: Errors of IFE interpolations IPh u with β− = 1, β+ = 10000.

N ‖ · ‖0,∞,Ω rate ‖ · ‖0,Ω rate | · |1,Ω rate
10 8.2951E−3 1.6043E−3 4.6624E−2
20 3.3555E−3 1.3057 4.8974E−4 1.7118 2.8337E−2 0.7184
40 8.9770E−4 1.9022 1.2558E−4 1.9634 1.4709E−2 0.9460
80 2.0293E−4 1.8857 3.2030E−5 1.9711 7.5596E−3 0.9603
160 6.4204E−5 1.9198 8.1238E−6 1.9792 3.8096E−3 0.9887
320 1.6417E−5 1.9675 2.0430E−6 1.9915 1.9121E−3 0.9945
640 4.1455E−6 1.9855 5.1251E−7 1.9951 9.5868E−4 0.9960
1280 1.0438E−6 1.9897 1.2835E−7 1.9975 4.7996E−4 0.9981



Chapter 4

IFE Methods and Error Estimation

In this chapter, we propose several computational schemes using nonconforming rotated Q1

IFE functions for solving the elliptic interface problem and carry out error estimation for
these methods. In Section 4.1, we consider three classes of computational schemes includ-
ing the Galerkin schemes, partially penalized schemes and interior penalty discontinuous
Galerkin schemes for solving the elliptic interface problem. In Section 4.2, we carry out
error estimation for the partially penalized Galerkin schemes and interior penalty discon-
tinuous Galerkin schemes. Also, we provide numerical verifications for our error analysis.
In Section 4.3, we provide numerical experiments of related IFE methods to compare their
performances.

4.1 IFE Methods

In this section, we consider three classes of computational schemes using nonconforming
rotated Q1 IFE functions for solving the elliptic interface problem.

Recall that we use Eh to denote the collection of all the edges in a Cartesian mesh Th. For
every edge b ∈ Eh, we let Mb be the midpoint of b. Moreover, we let E̊h, and Ebh be the
collections of interior edges and boundary edges, respectively. The sets of interior interface
edges and interior non-interface edges are denoted by E̊ ih and E̊nh , respectively. To simplify
the notations in the following discussion, we assume that the interface curve Γ does not
intersect with the boundary, i.e., Γ ∩ ∂Ω = ∅. As a result, the set of interface edges is a
subset of the set of interior edges and E̊ ih = E ih; the set of boundary edges is a subset of the
set of non-interface edges and En,bh = Ebh.

58
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4.1.1 Galerkin IFE Methods

The Galerkin IFE scheme has been used for solving elliptic interface problems [69, 74, 87,
95, 96]. Here we briefly discuss the Galerkin IFE scheme with nonconforming rotated Q1

IFE functions.

Multiplying the elliptic differential equation (1.1) by a test function v ∈ H1
0 (Ω) and inte-

grating over each sub-domain Ωs, s = +,−, we have

−
∫

Ωs
∇ · (βs∇u)v dx dy =

∫

Ωs
fv dx dy, ∀v ∈ H1

0 (Ω). (4.1)

Applying the Green’s formula to (4.1) leads to

∫

Ωs
βs∇u · ∇v dx dy −

∫

∂Ωs
(βs∇u · n)v ds =

∫

Ωs
fv dx dy, ∀v ∈ H1

0 (Ω). (4.2)

Summing (4.2) over sub-domains and applying the jump condition (1.5) yield the following
weak form ∫

Ω

β∇u · ∇v dx dy =

∫

Ω

fvdxdy, ∀v ∈ H1
0 (Ω). (4.3)

The equation (4.3) is equivalent to

∑

T∈Th

∫

T

β∇u · ∇v dx dy =

∫

Ω

fv dx dy, ∀v ∈ H1
0 (Ω). (4.4)

On each element T , we use nonconforming rotatedQ1 IFE functions to approximate functions
in H1(Ω) in the weak form (4.4), then we obtain two Galerkin IFE schemes: Find ukh ∈ Skh(Ω),
k = P or I, that satisfies

∑

T∈Th

∫

T

β∇ukh · ∇vkh dx dy =

∫

Ω

fvkh dx dy, ∀ vkh ∈ S̊kh(Ω), (4.5)

and the following boundary conditions:

uPh (Mb) = g(Mb), if b ∈ Ebh, (4.6)

or ∫

b

uIh(X)ds =

∫

b

g(X)ds, if b ∈ Ebh. (4.7)

Here the nonconforming rotated Q1 IFE test function spaces are defined by

S̊Ph (Ω) = {v ∈ SPh (Ω) : v(Mb) = 0, if b ∈ Ebh, and Mb is the midpoint of b}. (4.8)

S̊Ih(Ω) = {v ∈ SIh(Ω) :

∫

b

vds = 0, if b ∈ Ebh}. (4.9)
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4.1.2 Partially Penalized Galerkin IFE Methods

The second group of IFE schemes to be considered are called partially penalized Galerkin
(PPG) schemes. To introduce these schemes, we need to introduce a few more notations.
For every interior edge b ∈ E̊h, we let Tb,1 and Tb,2 be the two elements sharing the common
edge b. For a function u defined on Tb,1 ∪ Tb,2, we define its jump and average values on b as
follows:

[u]b = u|Tb,1 − u|Tb,2 , {u}b =
1

2

(
u|Tb,1 + u|Tb,2

)
. (4.10)

For every boundary edge b ∈ Ebh, we let Tb be the element such that b is part of its boundary.
We define its jump and average on b as follows

[u]b = {u}b = u|Tb . (4.11)

We usually omit the subscript in {·} and [·] if there is no confusion.

To derive the PPG schemes, we multiply the elliptic differential equation (1.1) by a test
function v ∈ S̊kh(Ω), k = I or P , and integrate over each element T ∈ Th,

∫

T

−∇ · (β∇u)v dx dy =

∫

T

fv dx dy, ∀v ∈ S̊kh(Ω). (4.12)

Applying Green’s formula to (4.12) yields
∫

T

β∇u · ∇v dx dy −
∫

∂T

(β∇u · nT )v ds =

∫

T

fv dx dy, ∀v ∈ S̊kh(Ω). (4.13)

Here nT is the unit outward normal of T . Summing (4.13) over all elements leads to

∑

T∈Th

∫

T

β∇u · ∇v dx dy −
∑

T∈Th

∫

∂T

(β∇u · nT )v ds =

∫

Ω

fv dx dy, ∀v ∈ S̊kh(Ω). (4.14)

For every interior edge b ∈ E̊h with b = ∂Tb,1 ∩ ∂Tb,2, we let nij be the unit normal vector
pointing from Tb,i to Tb,j; hence n12 = −n21. We assign n12 to be the normal of b, i.e.
nb = n12, then we have the following identity

∫

∂Tb,1∩b
β∇u · n12v ds+

∫

∂Tb,2∩b
β∇u · n21v ds =

∫

b

[β∇u · nbv] ds. (4.15)

Using the following algebraic identity

ab− cd =
1

2
(a+ b)(c− d) +

1

2
(a− b)(c+ d), (4.16)

in the right hand side of (4.15), we obtain
∫

b

[β∇u · nbv] ds =

∫

b

{β∇u · nb}[v] ds+

∫

b

[β∇u · nb]{v} ds. (4.17)
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Replacing the right hand side of (4.15) by (4.17) and summing (4.15) over all the elements,
we obtain

∑

T∈Th

∫

∂T

(β∇u · nT )v ds =
∑

b∈E̊h

∫

b

{β∇u · nb}[v] ds+
∑

b∈E̊h

∫

b

[β∇u · nb]{v} ds

+
∑

b∈Ebh

∫

b

β∇u · nbv ds. (4.18)

Substituting the second term in (4.14) by (4.18), we have

∑

T∈Th

∫

T

β∇u · ∇v dx dy −
∑

b∈E̊h

∫

b

{β∇u · nb}[v]ds−
∑

b∈E̊h

∫

b

[β∇u · nb]{v}ds

−
∑

b∈Ebh

∫

b

β∇u · nbv ds =
∑

T∈Th

∫

T

fv dx dy, ∀v ∈ S̊kh(Ω). (4.19)

Assume that u is smooth enough so that β∇u ·nb is continuous at almost all points on every
interior edge b; hence, [β∇u ·nb] = 0 almost every where. Therefore the third term in (4.19)
is zero and (4.19) becomes

∑

T∈Th

∫

T

β∇u · ∇v dx dy −
∑

b∈Eh

∫

b

{β∇u · nb}[v]ds =
∑

T∈Th

∫

T

fv dx dy, ∀v ∈ S̊kh(Ω). (4.20)

Note the second term in (4.20) includes both interior and boundary edges and it equals the
sum of the second and fourth terms in (4.19). Here we recall that the jump and average on
a boundary edge b is specified in (4.11).

We assume that u is continuous almost everywhere in the interior of Ω, then [u] = 0 almost
everywhere on each interior edge b. We add two stabilization and penalty terms defined only
on interface edges to (4.20), then we obtain

∑

T∈Th

∫

T

β∇u · ∇v dx dy −
∑

b∈Eh

∫

b

{β∇u · nb}[v]ds+ ε
∑

b∈E̊ih

∫

b

{β∇v · nb}[u]ds (4.21)

+
∑

b∈E̊ih

∫

b

σ0
b

|b|α [u][v]ds =
∑

T∈Th

∫

T

fv dx dy, ∀v ∈ S̊kh(Ω).

We assume that on non-interface edges, the following quantity

∑

b∈Enh

∫

b

{β∇u · nb}[v]ds (4.22)
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is not large which suggests to ignore the term described in (4.22) in our algorithms. Then
the weak form (4.21) becomes

∑

T∈Th

∫

T

β∇u · ∇v dx dy −
∑

b∈E̊ih

∫

b

{β∇u · nb}[v]ds+ ε
∑

b∈E̊ih

∫

b

{β∇v · nb}[u]ds (4.23)

+
∑

b∈E̊ih

∫

b

σ0
b

|b|α [u][v]ds ≈
∑

T∈Th

∫

T

fv dx dy, ∀v ∈ S̊kh(Ω).

According to (4.23), we can define the partially penalized Galerkin IFE schemes: Find
ukh ∈ Skh(Ω), k = P, I that satisfies

aε(u
k
h, v

k
h) = L(vkh), ∀ vkh ∈ S̊kh(Ω), (4.24)

subject to the following boundary conditions:

uPh (Mb) = g(Mb), if b ∈ Ebh, (4.25)

or ∫

b

uIh(X)ds =

∫

b

g(X)ds, if b ∈ Ebh. (4.26)

The bilinear form and linear form in (4.24) are defined by

aε(u, v) =
∑

T∈Th

∫

T

β∇u · ∇v dx dy −
∑

b∈E̊ih

∫

b

{β∇u · nb}[v]ds

+ε
∑

b∈E̊ih

∫

b

{β∇v · nb}[u]ds+
∑

b∈E̊ih

∫

b

σ0
b

|b|α [u][v]ds, (4.27)

L(v) =
∑

T∈Th

∫

T

fv dx dy. (4.28)

In the bilinear form (4.27), α and σ0
b are penalty parameters and we will discuss the possible

choices for these parameters in related error estimation later. The parameter ε in (4.27) has
the following three popular choices:

• ε = −1: in this case the bilinear form aε(·, ·) is symmetric, and we call the corresponding
scheme a symmetric partially penalized Galerkin (SPPG) IFE method.

• ε = 1: in this case the bilinear form aε(·, ·) is nonsymmetric, and we call the corre-
sponding scheme a nonsymmetric partially penalized Galerkin (NPPG) IFE method.

• ε = 0: in this case the bilinear form aε(·, ·) is also nonsymmetric, and we call the cor-
responding scheme an incomplete partially penalized Galerkin (IPPG) IFE method.
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In the above derivation, we have followed the idea of interior penalty discontinuous Galerkin
(IPDG) schemes [125] to design the weak form (4.24) of the PPG IFE schemes. The idea of
partially penalization is for alleviating discontinuity of IFE functions across interface edges.
We note that this partially penalization idea was used in designing quadratic IFE methods
[129] for the elliptic interface problem.

4.1.3 IPDG IFE Methods

Nonconforming rotated Q1 IFE functions can be used in IPDG schemes [3, 48, 125, 127, 144]
to generate methods for solving interface problems with mass conservation feature and hp-
refinement capability.

To introduce the IPDG IFE schemes, we first define the “broken” IFE spaces as follows:

SDGh (Ω) = {v ∈ L2(Ω) : v|T ∈ Snh (T ), if T ∈ T nh ; v|T ∈ Sih(T ), if T ∈ T ih}, (4.29)

S̊I,DGh (Ω) = {v ∈ SDGh (Ω) :

∫

b

vds = 0, if b ∈ Ebh}, (4.30)

S̊P,DGh (Ω) = {v ∈ SDGh (Ω) : v(Mb) = 0, if b ∈ Ebh}. (4.31)

Then we define the IPDG IFE scheme: Find uDGh ∈ SDGh (Ω), that satisfies

aDGε (uDGh , vDGh ) = L(vDGh ), ∀ vDGh ∈ S̊k,DGh (Ω), k = I, P, (4.32)

and subject to one of the following boundary conditions:
∫

b

uDGh (X)ds =

∫

b

g(X)ds, ∀ b ∈ Ebh, (4.33a)

or
uDGh (Mb) = g(Mb), ∀ b ∈ Ebh. (4.33b)

Here the bilinear form and linear form in (4.32) are defined as

aDGε (u, v) =
∑

T∈Th

∫

T

β∇u · ∇v dx dy −
∑

b∈Eh

∫

b

{β∇u · nb}[v]ds

+ε
∑

b∈Eh

∫

b

{β∇v · nb}[u]ds+
∑

b∈Eh

∫

b

σ0
b

|b|α [u][v]ds, (4.34)

L(v) =
∑

T∈Th

∫

T

fv dx dy. (4.35)

Here, α and σ0
b are penalty parameters and we will discuss the possible choices for these

parameters in related error estimation later. Similar to PPG IFE schemes, the parameter ε
in the bilinear form of IPDG IFE scheme (4.34) has the following three popular choices:
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• ε = −1: in this case the bilinear form aDGε (·, ·) is symmetric, and we call this scheme
a symmetric interior penalty discontinuous Galerkin (SIPDG) IFE method.

• ε = 1: in this case the bilinear form aDGε (·, ·) is nonsymmetric, and we call this scheme
a nonsymmetric interior penalty discontinuous Galerkin (NIPDG) IFE method.

• ε = 0: in this case the bilinear form aDGε (·, ·) is also nonsymmetric, and we call this
scheme an incomplete interior penalty discontinuous Galerkin (IIPDG) IFE method.

We note that the differences between PPG IFE schemes and IPDG IFE schemes are their
choices of IFE spaces and collections of edges where penalization is applied. The number of
global degrees of freedom in PPG schemes is much less than the IPDG IFE schemes. In fact,
PPG IFE schemes have the same number of global degrees of freedom as the Galerkin IFE
schemes. In addition, penalty terms are added only on interfaces edges for PPG schemes
instead being added at all edges for IPDG schemes.

4.2 Error Estimation

In this section, we carry out the error estimation for PPG IFE and IPDG IFE schemes
using nonconforming rotated Q1 IFE functions with midpoint-value degrees of freedom and
integral-value degrees of freedom. Throughout the error analysis, we assume that the collec-
tion of interface elements T ih in a Cartesian mesh Th satisfies the following hypothesis:

(H5) There exists a constant C such that the number of interface element in a mesh Th,
denoted by |T ih | satisfies

|T ih | ≤ Ch−1. (4.36)

4.2.1 Error Estimation for PPG IFE Solutions in SIh(Ω)

We first derive an error estimate for the partially penalized Galerkin IFE schemes. Define
the energy norm ‖ · ‖h,Ω on S̊Ph (Ω) ∪ S̊Ih(Ω), which is a semi-norm on SPh (Ω) ∪ SIh(Ω):

‖v‖h,Ω =


∑

T∈Th

∫

T

β∇v · ∇v dx dy +
∑

b∈E̊ih

∫

b

σ0
b

|b|α [v][v]ds




1/2

. (4.37)

The coercivity of the bilinear forms aε(·, ·) with respect to the energy norm ‖ · ‖h,Ω is given
in the following lemma.
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Lemma 4.1. Assume α ≥ 1 in the bilinear form (4.27) and the energy norm (4.37). There
exists a positive constant κ such that

κ‖v‖2
h,Ω ≤ aε(v, v), ∀v ∈ SPh (Ω) ∪ SIh(Ω), (4.38)

for any positive σ0
b if ε = 1, or for σ0

b large enough if ε = 0 or −1.

Proof. Note that the coercivity result (4.38) is trivial for ε = 1 and the corresponding
coercivity constant κ = 1; hence, our proof below focuses on the other two cases ε = −1 or
0.

For each interior interface edge b ∈ E̊ ih, applying the trace inequality of IFE functions stated
in Theorem 3.3 and the Cauchy-Schwarz inequality, we obtain the following estimate

∫

b

{β∇v · nb}[v]ds ≤ 1

2

(∥∥(β∇v · nb)|Tb,1
∥∥

0,b
+
∥∥(β∇v · nb)|Tb,2

∥∥
0,b

)
‖[v]‖0,b

≤ 1

2
|b|α/2

(
Ch
−1/2
Tb,1
‖β∇v‖0,Tb,1

+ Ch
−1/2
Tb,2
‖β∇v‖0,Tb,2

) 1

|b|α/2 ‖[v]‖0,b

≤ C
(
‖β∇v‖2

0,Tb,1
+ ‖β∇v‖2

0,Tb,2

)1/2 1

|b|α/2 ‖[v]‖0,b . (4.39)

Summing up (4.39) over all the interior interface edges, and applying Young’s inequality, we
obtain

∑

b∈E̊ih

∫

b

{β∇v · nb}[v]ds ≤ C

(∑

b∈E̊ih

1

|b|α ‖[v]‖2
0,b

)1/2(∑

b∈E̊ih

(
‖β∇v‖2

0,Tb,1
+ ‖β∇v‖2

0,Tb,2

))1/2

≤ δ

2

(∑

T∈Th

(
‖β∇v‖2

0,T

))
+
C

2δ

(∑

b∈E̊ih

1

|b|α ‖[v]‖2
0,b

)
,

for every δ > 0. Thus,

aε(v, v) ≥
(

1− δ|1− ε|
2

)∑

T∈Th
‖β∇v‖2

0,T +

(∑

b∈E̊ih

σ0
b − C

2δ
|1− ε|
|b|α ‖[v]‖2

0,b

)

≥ min

(
1− δ|1− ε|

2
,
σ0
b − C

2δ
|1− ε|
|b|α

)
‖v‖2

h,Ω. (4.40)

Choosing δ and σ0
b in (4.40) such that

δ|1− ε| < 2, σ0
b >

C

2δ
|1− ε|,
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we obtain (4.38) with

κ = min

(
1− δ|1− ε|

2
,
σ0
b − C

2δ
|1− ε|
|b|α

)
> 0. (4.41)

For each edge b ∈ Eh, and v ∈ L2(b), we define vb to be the average integral value of v over
the edge b as follows

vb =
1

|b|

∫

b

vds. (4.42)

Lemma 4.2. There exists a constant C such that

‖[vh]‖0,b ≤ Ch1/2(|vh|1,Tb,1 + |vh|1,Tb,2), ∀ vh ∈ SPh (Ω) ∪ SIh(Ω), (4.43)

for every interior edge b ∈ E̊h, and

‖vh‖0,b ≤ Ch1/2|vh|1,Tb , ∀ vh ∈ S̊Ph (Ω) ∪ S̊Ih(Ω), (4.44)

for every boundary edge b ∈ Ebh.

Proof. We first prove that the estimate (4.43) holds for every vh ∈ SPh (Ω). Note that vh is
continuous at the midpoint Mb of an interior (interface or non-interface) edge b. Without
loss of generality, we assume that b is a vertical line segment whose endpoints are (x0, y0)
and (x0, y0 + h), then by the triangle inequality we have the following estimate

‖[vh]‖0,b = ‖vh|Tb,1 − vh|Tb,2‖0,b

= ‖(vh|Tb,1 − vh|Tb,1(Mb)) + (vh|Tb,2(Mb)− vh|Tb,2)‖0,b

≤ ‖vh|Tb,1 − vh|Tb,1(Mb)‖0,b + ‖vh|Tb,2 − vh|Tb,2(Mb)‖0,b

≤
2∑

j=1

(∫ y0+h

y0

(
vh|Tb,j(x0, y)− vh|Tb,j(x0, y0 +

h

2
)

)2

dy

)1/2

≤
2∑

j=1

(∫ y0+h

y0

(∫ y

y0+h/2

∂z
(
vh|Tb,j(x0, z)

)
dz

)2

dy

)1/2

≤
2∑

j=1

(∫ y0+h

y0

h2|vh|21,∞,Tb,jdy
)1/2

≤ Ch3/2(|vh|1,∞,Tb,1 + |vh|1,∞,Tb,2) (4.45)

We apply the standard inverse inequality (3.17) or the IFE inverse inequality (3.18) to vh
on these two elements Tb,1, Tb,2, depending on whether they are non-interface elements or
interface elements. Then we have

|vh|1,∞,Tb,j ≤ Ch−1|vh|Tb,j , j = 1, 2. (4.46)
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Combining the above estimates (4.45) and (4.46), we obtain

‖[vh]‖0,b ≤ Ch1/2(|vh|1,Tb,1 + |vh|1,Tb,2), ∀vh ∈ SPh (Ω). (4.47)

For every vh ∈ SIh(Ω), the average integral value on every interior edge b is continuous. Note
that vh|T is in H1(T ) for every element T ∈ Th, then by standard approximation results
stated in [37] we obtain

‖[vh]‖0,b = ‖vh|Tb,1 − vh|Tb,2‖0,b

= ‖(vh|Tb,1 − vh|Tb,1
b
) + (vh|Tb,2

b − vh|Tb,2)‖0,b

≤ ‖vh|Tb,1 − vh|Tb,1
b‖0,b + ‖vh|Tb,2 − vh|Tb,2

b‖0,b

≤ Ch1/2(|vh|1,Tb,1 + |vh|1,Tb,2). (4.48)

The estimate (4.43) follows from (4.47) and (4.48). We can prove (4.44) similarly if b ∈ Ebh
is a boundary edge.

In the following error analysis in this subsection, we need the following hypothesis,

(H6) The interface Γ is smooth enough so that PC3
int(Ω) is dense in PH3

int(Ω).

The interpolation error on an interface edge is analyzed in the following lemma.

Lemma 4.3. For every u ∈ PH3
int(Ω), there exists a constant C such that

‖β∇(u− IPh,Tu) · nb‖2
0,b ≤ C(h2‖u‖2

3,Ω + h‖u‖2
2,T ). (4.49)

for every interface element T ∈ T ih where b ⊂ ∂T is one of its interface edges.

Proof. We consider the Type I Case 2 interface element as illustrated in Figure 3.1, and other
cases can be discussed similarly. Without loss of generality, we let b = A1A3. Recall from
Theorem 3.7 that for every function u ∈ PC3

int(Ω), its interpolation error at point X ∈ EA3

can be expanded as follows

∂(IPh,Tu(X)− u(X))

∂x
= (F1 + F2)φP1,T,x(X)− 1

2
F0,xuxx(X) +

4∑

i=1

Iiφ
P
i,T,x(X). (4.50)

Here F0, F1, F2, and Ii, i = 1, · · · , 4 are defined in (3.35), (3.46a) - (3.46g). To estimate
the first term in (4.50), we use estimates (3.31), (3.30) in Lemma 3.8 and the bound of IFE
functions (3.3a) in Theorem 3.2 to obtain
∫

EA3

(Fiφ
P
1,T,x(X))2ds ≤ Ch2

∫

EA3

|∇u−|2ds ≤ Ch2‖u‖2
2,Ω− ≤ Ch2‖u‖2

3,Ω− , ∀i = 1, 2.

(4.51)
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Also, applying the bound of F0 (3.42) to estimate the second term in (4.50) we obtain

∫

EA3

(
1

2
F0,xu

−
xx(X)

)2

ds ≤
∫

EA3

|F0,x|2|u−xx(X)|2ds ≤ Ch2

∫

EA3

|u−xx(X)|2ds ≤ Ch2‖u‖2
3,Ω− .

(4.52)
Using the bound of IFE functions (3.3a) in Theorem 3.2, we have the following estimation
involving the term I1,1:

∫

EA3

(
I1,1φ

P
1,T,x(X)

)2
ds

≤
∫

EA3

‖N−(M̃1)− I‖2

∫ 1

0

(
uξξ(ξ, η)(x̃1 − x)(x1 − x̃1) + uξη(ξ, η)(ỹ1 − y)(x1 − x̃1)

+uηξ(ξ, η)(x̃1 − x)(y1 − ỹ1) + uηη(ξ, η)(ỹ1 − y)(y1 − ỹ1)
)2

|φP1,T,x(X)|2dt ds

≤ Ch2

∫

EA3

∫ 1

0

(
|uξξ(ξ, η)|2 + |uξη(ξ, η)|2 + |uηξ(ξ, η)|2 + |uηη(ξ, η)|2

)
dt ds

≤ Ch2‖u‖2
3,Ω− . (4.53)

Similarly, for the term involving I1,2, we use Theorem 3.2 to obtain

∫

EA3

(
I1,2φ

P
1,T,x(X)

)2
ds

≤ Ch−2

∫

EA3

(∫ t̃

0

(1− t) d
2

dt2
u(tM1 + (1− t)X)dt

)2

ds

≤ Ch−2

∫

EA3

∫ t̃

0

(1− t)2

(
|uxx(tM1 + (1− t)X)|2 (x1 − x)2(x1 − x)2

+ |uxy(tM1 + (1− t)X)|2 (x1 − x)2(y1 − y)2

+ |uyx(tM1 + (1− t)X)|2 (y1 − y)2(x1 − x)2

+ |uyy(tM1 + (1− t)X)|2 (y1 − y)2(y1 − y)2

)
dt ds

≤ Ch2

∫ h

eh

∫ t̃

0

(1− t)2

∣∣∣∣uxx
(
th

2
, (1− t)y

)∣∣∣∣
2

+

∣∣∣∣uxy
(
th

2
, (1− t)y

)∣∣∣∣
2

+

∣∣∣∣uyx
(
th

2
, (1− t)y

)∣∣∣∣
2

+

∣∣∣∣uyy
(
th

2
, (1− t)y

)∣∣∣∣
2

dt dy. (4.54)

Let p = th
2

, q = (1− t)h, then the Jacobian of this substitute is

∂(t, y)

∂(p, q)
=

2

h(1− t) =
1

q
.
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The inequality (4.54) becomes
∫

EA3

(
I1,2φ

P
1,T,x(X)

)2
ds

≤ Ch

∫∫

4A3EM̃1

(
|uxx(p, q)|2 + |uxy(p, q)|2 + |uyx(p, q)|2 + |uyy(p, q)|2

)
dp dq

≤ Ch
(
‖uxx‖2

0,4A3EM̃1
+ ‖uxy‖2

0,4A3EM̃1
+ ‖uyx‖2

0,4A3EM̃1
+ ‖uyy‖2

0,4A3EM̃1

)

≤ Ch‖u‖2
2,T− . (4.55)

Similarly for the term involving I1,3, using the bound of IFE functions (3.3a) again, we obtain
∫

EA3

(
I1,3φ

P
1,T,x(X)

)2
ds

≤ Ch−2

∫

EA3

(∫ 1

t̃

(1− t) d
2

dt2
u(tM1 + (1− t)X)dt

)2

ds

≤ Ch2

∫ h

eh

∫ 1

t̃

(1− t)2

∣∣∣∣uxx
(
th

2
, (1− t)y

)∣∣∣∣
2

+

∣∣∣∣uxy
(
th

2
, (1− t)y

)∣∣∣∣
2

+

∣∣∣∣uyx
(
th

2
, (1− t)y

)∣∣∣∣
2

+

∣∣∣∣uyy
(
th

2
, (1− t)y

)∣∣∣∣
2

dt dy

≤ Ch

∫∫

4EM1M̃1

(
|uxx(p, q)|2 + |uxy(p, q)|2 + |uyx(p, q)|2 + |uyy(p, q)|2

)
dp dq

≤ Ch
(
‖uxx‖2

0,4EM1M̃1
+ ‖uxy‖2

0,4EM1M̃1
+ ‖uyx‖2

0,4EM1M̃1
+ ‖uyy‖2

0,4EM1M̃1

)

≤ Ch‖u‖2
2,T+ . (4.56)

For the term involving I2, we have
∫

EA3

(
I2φ

P
2,T,x(X)

)2
ds

≤ Ch−2

∫

EA3

(∫ 1

0

(1− t) d
2

dt2
u(tM2 + (1− t)X)dt

)2

ds

≤ Ch2

∫ h

eh

∫ 1

0

(1− t)2

∣∣∣∣uxx(th,
th

2
+ (1− t)y)

∣∣∣∣
2

+

∣∣∣∣uxy(th,
th

2
+ (1− t)y)

∣∣∣∣
2

+

∣∣∣∣uyx(th,
th

2
+ (1− t)y)

∣∣∣∣
2

+

∣∣∣∣uyy(th,
th

2
+ (1− t)y)

∣∣∣∣
2

dt dy

Let p = th, q = th
2

+ (1− t)y, the Jacobian of this substitution is the following

∂(t, y)

∂(p, q)
=

1

h(1− t) =
1

h− p.
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Hence, ∫

EA3

(
I2φ

P
2,T,x(X)

)2
ds

= Ch2

∫∫

4A3EM2

(
h− p
h

)2 (
|uxx(p, q)|2 + |uxy(p, q)|2

+ |uyx(p, q)|2 + |uyy(p, q)|2
) 1

h− p dp dq

≤ Ch2

∫∫

4A3EM2

(
|uxx(p, q)|2 + |uxy(p, q)|2 + |uyx(p, q)|2 + |uyy(p, q)|2

) h− p
h2

dp dq

≤ Ch

∫∫

4A3EM2

(
|uxx(p, q)|2 + |uxy(p, q)|2 + |uyx(p, q)|2 + |uyy(p, q)|2

)
dp dq

≤ Ch
(
‖uxx‖2

0,4A3EM2
+ ‖uxy‖2

0,4A3EM2
+ ‖uyx‖2

0,4A3EM2
+ ‖uyy‖2

0,4A3EM2

)

≤ Ch‖u‖2
2,T (4.57)

Similarly, for I3 we have ∫

EA3

(
I3φ

P
3,T,x(X)

)2
ds ≤ Ch‖u‖2

2,T . (4.58)

The term involving I4 have the following bounds:∫

EA3

(
I4φ

P
4,T,x(X)

)2
ds

≤ Ch−2

∫

EA3

(∫ 1

0

(1− t) d
2

dt2
u(tM4 + (1− t)X)dt

)2

ds

≤ Ch−2

∫ h

eh

∫ 1

0

(1− t)2

∣∣∣∣uyy(0,
th

2
+ (1− t)y)

∣∣∣∣
2(

h

2
− y
)4

dt dy

Let z = th
2

+ (1− t)y, then dz =
(
h
2
− y
)

dt, and 1− t = (h
2
− z)/(h

2
− y). Hence,

∫

EA3

(
I4φ

P
4,T,x(X)

)2
ds

≤ Ch−2

∫ h

eh

∣∣∣∣∣

∫ h/2

y

|uyy(0, z)|2
(
h

2
− y
)(

h

2
− z
)2

dz

∣∣∣∣∣ dy

≤ Ch

(∫ h

eh

∫ h/2

eh

|uyy(0, z)|2 dz dy +

∫ h

eh

∫ h

h/2

|uyy(0, z)|2 dz dy

)

≤ Ch

(∫ h/2

eh

∫ h

eh

|uyy(0, z)|2 dy dz +

∫ h

h/2

∫ h

eh

|uyy(0, z)|2 dy dz

)

≤ Ch2

(∫ h

eh

|uyy(0, z)|2 dz

)

≤ Ch2‖u‖2
3,Ω− (4.59)
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Combining the estimates (4.51) - (4.59) and using the density hypothesis (H4), we obtain
for every u ∈ PH3

int(Ω),

∥∥∂x(IPh,Tu− u)
∥∥2

0,EA3
≤ C

(
h‖u‖2

2,T + h2‖u‖2
3,Ω−

)
.

Use similar arguments by letting X ∈ A1E, we can also prove that

∥∥∂x(IPh,Tu− u)
∥∥2

0,A1E
≤ C

(
h‖u‖2

2,T + h2‖u‖2
3,Ω+

)
.

Note that b = EA3 ∪ A1E; hence, we obtain the following estimate

∥∥∂x(IPh,Tu− u)
∥∥2

0,b
≤ C

(
h‖u‖2

2,T + h2‖u‖2
3,Ω

)
. (4.60)

Similar arguments leads to the error estimate for y derivative:

∥∥∂y(IPh,Tu− u)
∥∥2

0,b
≤ C

(
h‖u‖2

2,T + h2‖u‖2
3,Ω

)
. (4.61)

Combining (4.60) and (4.61) yields the error estimate (4.49) for u ∈ PC3
int(Ω). Applying the

density assumption (H6), we obtain (4.49) for u ∈ PH3
int(Ω).

Now we derive an error estimate for the interpolation IIh,T on interface edges.

Lemma 4.4. For every u ∈ PH3
int(Ω), there exists a constant C such that

‖β∇(u− IIh,Tu) · nb‖2
0,b ≤ C(h2‖u‖2

3,Ω + h‖u‖2
2,T ), (4.62)

where T ∈ T ih is an interface element and b ⊂ ∂T is one of its interface edges.

Proof. By the triangle inequality, we have

‖β∇(u− IIh,Tu) · nb‖0,b ≤ ‖β∇(u− IPh,Tu) · nb‖0,b + ‖β∇(IPh,Tu− IIh,Tu) · nb‖0,b. (4.63)

We have derived an error bound (4.49) in Lemma 4.3 for the first term on the right hand
side of (4.63). It suffices to estimate the second term on the right hand sides of (4.63).

Note that IPh,Tu − IIh,Tu ∈ Sih(T ), then by the IFE trace inequality (3.15) and the estimate
(3.80) we obtain

‖β∇(IPh,Tu− IIh,Tu) · nb‖0,b ≤ Ch1/2|T |−1/2‖
√
β∇(IPh,Tu− IIh,Tu)‖0,T

≤ Ch1/2|T |−1/2h‖u‖2,T

≤ Ch1/2‖u‖2,T . (4.64)

Combining (4.64) and (4.49) leads to the estimate (4.62).
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The following lemma provides an error bound for the IFE interpolation in the energy norm
‖ · ‖h,Ω.

Lemma 4.5. Let u ∈ PH2
int(Ω), then there exists a constant C independent of h and interface

location, such that

‖Ikhu− u‖h,Ω ≤ C(h+ h(3−α)/2)‖u‖2,Ω, k = I or P. (4.65)

Proof. By the interpolations error estimates stated in Theorem 3.9 and Theorem 3.11, and
the standard trace inequality (3.4), we obtain for k = P or I that

‖Ikhu− u‖2
h,Ω =

∑

T∈Th

∫

T

β∇(Ikhu− u) · ∇(Ikhu− u)dX +
∑

b∈Eih

∫

b

σ0
b

|b|α [(Ikhu− u)]2ds

≤
∑

T∈Th
|Ikhu− u|21,T + Ch−α

∑

b∈Eih

‖Ikhu− u‖2
0,b

≤ C
∑

T∈Th
h2‖u‖2

2,T + Ch−α
∑

T∈Th
h−1

(
‖Ikhu− u‖2

0,T + h2|Ikhu− u|21,T
)

≤ C(h2 + h3−α)‖u‖2
2,Ω. (4.66)

Taking square root on both sides of (4.66) leads to (4.65).

Remark 4.1. The error estimate (4.65) in Lemma 4.5 indicates that nonconforming IFE
functions have optimal approximation property in energy norm if α ≤ 1. On the other hand,
the coercivity property (4.38) in Lemma 4.1 requires α ≥ 1 for the bilinear form (4.27) to
be coercive. The only value of α that satisfies both of these conditions is α = 1. Therefore,
from now on, we let α = 1 in both error analysis and numerical experiment.

Now we are ready to derive a bound for the error in the PPG IFE solution uIh.

Theorem 4.1. Assume u ∈ PH3
int(Ω) is the solution to the interface problem (1.1) - (1.4),

and uIh ∈ SIh(Ω) is the partially penalized Galerkin IFE solution to (4.24) and (4.26), then
there exists a constant C such that

‖uIh − u‖h,Ω ≤ Ch‖u‖3,Ω. (4.67)

Proof. Note that the solution u ∈ PH3
int(Ω) is continuous in Ω, and the flux β∇u · nb is
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continuous across every interior edges b ∈ E̊h. By Green’s formula and (4.18), we have

∑

b∈Eih

∫

b

{β∇u · nb}[vh]ds

=
∑

b∈Ebh

∫

b

β∇u · nbvhds+
∑

b∈E̊h

∫

b

{β∇u · nb}[vh]ds−
∑

b∈Enh

∫

b

{β∇u · nb}[vh]ds

=
∑

b∈Ebh

∫

b

β∇u · nbvhds+
∑

b∈E̊h

∫

b

{β∇u · nb}[vh]ds+
∑

b∈E̊h

∫

b

{β∇vh · nb}[u]ds

−
∑

b∈Enh

∫

b

{β∇u · nb}[vh]ds

=
∑

T∈Th

∫

∂T

β∇u · nTvhds−
∑

b∈Enh

∫

b

{β∇u · nb}[vh]ds, (4.68)

for every vh ∈ S̊Ih(Ω). The equation (4.68) implies

aε(u, vh) =
∑

T∈Th

∫

T

β∇u · ∇vhdX −
∑

b∈Eih

∫

b

{β∇u · nb}[vh]ds

=
∑

T∈Th

∫

T

β∇u · ∇vhdX −
∑

T∈Th

∫

∂T

β∇u · nTvhds+
∑

b∈Enh

∫

b

{β∇u · nb}[vh]ds

=
∑

T∈Th

∫

T

−∇ · (β∇u)vhdX +
∑

b∈Enh

∫

b

{β∇u · nb}[vh]ds

= (f, vh) +
∑

b∈Enh

∫

b

{β∇u · nb}[vh]ds. (4.69)

Hence, subtracting (4.69) from (4.24), we have

aε(u
I
h, vh) = aε(u, vh)−

∑

b∈Enh

∫

b

{β∇u · nb}[vh]ds, ∀vh ∈ S̊Ih(Ω). (4.70)

For every function wh in S̃Ih(Ω) = {wh ∈ SIh(Ω) :
∫
b
whds =

∫
b
gds, ∀b ∈ Ebh}, we subtract

aε(wh, vh) from both sides of (4.70)

aε(u
I
h − wh, vh) = aε(u− wh, vh)−

∑

b∈Enh

∫

b

{β∇u · nb}[vh]ds, ∀vh ∈ S̊Ih(Ω), ∀wh ∈ S̃Ih(Ω).

We let vh = uIh − wh ∈ S̊Ih(Ω) in the above equation, then

aε(u
I
h − wh, uIh − wh) = aε(u− wh, uIh − wh)−

∑

b∈Enh

∫

b

{β∇u · nb}[uIh − wh]ds, ∀wh ∈ S̃Ih(Ω).

(4.71)
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Applying the coercivity result (4.38) to (4.71), we have

κ‖uIh − wh‖2
h,Ω

≤ |aε(u− wh, uIh − wh)|+

∣∣∣∣∣∣
∑

b∈Enh

∫

b

{β∇u · nb}[uIh − wh]ds

∣∣∣∣∣∣

≤
∣∣∣∣∣
∑

T∈Th

∫

T

β∇(u− wh) · ∇(uIh − wh)dX
∣∣∣∣∣+

∣∣∣∣∣∣
∑

b∈Eih

∫

b

{β∇(u− wh) · nb}[uIh − wh]ds

∣∣∣∣∣∣

+

∣∣∣∣∣∣
ε
∑

b∈Eih

∫

b

{β∇(uIh − wh) · nb}[u− wh]ds

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑

b∈Eih

∫

b

σ0
b

|b|α [u− wh][uIh − wh]ds

∣∣∣∣∣∣

+

∣∣∣∣∣∣
∑

b∈Enh

∫

b

{β∇u · nb}[uIh − wh]ds

∣∣∣∣∣∣
, Q1 +Q2 +Q3 +Q4 +Q5. (4.72)

To bound Q1 we use Cauchy-Schwarz inequality and Young’s inequality to obtain the fol-
lowing estimate

Q1 ≤
(∑

T∈Th

∥∥β1/2∇(u− wh)
∥∥2

0,T

)1/2(∑

T∈Th

∥∥β1/2∇(uIh − wh)
∥∥2

0,T

)1/2

≤ κ

6

∑

T∈Th

∥∥β1/2∇(uIh − wh)
∥∥2

0,T
+ C‖∇(u− wh)‖2

0,Ω

≤ κ

6
‖uIh − wh‖2

h,Ω + C‖∇(u− wh)‖2
0,Ω. (4.73)

To bound Q2, using Young’s inequality we have

Q2 ≤
(∑

b∈Eih

‖{β∇(u− wh) · nb}‖2
0,b

)1/2(∑

b∈Eih

∥∥[uIh − wh
]∥∥2

0,b

)1/2

≤ κ

6

∑

b∈Eih

σ0
b

|b|α
∥∥[uIh − wh

]∥∥2

0,b
+ C

∑

b∈Eih

|b|α
σ0
b

‖{β∇(u− wh) · nb}‖2
0,b

≤ κ

6
‖uIh − wh‖2

h,Ω + C
∑

b∈Eih

|b|α
σ0
b

‖{β∇(u− wh) · nb}‖2
0,b . (4.74)

To bound Q3, applying the trace inequality (3.4) for H1 function u−wh and trace inequality
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(3.15) for IFE function uIh − wh, we have

Q3 ≤ |ε|
(∑

b∈Eih

∥∥{β∇(uIh − wh) · nb
}∥∥2

0,b

)1/2(∑

b∈Eih

‖[u− wh]‖2
0,b

)1/2

≤ C

(∑

b∈Eih

∥∥(β∇(uIh − wh) · nb)|Tb,1
∥∥2

0,b
+
∑

b∈Eih

∥∥(β∇(uIh − wh) · nb)|Tb,2
∥∥2

0,b

)1/2

(∑

b∈Eih

∥∥(u− wh)|Tb,1
∥∥2

0,b
+
∑

b∈Eih

∥∥(u− wh)|Tb,2
∥∥2

0,b

)1/2

≤ Ch−1

(∑

b∈Eih

∥∥(β1/2∇(uIh − wh)
∥∥2

0,Tb,1
+
∑

b∈Eih

∥∥(β1/2∇(uIh − wh)
∥∥2

0,Tb,2

)1/2

(∑

b∈Eih

(
‖(u− wh)‖2

0,Tb,1
+ h2 ‖∇(u− wh)‖2

0,Tb,1

+ ‖(u− wh)‖2
0,Tb,2

+ h2 ‖∇(u− wh)‖2
0,Tb,2

))1/2

≤ Ch−1

(∑

T∈Th

∥∥β1/2∇(uIh − wh)
∥∥2

0,T

)1/2

(∑

T∈Th

(
‖(u− wh)‖2

L2(T ) + h2 ‖∇(u− wh)‖2
0,T

))1/2

≤ κ

6
‖uIh − wh‖2

h,Ω + Ch−2

(∑

T∈Th

(
‖(u− wh)‖2

0,T + h2 ‖∇(u− wh)‖2
0,T

))
. (4.75)

To bound Q4, we have

Q4 ≤
(∑

b∈Eih

∫

b

σ0
b

|b|α [u− wh]2ds

)1/2(∑

b∈Eih

∫

b

σ0
b

|b|α [uIh − wh]2ds

)1/2

≤ κ

6
‖uIh − wh‖2

h,Ω +
3

2κ

∑

b∈Eih

σ0
b

|b|α‖[u− wh]‖
2
0,b

≤ κ

6
‖uIh − wh‖2

h,Ω + C
∑

T∈Th
h−(1+α)

(∑

T∈Th

(
‖(u− wh)‖2

0,T + h2 ‖∇(u− wh)‖2
0,T

))
.

(4.76)
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For Q5, note that the flux β∇u · nb is continuous across every interior edges b ∈ E̊h; hence
{β∇u ·nb} = β∇u ·nb. Using the estimates (4.43) and (4.44) in Lemma 4.2 and the standard
approximation result [37], we have

Q5 =

∣∣∣∣∣
∑

b∈Enh

∫

b

β∇u · nb
[
uIh − wh

]
ds

∣∣∣∣∣

=

∣∣∣∣∣
∑

b∈Enh

∫

b

(
β∇u · nb − β∇u · nb

b
) [
uIh − wh

]
ds

∣∣∣∣∣

≤ C
∑

b∈Enh

∥∥∥β∇u · nb − β∇u · nb
b
∥∥∥

0,b

∥∥[(uIh − wh)
]∥∥

0,b

≤ C
∑

T∈Th
h1/2‖β∇u · n‖1,Th

1/2|uIh − wh|1,T

≤ Ch
∑

T∈Th
‖u‖2,T |uIh − wh|1,T

≤ Ch

(∑

T∈Th
‖u‖2

2,T

)1/2(∑

T∈Th
|uIh − wh|21,T

)1/2

≤ κ

6
‖uIh − wh‖2

h,Ω + Ch2‖u‖2
2,Ω. (4.77)

Applying the estimates (4.73) - (4.77) to (4.72), we have
κ

6
‖uIh − wh‖2

h,Ω

≤ Ch2‖u‖2
2,Ω + C‖∇(u− wh)‖2

0,Ω + C
∑

b∈Eih

|b|α
σ0
b

‖{β∇(u− wh) · nb}‖2
0,b

+C(h−2 + h−(1+α))

(∑

T∈Th

(
‖(u− wh)‖2

0,T + h2 ‖∇(u− wh)‖2
0,T

))
. (4.78)

Then, letting wh = IIhu in (4.78), using the estimate (3.81) in Theorem 3.12 and (4.62) in
Lemma 4.4 we have the following estimate:

‖uIh − IIhu‖2
h,Ω ≤ Ch2‖u‖2

2,Ω + C
∑

b∈Eih

|b|
σ0
b

∥∥{β∇(u− IIhu) · nb
}∥∥2

0,b

≤ Ch2‖u‖2
2,Ω + C

∑

T∈T ih

h
(
h2 ‖u‖2

3,Ω + h ‖u‖2
2,T

)

≤ Ch2 ‖u‖2
3,Ω . (4.79)

The last inequality in (4.79) is because of the hypothesis (H5). Note that the interpolation
error is bounded as follows using the energy norm (4.66)

‖u− IIhu‖2
h,Ω ≤ Ch2‖u‖2

2,Ω. (4.80)
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Finally, (4.67) follows from applying (4.79) (4.80) to the triangle inequality

‖uIh − u‖h,Ω ≤ ‖u− IIhu‖h,Ω + ‖uIh − IIhu‖h,Ω.

Remark 4.2. The error estimate (4.67) is optimal from the point view of the degree of
polynomials that we use to solve the elliptic interface problem.

To confirm our error analysis, we present several numerical examples in the following discus-
sion. We use the function u given in (3.82) as the exact solution. The Dirichlet boundary
function g and the source function f are chosen correspondingly. Errors of IFE solutions are
given in L∞, L2, and semi-H1 norms. Errors in the L∞ norm are defined by

‖uh − u‖0,∞,Ω = max
T∈Th

(
max

(x,y)∈T̃⊂T
|uh(x, y)− u(x, y)|

)
, (4.81)

where T̃ consists of the 49 uniformly distributed points in T as illustrated in Figure 3.2. The
L2 and semi-H1 norms are computed by suitable Gaussian quadratures. In the following
data tables, rates of convergence in a numerical solution uh are computed by applying the
formulas:

1

ln(2)
ln

( ‖uh − u‖
‖uh/2 − u‖

)
, (4.82)

for a specific norm ‖ · ‖, where uh denotes IFE solution based on the mesh Th.
Example 4.1. (Integral-Value Degrees of Freedom): In this experiment, we test the
accuracy of IFE solutions uIh generated from PPG IFE schemes.

We test all the three PPG IFE schemes based on IFE space SIh(Ω) for the elliptic interface
problem (1.1) - (1.5). First, we consider the case (β−, β+) = (1, 10) which represents a
moderate discontinuity in the diffusion coefficient. Table 4.1, Table 4.2, and Table 4.3 contain
errors of NPPG solutions, SPPG solutions and IPPG solutions, respectively. In the NPPG
scheme, we choose σ0

b = 1,. In SPPG and IPPG schemes, we choose σ0
b = 10 max(β−, β+)

for all the interface edges b ∈ E ih. The different choices of σ0
b are due to the coercivity

requirement described in Lemma 4.1.

Convergence rates in semi-H1 norm in Tables 4.1 through 4.3 confirm our error analysis in
the energy norm (4.67). In fact, errors in the semi-H1 norm can be bounded by the energy
norm with a constant C depending only on the diffusion coefficient β, i.e.,

|uIh − u|1,Ω ≤ C‖uIh − u‖h,Ω.

The data also suggest that the convergence rates in L2 and L∞ norms are approximately
O(h2), which are also optimal from the point view of the degree of polynomials used to
construct IFE spaces. However, the error analysis of L2 and L∞ norms is still open.
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Table 4.1: Errors of NPPG IFE solutions u− uIh with β− = 1, β+ = 10.

N ‖ · ‖0,∞,Ω rate ‖ · ‖0,Ω rate | · |1,Ω rate
10 2.6184E−2 1.1379E−2 1.9532E−1
20 7.3445E−3 1.8339 2.9869E−3 1.9296 9.9052E−2 0.9796
40 1.9455E−3 1.9165 7.4436E−4 2.0046 4.9890E−2 0.9894
80 5.0072E−4 1.9581 1.8561E−4 2.0037 2.5022E−2 0.9955
160 1.2702E−4 1.9789 4.6350E−5 2.0016 1.2530E−2 0.9978
320 3.1989E−5 1.9894 1.1671E−5 1.9887 6.2699E−3 0.9989
640 8.0267E−6 1.9947 2.9143E−6 2.0026 3.1362E−3 0.9994
1280 2.0101E−6 1.9975 7.2743E−7 2.0023 1.5684E−3 0.9997

Table 4.2: Errors of SPPG IFE solutions u− uIh with β− = 1, β+ = 10.

N ‖ · ‖0,∞,Ω rate ‖ · ‖0,Ω rate | · |1,Ω rate
10 2.6165E−2 1.1319E−2 1.9570E−1
20 7.3431E−3 1.8332 2.9737E−3 1.9285 9.9523E−2 0.9756
40 1.9455E−3 1.9163 7.4366E−4 1.9995 5.0008E−2 0.9929
80 5.0072E−4 1.9580 1.8547E−4 2.0034 2.5056E−2 0.9970
160 1.2702E−4 1.9789 4.6267E−5 2.0032 1.2538E−2 0.9988
320 3.1989E−5 1.9894 1.1664E−5 1.9879 6.2731E−3 0.9991
640 8.0267E−6 1.9947 2.9094E−6 2.0033 3.1368E−3 0.9999
1280 2.0101E−6 1.9975 7.2612E−7 2.0024 1.5686E−3 0.9999

Table 4.3: Errors of IPPG IFE solutions u− uIh with β− = 1, β+ = 10.

N ‖ · ‖0,∞,Ω rate ‖ · ‖0,Ω rate | · |1,Ω rate
10 2.6165E−2 1.1320E−2 1.9570E−1
20 7.3431E−3 1.8332 2.9743E−3 1.9282 9.9527E−2 0.9755
40 1.9455E−3 1.9163 7.4385E−4 1.9995 5.0009E−2 0.9929
80 5.0072E−4 1.9580 1.8551E−4 2.0035 2.5056E−2 0.9970
160 1.2702E−4 1.9789 4.6275E−5 2.0032 1.2538E−2 0.9988
320 3.1989E−5 1.9894 1.1665E−5 1.9880 6.2731E−3 0.9991
640 8.0267E−6 1.9947 2.9098E−6 2.0033 3.1368E−3 0.9999
1280 2.0101E−6 1.9975 7.2621E−7 2.0024 1.5686E−3 0.9999

We also test PPG IFE schemes with an interface problem whose coefficient has a larger
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jump, i.e., (β−, β+) = (1, 10000). Errors of nonsymmetric, symmetric and incomplete PPG
IFE solutions are listed in Table 4.4, Table 4.5 and Table 4.6, respectively. These data
demonstrate the optimal convergence in L2, and semi-H1 for all these PPG IFE schemes.
Errors in L∞ norm are slightly less than optimal rate O(h2). We also note that NPPG
solutions are more accurate than SPPG and IPPG schemes in this example. In addition, the
convergence rate of NPPG solutions seems to be closer to optimal in L∞ norm compared to
SPPG and IPPG schemes.

Table 4.4: Errors of NPPG IFE solutions u− uIh with β− = 1, β+ = 10000.

N ‖ · ‖0,∞,Ω rate ‖ · ‖0,Ω rate | · |1,Ω rate
10 6.2407E−3 2.6860E−3 4.1237E−2
20 2.5474E−3 1.2927 1.0545E−3 1.3488 2.7853E−2 0.5661
40 7.3217E−4 1.7988 2.6021E−4 2.0189 1.4724E−2 0.9197
80 2.4255E−4 1.5939 6.3786E−5 2.0284 7.5699E−3 0.9598
160 7.0298E−5 1.7867 1.5572E−5 2.0342 3.7998E−3 0.9943
320 2.0025E−5 1.8117 4.0879E−6 1.9296 1.9164E−3 0.9875
640 5.4254E−6 1.8840 1.0077E−6 2.0202 9.5916E−4 0.9985
1280 1.4369E−6 1.9168 2.4931E−7 2.0151 4.8012E−4 0.9984

Table 4.5: Errors of SPPG IFE solutions u− uIh with β− = 1, β+ = 10000.

N ‖ · ‖0,∞,Ω rate ‖ · ‖0,Ω rate | · |1,Ω rate
10 6.5953E−3 2.6902E−3 4.1642E−2
20 2.5724E−3 1.3583 1.0825E−3 1.3133 2.8294E−2 0.5575
40 7.9282E−4 1.6981 2.7408E−4 1.9818 1.5064E−2 0.9094
80 3.2033E−4 1.3074 7.6080E−5 1.8490 7.8210E−3 0.9457
160 1.2195e−4 1.3932 1.7489E−5 2.1211 3.8529E−3 1.0214
320 2.6504E−5 2.2020 4.3093E−6 2.0209 1.9325E−3 0.9955
640 8.0321E−6 1.7223 1.0814E−6 1.9946 9.6213E−4 1.0062
1280 2.3285E−6 1.7864 2.5544E−7 2.0819 4.8077E−4 1.0009

4.2.2 Error Estimation for IFE Solutions in SPh (Ω)

In this subsection, we derive an error bound for the PPG IFE solutions uPh . The discussion
in this section is based on the assumption that the solution u to the elliptic interface problem
is piece-wise W 2,∞, i.e., u|Ωs ∈ W 2,∞(Ωs), s = +,−. First, we define the following space

PW 2,∞
int (Ω) =

{
u ∈ C(Ω), u|Ωs ∈ W 2,∞(Ωs), s = +,−, [β∇u · nΓ] = 0 on Γ

}
. (4.83)
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Table 4.6: Errors of IPPG IFE solutions u− uIh with β− = 1, β+ = 10000.

N ‖ · ‖0,∞,Ω rate ‖ · ‖0,Ω rate | · |1,Ω rate
10 6.5953E−3 2.6902E−3 4.1642E−2
20 2.5724E−3 1.3583 1.0825E−3 1.3133 2.8294E−2 0.5575
40 7.9281E−4 1.6981 2.7408E−4 1.9817 1.5064E−2 0.9094
80 3.2029E−4 1.3076 7.6078E−5 1.8490 7.8210E−3 0.9457
160 1.2191e−4 1.3936 1.7481E−5 2.1217 3.8528E−3 1.0214
320 2.6476E−5 2.2030 4.3105E−6 2.0199 1.9326E−3 0.9954
640 8.0516E−6 1.7173 1.0819E−6 1.9942 9.6215E−4 1.0062
1280 2.3298E−6 1.7890 2.5544E−7 2.0825 4.8077E−4 1.0009

In the following error analysis in this subsection, we need the following hypothesis,

(H7) The interface Γ is smooth enough so that PC3
int(Ω) is dense in PW 2,∞

int (Ω).

Then, we derive the interpolation error bound on an interface edge using the norm ‖ · ‖2,∞,Ω.

Lemma 4.6. For every u ∈ PW 2,∞
int (Ω), there exists a constant C such that

‖β∇(u− IPh,Tu) · nb‖2
0,b ≤ Ch3‖u‖2

2,∞,Ω, (4.84)

where T ∈ T ih is an interface element and b ⊂ ∂T is one of its interface edges.

Proof. We consider the Type I Case 2 interface element as illustrated in Figure 3.1, and the
discussion for other cases are similar. Without loss of the generality, we let b = A1A3. Recall
from (3.61) that for every function u ∈ PC3

int(Ω), its interpolation error at a point X ∈ EA3

can be expanded as follows

∂(IPh,Tu(X)− u(X))

∂x
= (F1 + F2)φP1,T,x(X)− 1

2
F0,xuxx(X) +

4∑

i=1

Iiφ
P
i,T,x(X), (4.85)

where F0, F1, F2, and Ii, i = 1, · · · , 4 are defined in (3.35), (3.46a) - (3.46g). To bound
the first term on the right hand side of (4.85), we use (3.30), (3.31) and the bound of IFE
functions (3.3a) in Theorem 3.2 to obtain

∫

EA3

(Fiφ
P
1,T,x(X))2ds ≤ Ch2

∫

EA3

|∇u−|2ds ≤ Ch3‖u‖2
1,∞,Ω− ≤ Ch3‖u‖2

2,∞,Ω− , ∀ i = 1, 2.

(4.86)
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Also, applying the bound of F0 from (3.42) to the second term on the right hand side of
(4.85) yields

∫

EA3

(
1

2
F0,xu

−
xx(X)

)2

ds ≤
∫

EA3

|F0,x|2|u−xx(X)|2ds

≤ Ch2

∫

EA3

|u−xx(X)|2ds

≤ Ch3‖u‖2
2,∞,Ω− . (4.87)

For the term involving I1,1 we have the following estimate from (3.54) and the bound of IFE
functions (3.3a) given in Theorem 3.2

∫

EA3

(
I1,1φ

P
1,T,x(X)

)2
ds

≤ Ch2

∫

EA3

∫ 1

0

(
|uξξ(ξ, η)|2 + |uξη(ξ, η)|2 + |uηξ(ξ, η)|2 + |uηη(ξ, η)|2

)
dt ds

≤ Ch3‖u‖2
2,∞,Ω− . (4.88)

Similarly to (4.88), we obtain
∫

EA3

(
I1,iφ

P
1,T,x(X)

)2
ds ≤ Ch3‖u‖2

2,∞,Ω− , i = 2, 3. (4.89)

For the term involving I2 we have the following estimate using (3.3a)
∫

EA3

(
I2φ

P
2,T,x(X)

)2
ds

≤ Ch2

∫ h

eh

∫ 1

0

(1− t)2

∣∣∣∣uxx(th,
th

2
+ (1− t)y)

∣∣∣∣
2

+

∣∣∣∣uxy(th,
th

2
+ (1− t)y)

∣∣∣∣
2

+

∣∣∣∣uyx(th,
th

2
+ (1− t)y)

∣∣∣∣
2

+

∣∣∣∣uyy(th,
th

2
+ (1− t)y)

∣∣∣∣
2

dt dy

≤ Ch3‖u‖2
2,∞,Ω− . (4.90)

Similarly to (4.90), we obtain
∫

EA3

(
Iiφ

P
3,T,x(X)

)2
ds ≤ Ch3‖u‖2

2,∞,Ω− , i = 3, 4. (4.91)

Combining all estimates (4.86) - (4.91) yields

∥∥∂x(IPh,Tu− u)
∥∥2

0,EA3
≤ Ch3‖u‖2

2,∞,Ω− .

Similarly, we can also show that
∥∥∂x(IPh,Tu− u)

∥∥2

0,A1E
≤ Ch3‖u‖2

2,∞,Ω+ .
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Note that b = EA3 ∪ A1E, hence

∥∥∂x(IPh,Tu− u)
∥∥2

0,b
≤ Ch3‖u‖2

2,∞,Ω. (4.92)

Using a similar argument we can derive an error estimate for y-derivative:

∥∥∂y(IPh,Tu− u)
∥∥2

0,b
≤ Ch3‖u‖2

2,∞,Ω. (4.93)

Combining (4.92) and (4.93) leads to the error estimate (4.84) for u ∈ PC3
int(Ω). Applying

the density assumption (H7), we obtain (4.49) for u ∈ PW 2,∞
int (Ω).

The following lemma is useful for the error analysis. The proof of the this lemma follows a
similar approach in the proof of Theorem 3.3 in [85].

Lemma 4.7. Let u ∈ H1(Ω) and u|Ωs ∈ H2(Ωs), s = +,−. There exists a constant C such
that

∑

b∈∂T

∫

b

(β∇u · nb) (vh − vh(Mb)) ds ≤ Ch|u|2,T |vh|1,T , ∀ vh ∈ SPh (Ω), (4.94)

for every non-interface element T ∈ T nh , where b is an edge of T and Mb is the midpoint of
b.

Proof. We consider an element T ∈ T nh with vertices

A1 = (x0, y0)t, A2 = (x0 + h, y0)t, A3 = (x0, y0 + h)t, A4 = (x0 + h, y0 + h)t.

Then we denote the edges of T as follows:

b1 = A1A2, b2 = A2A4, b3 = A4A3, b4 = A3A1,

Without loss of generality, we consider the two vertical edges b2 and b4. Note that the normal
vectors associated to these edges satisfy nb2 = −nb4 . Then we have the following estimate
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by using the inverse inequality (3.17):

∫

b2

(∇u · nb2) (vh − vh(Mb2)) ds+

∫

b4

(∇u · nb4) (vh − vh(Mb4)) ds

=

∫

b2

ux(x, y)(vh(x, y)− vh(Mb2))ds−
∫

b4

ux(x, y)(vh(x, y)− vh(Mb4))ds

=

∫ y0+h

y0

ux(x0 + h, y)(vh(x0 + h, y)− vh(x0 + h, y0 +
h

2
))dy

−
∫ y0+h

y0

ux(x0, y)(vh(x0, y)− vh(x0, y0 +
h

2
))dy

=

∫ y0+h

y0

ux(x0 + h, y)

(∫ y

y0+h/2

∂vh(x0 + h, y′)

∂y′
dy′
)

dy

−
∫ y0+h

y0

ux(x0, y)

(∫ y

y0+h/2

∂vh(x0, y
′)

∂y′
dy′
)

dy

=

∫ y0+h

y0

(ux(x0 + h, y)− ux(x0, y))

(∫ y

y0+h/2

∂vh(x0 + h, y′)

∂y′
dy′
)

dy

=

∫ y0+h

y0

(∫ x0+h

x0

uxx(x, y)dx

)(∫ y

y0+h/2

|vh|1,∞,Tdy′
)

dy

≤ C|vh|1,T
∫ x0+h

x0

∫ y0+h

y0

uxx(x, y) dx dy

≤ Ch|vh|1,T |u|2,T .

Similarly, we can derive an estimate on two horizontal edges b1 and b3. Finally, the result
(4.94) follows immediately from combining these estimates together.

Now we are ready to prove the convergence of uPh .

Theorem 4.2. Assume that u ∈ PW 2,∞
int (Ω) is the solution to the interface problem (1.1) -

(1.4), and uPh ∈ SPh (Ω) is the partially penalized Galerkin IFE solution to (4.24) and (4.25),
then there exists a constant C such that

‖uPh − u‖h,Ω ≤ Ch1/2‖u‖2,∞,Ω (4.95)

Proof. Note that the solution u ∈ W 2,∞
int (Ω) is continuous inside Ω, and the flux β∇u ·nb are

continuous across every interior edge b ∈ E̊h. Similar to the derivation (4.68) in the proof of
Theorem 4.1, for every vh ∈ S̊Ph (Ω), we have

∑

b∈Eih

∫

b

{β∇u · nb}[vh]ds =
∑

T∈Th

∫

∂T

β∇u · nTvhds−
∑

b∈Enh

∫

b

{β∇u · nb}[vh]ds. (4.96)
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Similar to the derivation (4.69), the equation (4.96) yields

aε(u, vh) = (f, vh) +
∑

b∈Enh

∫

b

{β∇u · nb}[vh]ds. (4.97)

Hence, subtracting (4.97) from (4.24), we have

aε(u
P
h , vh) = aε(u, vh)−

∑

b∈Enh

∫

b

{β∇u · nb}[vh]ds, ∀vh ∈ S̊Ph (Ω). (4.98)

For every function wh in S̃Ph (Ω) = {wh ∈ SPh (Ω) : wh(Mb) = g(Mb),∀ b ∈ Ebh}, we subtract
aε(wh, vh) from both sides of (4.98),

aε(u
P
h − wh, vh) = aε(u− wh, vh)−

∑

b∈Enh

∫

b

{β∇u · nb}[vh]ds, ∀vh ∈ S̊Ph (Ω), ∀wh ∈ S̃Ph (Ω).

We let vh = uPh − wh ∈ S̊Ph (Ω) in the above equation, then

aε(u
P
h −wh, uPh −wh) = aε(u−wh, uPh −wh)−

∑

b∈Enh

∫

b

{β∇u ·nb}[uPh −wh]ds, ∀wh ∈ S̃Ph (Ω).

(4.99)
We can write the last term in (4.99) as the summation with respect to the element T :

∑

b∈Enh

∫

b

{β∇u · nb}[uPh − wh]ds

=
∑

T∈T nh

∑

b⊂∂T

∫

b

(β∇u · nb)(uPh − wh − (uPh (Mb)− wh(Mb)))ds

+
∑

T∈T ih

∑

b⊂∂T,b/∈Eih

∫

b

(β∇u · nb)(uPh − wh − (uPh (Mb)− wh(Mb)))ds. (4.100)
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Applying the identity (4.100) and the coercivity result (4.38) to (4.99) yields

κ‖uPh − wh‖2
h,Ω

≤ |aε(u− wh, uPh − wh)|+
∣∣∣∣∣
∑

b∈Enh

∫

b

{β∇u · nb}[uIh − wh]ds
∣∣∣∣∣

=

∣∣∣∣∣
∑

T∈Th

∫

T

β∇(u− wh) · ∇(uPh − wh)dX
∣∣∣∣∣+

∣∣∣∣∣
∑

b∈Eih

∫

b

{β∇(u− wh) · nb}[uPh − wh]ds
∣∣∣∣∣

+

∣∣∣∣∣ε
∑

b∈Eih

∫

b

{β∇(uPh − wh) · nb}[u− wh]ds
∣∣∣∣∣+

∣∣∣∣∣
∑

b∈Eih

∫

b

σ0
b

|b|α [u− wh][uPh − wh]ds
∣∣∣∣∣

+

∣∣∣∣∣
∑

T∈T nh

∑

b⊂∂T

∫

b

(β∇u · nb)(uPh − wh − (uPh (Mb)− wh(Mb)))ds

∣∣∣∣∣

+

∣∣∣∣∣∣
∑

T∈T ih

∑

b⊂∂T,b/∈Eih

∫

b

(β∇u · nb)(uPh − wh − (uPh (Mb)− wh(Mb)))ds

∣∣∣∣∣∣
, QP

1 +QP
2 +QP

3 +QP
4 +QP

5 +QP
6 . (4.101)

Following similar arguments (4.73) - (4.76) as for analyzing Q1 through Q4, we obtain the
following estimates for QP

i , i = 1, 2, 3, 4:

QP
1 ≤ κ

6
‖uPh − wh‖2

h,Ω + C‖∇(u− wh)‖2
0,Ω, (4.102)

QP
2 ≤ κ

6
‖uPh − wh‖2

h,Ω + C
∑

b∈Eih

|b|α
σ0
b

‖{β∇(u− wh) · nb}‖2
0,b , (4.103)

QP
3 ≤ κ

6
‖uPh − wh‖2

h,Ω + Ch−2

(∑

T∈Th

(
‖(u− wh)‖2

0,T + h2 ‖∇(u− wh)‖2
0,T

))
, (4.104)

QP
4 ≤ κ

6
‖uPh − wh‖2

h,Ω + C
∑

T∈Th
h−(1+α)

(∑

T∈Th

(
‖(u− wh)‖2

0,T + h2 ‖∇(u− wh)‖2
0,T

))
.

(4.105)

By Lemma 4.7, we have the following bounds for QP
5 :

QP
5 ≤

∣∣∣∣∣
∑

T∈T nh

∑

b⊂∂T

∫

b

(β∇u · nb)
(
uPh − wh − (uPh (Mb)− wh(Mb))

)
ds

∣∣∣∣∣

≤ Ch

( ∑

T∈T nh

|u|22,T

)1/2(∑

T∈Th
|uPh − wh|21,T

)1/2

≤ κ

6
‖uPh − wh‖2

h,Ω + Ch2‖u‖2
2,Ω. (4.106)
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To bound QP
6 , we let T ∗h be the collection of non-interface elements which are adjacent to

interface elements and let Ω∗ =
⋃
T∈T ∗h

T . By standard trace theorem (3.5) we have

QP
6 ≤

∣∣∣∣∣∣
∑

T∈T ih

∑

b⊂∂T,b/∈Eih

∫

b

(β∇u · n)(uPh − wh − (uPh (Mb)− wh(Mb)))ds

∣∣∣∣∣∣

≤ C
∑

T∈T ih

∑

b⊂∂T,b/∈Eih

‖β∇u · n‖0,b‖uPh − wh − (uPh (Mb)− wh(Mb))‖0,b

≤ C
∑

T∈T ∗h

h−1/2|u|2,Th1/2|uPh − wh|1,T

≤ C

( ∑

T∈T ∗h

|u|22,T

)1/2(∑

T∈Th
|uPh − wh|21,T

)1/2

≤ κ

12
‖uPh − wh‖2

h,Ω + C|u|22,Ω∗

Using the hypothesis (H5), we may conclude that meas(Ω∗) ≤ Ch. As a result, we have

|u|22,Ω∗ =

∫

Ω∗

∑

|α|=2

|Dαu|2dX ≤ |u|22,∞,Ω
∫

Ω∗
1dX ≤ Ch|u|22,∞,Ω.

Hence,

QP
6 ≤

κ

12
‖uPh − wh‖2

h,Ω + Ch|u|22,∞,Ω (4.107)

Applying estimates (4.102) - (4.107) to (4.101), we have

κ

12
‖uPh − wh‖2

h,Ω

≤ Ch‖u‖2
2,∞,Ω + Ch2‖u‖2

2,Ω + C‖∇(u− wh)‖2
0,Ω + C

∑

b∈Eih

|b|α
σ0
b

‖{β∇(u− wh) · nb}‖2
0,b

+C(h−2 + h−(1+α))

(∑

T∈Th

(
‖(u− wh)‖2

0,T + h2 ‖∇(u− wh)‖2
0,T

))
. (4.108)

Then we let wh = IPh u in (4.108) and use the estimate (3.71) in Theorem 3.10 and (4.49) in
Lemma 4.3 to have the following estimate:

‖uPh − IPh u‖2
h,Ω ≤ Ch2‖u‖2

2,Ω + Ch‖u‖2
2,∞,Ω + C

∑

b∈Eih

|b|
σ0
b

∥∥{β∇(u− IPh u) · nb
}∥∥2

0,b

≤ Ch2‖u‖2
2,Ω + Ch‖u‖2

2,∞,Ω + C
∑

T∈Th
h
(
h3 ‖u‖2

2,∞,Ω

)

≤ Ch ‖u‖2
2,∞,Ω . (4.109)
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Again, we use the hypothesis (H5) to derive the last inequality in (4.109). Then we apply
the interpolation error estimate with energy norm (4.66) to have

‖u− IPh u‖2
h,Ω ≤ Ch2‖u‖2

2,Ω. (4.110)

Since u ∈ PW 2,∞
int (Ω), then it can be easily verified that

‖u‖2,Ω ≤ C‖u‖2,∞,Ω. (4.111)

Finally, the result (4.95) follows from applying the error bounds (4.109), (4.110) and (4.111)
to the following triangle inequality

‖uPh − u‖h,Ω ≤ ‖u− IPh u‖h,Ω + ‖uPh − IPh u‖h,Ω.

Note that the error bound we have derived for the PPG IFE solution uPh is at least suboptimal
in the energy norm ‖ · ‖h,Ω. Next we provide a few numerical experiments to test the
performance of this PPG IFE scheme. We consider the same example as we use in Example
4.1.

Example 4.2. (Midpoint-Value Degrees of Freedom): In this experiment, we test the
accuracy IFE solutions uPh generated from PPG IFE schemes.

We carry out numerical experiments for the moderate coefficient discontinuity (β−, β+) =
(1, 10) using the same Cartesian meshes Th as we used in Example 4.1. Errors of nonsym-
metric, symmetric, and incomplete PPG IFE solutions uPh are listed in Table 4.7, Table 4.8,
and Table 4.9, respectively.

Data in these tables demonstrate convergence patterns of PPG IFE solutions with midpoint-
value degrees of freedom. Errors in semi-H1 norm seem to maintain an optimal rate O(h)
for all three PPG IFE schemes, although suboptimal convergence rate (4.95) has been the-
oretically established for the PPG IFE schemes with midpoint-value degrees of freedom.

Errors in L2 norm seem to obey an optimal rate O(h2) for symmetric and incomplete PPG
IFE schemes but only suboptimal rate for nonsymmetric scheme. Errors in L∞ norm can
only achieve suboptimal rates for all of these three PPG IFE schemes. Comparisons of these
two PPG IFE schemes with different types of degrees of freedom will be provided in Section
4.3.

4.2.3 Error Estimation for IPDG IFE Solutions

In this section, we discuss the error estimation of the interior penalty discontinuous Galerkin
IFE solution uDGh . We note that the analysis for uDGh is quite similar to the PPG IFE solution
uIh; hence, we omit some details in the following discussion.
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Table 4.7: Errors of NPPG IFE solutions u− uPh with β− = 1, β+ = 10.

N ‖ · ‖0,∞,Ω rate ‖ · ‖0,Ω rate | · |1,Ω rate
10 3.0784E−2 8.4671E−3 1.9584E−1
20 8.6353E−3 1.8339 2.1214E−3 1.9969 9.9798E−2 0.9726
40 2.2891E−3 1.9155 5.3504E−4 1.9873 5.0319E−2 0.9879
80 5.8956E−4 1.9571 1.3560E−4 1.9803 2.5272E−2 0.9935
160 1.4962E−4 1.9783 3.4479E−5 1.9755 1.2674E−2 0.9957
320 4.6014E−5 1.7012 9.0189E−6 1.9347 6.3669E−3 0.9932
640 2.3525E−5 0.9679 2.3671E−6 1.9298 3.2019E−3 0.9917
1280 1.1957E−5 0.9750 6.4032E−7 1.8863 1.6196E−3 0.9833

Table 4.8: Errors of SPPG IFE solutions u− uPh with β− = 1, β+ = 10.

N ‖ · ‖0,∞,Ω rate ‖ · ‖0,Ω rate | · |1,Ω rate
10 3.0780E−2 7.6671E−3 1.9716E−1
20 8.6341E−3 1.8338 2.0929E−3 1.8732 1.0026E−1 0.9756
40 2.2891E−3 1.9153 5.2161E−4 2.0045 5.0424E−2 0.9916
80 5.8956E−4 1.9571 1.2971E−4 2.0076 2.5275E−2 0.9964
160 1.4962E−4 1.9783 3.2259E−5 2.0075 1.2652E−2 0.9984
320 3.7691E−5 1.9891 8.1360E−6 1.9873 6.3327E−3 0.9985
640 9.4586E−6 1.9945 2.0047E−6 2.0210 3.1684E−3 0.9991
1280 4.2436E−6 1.1563 4.8937E−7 2.0344 1.5863E−3 0.9981

Table 4.9: Errors of IPPG IFE solutions u− uPh with β− = 1, β+ = 10.

N ‖ · ‖0,∞,Ω rate ‖ · ‖0,Ω rate | · |1,Ω rate
10 3.0780E−2 7.6807E−3 1.9714E−1
20 8.6342E−3 1.8339 2.0976E−3 1.8725 1.0026E−2 0.9755
40 2.2891E−3 1.9153 5.2135E−4 2.0084 5.0424E−2 0.9916
80 5.8956E−4 1.9571 1.2982E−4 2.0057 2.5275E−2 0.9964
160 1.4962E−4 1.9783 3.2369E−5 2.0039 1.2652E−2 0.9983
320 3.7691E−5 1.9891 8.2351E−6 1.9747 6.3328E−3 0.9984
640 9.4586E−6 1.9945 2.0559E−6 2.0020 3.1685E−3 0.9990
1280 4.3463E−6 1.1218 5.1318E−7 2.0022 1.5864E−3 0.9980

We define the energy norm, still denoted by ‖ · ‖h,Ω, on the “broken” IFE space SDGh (Ω) as
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follows

‖v‖h,Ω =

(∑

T∈Th

∫

T

β∇v · ∇v dx dy +
∑

b∈Eh

∫

b

σ0
b

|b|α [v][v]ds

)1/2

. (4.112)

Using similar arguments to those for proving Lemma 4.1, we can show that the bilinear form
aDGε (·, ·) defined in (4.34) is coercive with the above energy norm (4.112).

Lemma 4.8. Assume α ≥ 1 in the bilinear form (4.34) and the energy norm (4.112). There
exists a positive constant κ such that

κ‖v‖2
h,Ω ≤ aDGε (v, v), ∀ v ∈ SDGh (Ω), (4.113)

for any positive σ0
b if ε = 1, or for σ0

b large enough if ε = −1 or 0.

The following lemma provides an estimate of interpolation errors on non-interface edges.

Lemma 4.9. There exists a constant C such that

‖β∇(u− Ikh,Tu) · nb‖2
0,b ≤ Ch|u|22,T , ∀u ∈ H2(T ), k = P, I. (4.114)

for every non-interface element T ∈ T nh where b ⊂ ∂T is one of its edges.

Proof. By trace inequality (3.5) we obtain

‖β∇(u− Ikh,Tu) · nb‖2
0,b ≤ C(h−1|u− Ikh,Tu|21,T + h|u− Ikh,Tu|22,T ). (4.115)

Using standard scaling argument [44] to analyze the interpolation error u− Ikh,Tu, k = P, I,
we have

|u− Ikh,Tu|m,T ≤ Ch2−m|u|2,T , m = 1, 2. (4.116)

The estimate (4.114) follows from (4.115) and (4.116).

An error estimate of the IPDG IFE schemes is given in the following theorem.

Theorem 4.3. Assume u ∈ PH3
int(Ω) is the solution to the interface problem (1.1) - (1.4),

and uDGh ∈ SDGh (Ω) is the interior penalty discontinuous Galerkin IFE solution to (4.32)
with boundary condition (4.33a) or (4.33b), then there exists a constant C such that

‖uDGh − u‖h,Ω ≤ Ch‖u‖3,Ω. (4.117)
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Proof. Note that the solution u ∈ PH3
int(Ω) is continuous inside Ω, and the flux β∇u · nb is

continuous across every interior edges b ∈ E̊h. By Green’s formula and (4.18) we have

∑

b∈Eh

∫

b

{β∇u · nb}[vh]ds

=
∑

b∈Ebh

∫

b

β∇u · nbvhds+
∑

b∈E̊h

∫

b

{β∇u · nb}[vh]ds

=
∑

b∈Ebh

∫

b

β∇u · nbvhds+
∑

b∈E̊h

∫

b

{β∇u · nb}[vh]ds+
∑

b∈E̊h

∫

b

{β∇vh · nb}[u]ds

=
∑

T∈Th

∫

∂T

β∇u · nTvhds, (4.118)

for every vh ∈ S̊k,DGh (Ω), k = P, I. The equation (4.118) implies

aDGε (u, vh) =
∑

T∈Th

∫

T

β∇u · ∇vhdX −
∑

T∈Th

∫

∂T

β∇u · nTvhds = (f, vh). (4.119)

Hence, subtracting (4.119) from (4.32) we obtain

aDGε (uDGh , vh) = aDGε (u, vh), ∀ vh ∈ S̊k,DGh (Ω), k = P, I. (4.120)

For every function wh in

S̃P,DGh (Ω) = {wh ∈ SDGh (Ω) : wh(Mb) = g(Mb),∀ b ∈ Ebh},
or

S̃I,DGh (Ω) = {wh ∈ SDGh (Ω) :

∫

b

whds =

∫

b

gds,∀ b ∈ Ebh},

we subtract aDGε (wh, vh) from (4.120) then

aDGε (uDGh − wh, vh) = aDGε (u− wh, vh), ∀ vh ∈ S̊k,DGh (Ω), ∀wh ∈ S̃k,DGh (Ω), k = P, I.

We let vh = uDGh − wh ∈ S̊k,DGh (Ω) in the above equation, then

aDGε (uDGh −wh, uDGh −wh) = aDGε (u−wh, uDGh −wh), ∀wh ∈ S̃k,DGh (Ω), k = P, I. (4.121)

Applying the coercivity result (4.113) to (4.121), we have

κ‖uDGh − wh‖2
h,Ω

≤
∣∣∣∣∣
∑

T∈Th

∫

T

β∇(u− wh) · ∇(uDGh − wh)dX
∣∣∣∣∣+

∣∣∣∣∣
∑

b∈Eh

∫

b

{β∇(u− wh) · nb}[uDGh − wh]ds
∣∣∣∣∣

+

∣∣∣∣∣ε
∑

b∈Eh

∫

b

{β∇(uDGh − wh) · nb}[u− wh]ds
∣∣∣∣∣+

∣∣∣∣∣
∑

b∈Eh

∫

b

σ0
b

|b|α [u− wh][uDGh − wh]ds
∣∣∣∣∣

, QDG
1 +QDG

2 +QDG
3 +QDG

4 . (4.122)
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Following similar arguments (4.73) - (4.76) in analyzing Q1 through Q4, we obtain the
following estimates for QDG

i , i = 1, 2, 3, 4:

QDG
1 ≤ κ

6
‖uDGh − wh‖2

h,Ω + C‖∇(u− wh)‖2
0,Ω, (4.123)

QDG
2 ≤ κ

6
‖uDGh − wh‖2

h,Ω + C
∑

b∈Eh

|b|α
σ0
b

‖{β∇(u− wh) · nb}‖2
0,b , (4.124)

QDG
3 ≤ κ

6
‖uDGh − wh‖2

h,Ω + Ch−2

(∑

T∈Th

(
‖(u− wh)‖2

0,T + h2 ‖∇(u− wh)‖2
0,T

))
, (4.125)

QDG
4 ≤ κ

6
‖uDGh − wh‖2

h,Ω

+C
∑

T∈Th
h−(1+α)

(∑

T∈Th

(
‖(u− wh)‖2

0,T + h2 ‖∇(u− wh)‖2
0,T

))
. (4.126)

Applying the estimates (4.123) - (4.126) to (4.122), we have

κ

3
‖uDGh − wh‖2

h,Ω ≤ C‖∇(u− wh)‖2
0,Ω + C

∑

b∈Eh

|b|α
σ0
b

‖{β∇(u− wh) · nb}‖2
0,b (4.127)

+C(h−2 + h−(1+α))

(∑

T∈Th

(
‖(u− wh)‖2

0,T + h2 ‖∇(u− wh)‖2
0,T

))
.

Then, we let wh be the IFE interpolant IIhu or IPh u in (4.127) and apply interpolation error
estimates (3.71) if k = P or (3.81) if k = I to obtain

‖uDGh − Ikhu‖2
h,Ω ≤ Ch2‖u‖2

2,Ω + C
∑

b∈Eih

|b|
σ0
b

∥∥{β∇(u− Ikhu) · nb
}∥∥2

0,b

+C
∑

b∈Enh

|b|
σ0
b

∥∥{β∇(u− Ikhu) · nb
}∥∥2

0,b
. (4.128)

We use the estimate (4.114) or (4.62) to bound the second term on the right hand side of
(4.128) and apply the estimate (4.127) to bound the third term on the right hand side of
(4.128). Then we obtain

‖uDGh − Ikhu‖2
h,Ω ≤ Ch2‖u‖2

2,Ω + C
∑

T∈T ih

h
(
h2 ‖u‖2

3,Ω + h ‖u‖2
2,T

)
≤ Ch2 ‖u‖2

3,Ω . (4.129)

The last inequality in (4.129) is due to the hypothesis (H5). Finally, the estimate (4.117)
follows from applying the interpolation error estimate (4.80) if k = I or (4.110) if k = P and
(4.129) to the following triangle inequality

‖uDGh − u‖h,Ω ≤ ‖u− Ikhu‖h,Ω + ‖uDGh − Ikhu‖h,Ω.
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Again, we use some numerical experiments to confirm our error analysis.

Example 4.3. (IPDG IFE Schemes): In this experiment, we test the accuracy of interior
penalty DG IFE solutions uDGh using nonconforming rotated Q1 IFE functions.

In this experiment, we handle the boundary conditions by matching the midpoint values
of IPDG IFE solutions with the boundary function g following the approach (4.33b). We
have also conduct the experiment by matching the integral values of the boundary condition
(4.33a), and the numerical results are almost exactly the same; hence, these results are
skipped in the discussion below. Table 4.10, Table 4.11, and Table 4.12 contain the errors of
nonsymmetric, symmetric, and incomplete IPDG IFE solutions, respectively. Convergence
rates in semi-H1 norm seem to be optimal for all these three IPDG IFE schemes, which
confirms our error estimate (4.117). Moreover, convergence rates of nonsymmetric IPDG IFE
solutions seem to be optimal in L2 norm. Convergence rates of symmetric and incomplete
IPDG IFE schemes are observed suboptimal using coarse meshes but they tend to become
optimal when mesh size is sufficient small. One may find similar observation for convergence
rates in L∞ norm.

Table 4.10: Errors of NIPDG IFE solutions u− uDGh with β− = 1, β+ = 10.

N ‖ · ‖0,∞,Ω rate ‖ · ‖0,Ω rate | · |1,Ω rate
10 3.3627E−2 6.4672E−3 1.9925E−1
20 9.9462E−3 1.7574 2.0110E−3 1.6853 1.0026E−1 0.9908
40 2.7240E−3 1.8684 5.2330E−4 1.9422 5.0258E−2 0.9963
80 7.4953E−4 1.8616 1.3210E−4 1.9861 2.5126E−2 1.0002
160 1.9913E−4 1.9123 3.3070E−5 1.9980 1.2558E−2 1.0006
320 5.1283E−5 1.9572 8.3972E−6 1.9775 6.2769E−3 1.0005
640 1.3010E−5 1.9789 2.0901E−6 2.0063 3.1380E−3 1.0002
1280 3.2764E−6 1.9895 5.1965E−7 2.0087 1.5689E−3 1.0001

4.3 Discussions on Related Schemes

In this section, we consider other related IFE schemes and compare their numerical perfor-
mance with PPG IFE schemes in Section 4.2. Related IFE methods considered here include
those using different computational schemes, such as Galerkin IFE schemes, or those using
different IFE functions, such as bilinear IFE functions [69].

Example 4.4. (Comparison with Galerkin IFE Solutions): In this example, we solve
the interface problem using Galerkin IFE method (4.5) with nonconforming rotated Q1 IFE
functions, and compare their numerical performance to the PPG IFE methods.
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Table 4.11: Errors of SIPDG IFE solutions u− uDGh with β− = 1, β+ = 10.

N ‖ · ‖0,∞,Ω rate ‖ · ‖0,Ω rate | · |1,Ω rate
10 7.0936E−2 4.7707E−2 2.4015E−1
20 2.3012E−2 1.6241 1.4423E−2 1.7259 1.1275E−1 1.0908
40 9.8020E−3 1.2302 4.6083E−3 1.6460 5.8333E−2 0.9508
80 3.3163E−3 1.5635 1.5382E−3 1.5830 2.9558E−2 0.9808
160 9.0724E−4 1.8700 4.8278E−4 1.6718 1.4433E−2 1.0341
320 2.8169E−4 1.6874 1.3999E−4 1.7861 6.9319E−3 1.0581
640 9.0890E−5 1.6319 3.8144E−5 1.8758 3.3352E−3 1.0555
1280 2.6419E−5 1.7749 9.9852E−6 1.9336 1.6234E−3 1.0388

Table 4.12: Errors of IIPDG IFE solutions u− uDGh with β− = 1, β+ = 10.

N ‖ · ‖0,∞,Ω rate ‖ · ‖0,Ω rate | · |1,Ω rate
10 7.1014E−2 4.8643E−2 2.3952E−1
20 2.2933E−2 1.6307 1.4513E−2 1.7449 1.1229E−1 1.0930
40 9.7748E−3 1.2302 4.6182E−3 1.6520 5.8161E−2 0.9491
80 3.3043E−3 1.5647 1.5376E−3 1.5867 2.9491E−2 0.9798
160 9.0367E−4 1.8705 4.8184E−4 1.6740 1.4408E−2 1.0334
320 2.8045E−4 1.6881 1.3958E−4 1.7875 6.9237E−3 1.0573
640 9.0424E−5 1.6329 3.8015E−5 1.8764 3.3327E−3 1.0549
1280 2.6419E−5 1.7752 9.9491E−6 1.9339 1.6227E−3 1.0383

We start by using nonconforming rotated Q1 IFE functions with midpoint-value degrees of
freedom. We test the Galerkin IFE schemes for interface problem whose diffusion coefficient
has a moderate jump, i.e., (β−, β+) = (1, 10). The exact solution is chosen the same as we
used in Example 4.1. Errors in L∞, L2, and semi-H1 norms are listed in Table 4.13.

Data in Table 4.13 suggest that Galerkin IFE solutions cannot achieve optimal rates of
convergence in L∞ norm. For L2, and semi-H1 norms, optimal convergence rates are observed
up to mesh size h = 2/320 and these rates deteriorate as we keep refining the mesh. These
observation indicates that the Galerkin IFE scheme may have difficulty in retaining the
optimal convergence rates in L2, and semi-H1 norms when the mesh size is sufficient small.

Comparing data in Table 4.13 with those in Table 4.7 through Table 4.9, we can observe that
adding penalty terms over interface edges leads to prominent improvement of the numerical
accuracy in the sense that convergence rates are closer to optimal and numerical errors are
significantly reduced. A more illustrative comparison between Galerkin IFE solution errors
and NPPG IFE solution errors can be found in Figure 4.1. We observe that errors in NPPG



Xu Zhang Chapter 4. Error Analysis 94

Table 4.13: Errors of Galerkin IFE solutions u− uPh with β− = 1, β+ = 10.

N ‖ · ‖0,∞,Ω rate ‖ · ‖0,Ω rate | · |1,Ω rate
10 3.0783E−2 7.8310E−3 1.9616E−1
20 8.6352E−3 1.8338 2.0989E−3 1.8995 9.9802E−2 0.9749
40 2.2891E−3 1.9155 5.1366E−4 2.0308 5.0359E−2 0.9868
80 7.7107E−4 1.5698 1.2297E−4 2.0626 2.5424E−2 0.9860
160 6.9062E−4 0.1590 3.0853E−5 1.9948 1.3174E−2 0.9485
320 2.8466E−4 1.2787 7.5130E−6 2.0379 6.5827E−3 1.0009
640 1.4840E−4 0.9398 3.4099E−6 1.3006 3.4749E−3 0.9217
1280 1.0162E−4 0.5463 1.6648E−6 0.8734 1.9224E−3 0.8541

IFE scheme illustrated by green dash line, are smaller than errors in Galerkin IFE scheme
illustrated by red solid line when mesh size is small enough. Consequently, the convergence
rates are elevated for NPPG IFE scheme due to the decrease of errors.

Figure 4.1: Comparison of errors in different nonconforming rotated Q1 IFE methods with
β− = 1, β+ = 10.
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We also compare the point-wise error ePh (X) = |uPh (X)− u(X)| of the Galerkin IFE scheme
and NPPG IFE scheme on the same mesh containing 160×160 elements. Error functions ePh
of these two schemes are plotted in Figure 4.2. These figures are generated by plotting the
maximum error on each element. It can be observed from the left plot that the point-wise
accuracy of the Galerkin IFE method is quite poor around the interface and we suspect this
is because the discontinuity of IFE functions across interface could be large with different
configurations of the interface location and diffusion coefficient. By penalizing the discon-
tinuity in IFE functions, the NPPG IFE scheme can produce much better approximations
around the interface as illustrated on the right plot in Figure 4.2. These observations sug-
gest that adding penalty around interface can effectively reduce the IFE solution errors and
improve the overall solution accuracy.
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Figure 4.2: Point-wise error comparison of Galerkin solution and NPPG solution uPh .

Next we use nonconforming rotated Q1 IFE functions with integral-value degrees of freedom
in the Galerkin IFE scheme. Both moderate discontinuity (β−, β+) = (1, 10) and larger
discontinuity (β−, β+) = (1, 10000) of diffusion coefficients are considered in our experiments.
For both coefficient configurations, errors in L∞, L2, and semi-H1 norms are listed in Table
4.14, and Table 4.15, respectively.

Table 4.14: Errors of Galerkin IFE solutions u− uIh with β− = 1, β+ = 10.

N ‖ · ‖0,∞,Ω rate ‖ · ‖0,Ω rate | · |1,Ω rate
10 2.6183E−2 1.1395E−2 1.9585E−1
20 7.3444E−3 1.8339 2.9860E−3 1.9321 9.9065E−2 0.9833
40 1.9455E−3 1.9165 7.4374E−4 2.0054 4.9894E−2 0.9895
80 5.0072E−4 1.9580 1.8547E−4 2.0036 2.5026E−2 0.9955
160 1.2702E−4 1.9789 4.6313E−5 2.0017 1.2531E−2 0.9979
320 3.1989E−5 1.9894 1.1671E−5 1.9885 6.2702E−3 0.9990
640 8.0267E−6 1.9947 2.9122E−6 2.0027 3.1363E−3 0.9995
1280 2.0101E−6 1.9975 7.2684E−7 2.0024 1.5684E−3 0.9997

According to data in Table 4.14 and 4.15, optimal convergence rates are observed in L∞,
L2, and semi-H1 norms for Galerkin IFE solutions with integral-value degrees of freedom.
Comparing the data in Table 4.14 with data in Table 4.1 through Table 4.3 for the example
with moderate jump, we do not see major differences between Galerkin IFE solutions and
PPG IFE solutions. Similar phenomenon can be observed for example with larger coefficient
jump by comparing data in Table 4.15 with data in Tables 4.4 through 4.6. A more illustrative
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Table 4.15: Errors of Galerkin IFE solutions u− uIh with β− = 1, β+ = 10000.

N ‖ · ‖0,∞,Ω rate ‖ · ‖0,Ω rate | · |1,Ω rate
10 5.9646E−3 2.7360E−3 4.0678E−2
20 2.5455E−3 1.2285 1.0526E−3 1.3782 2.7824E−2 0.5479
40 7.1692E−4 1.8281 2.5767E−4 2.0303 1.4700E−2 0.9205
80 2.1533E−4 1.7353 6.3614E−5 2.0181 7.5491E−3 0.9614
160 5.9653E−5 1.8519 1.5531E−5 2.0342 3.7978E−3 0.9911
320 1.5521E−5 1.9423 4.0823E−6 1.9277 1.9146E−3 0.9881
640 4.1575E−6 1.9005 1.0069E−6 2.0194 9.5881E−4 0.9977
1280 1.0588E−6 1.9733 2.4921E−7 2.0145 4.8004E−4 0.9981

comparison of these two schemes can be found in Figure 4.1 in which the plots of errors in
Galerkin IFE scheme illustrated by blue solid line and errors in NPPG IFE scheme illustrated
by black dash line almost coincide.

We also compare the point-wise error eIh(X) = |uIh(X)− u(X)| in Galerkin IFE scheme and
NPPG IFE scheme in Figure 4.3. It can be observed that these two plots are very similar. In
both of these plots, point-wise errors around interface are comparable to errors far away from
the interface. All of these comparisons indicate an interesting and also important feature,
that is, for nonconforming rotated Q1 IFE functions with integral-value degrees of freedom,
the penalty terms in the PPG IFE schemes enable us to derive optimal error bounds, but
they seem to be unnecessary for actual computation. How to theoretically prove that the
Galerkin IFE scheme with nonconforming rotated Q1 IFE functions using integral-value
degrees of freedom does converge optimally is an interesting future research topic.

Example 4.5. (Comparison with Bilinear IFE Methods): In this example, we com-
pare the numerical performances of nonconforming rotated Q1 IFE methods with bilinear
IFE methods [69].

Bilinear IFE spaces are defined on Cartesian meshes [70, 98]; hence it is natural to compare
bilinear IFE methods with nonconforming rotated Q1 IFE methods using the same meshes.
First we solve the elliptic interface problem whose exact solution is given in (3.82) using
Galerkin scheme with bilinear IFE functions. Related numerical errors are listed in Table
4.16. Data in this table indicate that errors in bilinear Galerkin IFE methods have a subop-
timal convergence rate in L∞ norm. Also, the convergence rates in L2 and semi-H1 norms
seem to be optimal for a moderately small mesh size. As we continue refining meshes, the
rates of convergence in L2 and semi-H1 norms tend to degenerate. Note that we observe sim-
ilar phenomenons in Galerkin IFE solutions using nonconforming rotated Q1 IFE functions
with midpoint-value degrees of freedom as listed in Table 4.13.

We solve the elliptic interface problem again using PPG schemes with bilinear IFE functions.
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Figure 4.3: Point-wise error comparison of Galerkin solution and NPPG solution uIh.

Errors in nonsymmetric, symmetric, and incomplete PPG schemes are listed in Table 4.17,
Table 4.18, Table 4.19, respectively. We observe that all these PPG IFE solutions can achieve
optimal convergence rates in L∞, L2, and semi-H1 norms. These observations reaffirm the
importance of penalizing discontinuities at interface edges for bilinear IFE solutions.

Table 4.16: Errors of bilinear Galerkin IFE solutions u− uh with β− = 1, β+ = 10.

N ‖ · ‖0,∞,Ω rate ‖ · ‖0,Ω rate | · |1,Ω rate
10 3.3373E−3 1.6456E−2 1.2706E−1
20 1.0969E−3 1.6052 4.3003E−3 1.9361 6.4758E−2 0.9724
40 5.4748E−4 1.0026 1.0622E−3 2.0174 3.2779E−2 0.9823
80 5.0812E−4 0.1077 2.6196E−4 2.0196 1.6596E−2 0.9723
160 2.2635E−4 1.1667 6.4952E−5 2.0119 8.4072E−3 0.9811
320 1.2290E−4 0.8811 1.6311E−5 1.9935 4.2566E−3 0.9819
640 7.0810E−5 0.7954 4.4482E−6 1.8746 2.2267E−3 0.9348
1280 3.4111E−5 1.0537 1.4445E−6 1.6226 1.1795E−3 0.9167

In Figure 4.4, we compare point-wise error eh(X) = |uh(X)−u(X)| in Galerkin IFE solution
and NPPG IFE solution using bilinear IFE functions. These plots are generated by plotting
the maximum error on each element in the mesh containing 160× 160 elements. We observe
that the error in IFE solution produced by the Galerkin scheme is much larger around the
interface than other places. This might be caused by the discontinuities of IFE functions on
interface edges, which can be quite large, if, for instance, the jump ratio in the coefficient
is large. On the other hand, we see from the plot on the right in Figure 4.4 that the IFE
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Table 4.17: Errors of bilinear NPPG IFE solutions u− uh with β− = 1, β+ = 10.

N ‖ · ‖0,∞,Ω rate ‖ · ‖0,Ω rate | · |1,Ω rate
10 2.5705E−3 1.6384E−2 1.2672E−1
20 1.0082E−3 1.3503 4.2869E−3 1.9343 6.4719E−2 0.9694
40 1.9172E−4 2.3947 1.0626E−3 2.0124 3.2637E−2 0.9877
80 5.4491E−5 1.8149 2.6440E−4 2.0067 1.6382E−2 0.9944
160 1.4045E−5 1.9559 6.5876E−5 2.0049 8.2063E−3 0.9973
320 3.5092E−6 2.0009 1.6594E−5 1.9891 4.1068E−3 0.9987
640 9.1942E−7 1.9324 4.1383E−6 2.0035 2.0544E−3 0.9994
1280 2.2932E−7 2.0034 1.0336E−6 2.0014 1.0274E−3 0.9996

Table 4.18: Errors of bilinear SPPG IFE solutions u− uh with β− = 1, β+ = 10.

N ‖ · ‖0,∞,Ω rate ‖ · ‖0,Ω rate | · |1,Ω rate
10 5.5595E−3 1.6702E−2 1.2703E−1
20 1.3680E−3 2.0229 4.2945E−3 1.9595 6.4751E−2 0.9722
40 3.9775E−4 1.7822 1.0749E−3 1.9983 3.2650E−2 0.9878
80 1.0601E−4 1.9077 2.6883E−4 2.0021 1.6386E−2 0.9947
160 3.1598E−5 1.7463 6.7047E−5 2.0008 8.2081E−3 0.9974
320 7.0324E−6 2.1677 1.6829E−5 1.9942 4.1071E−3 0.9988
640 1.9288E−6 1.8664 4.2038E−6 2.0012 2.0544E−3 0.9994
1280 5.0505E−7 1.9332 1.0501E−6 2.0012 1.0274E−3 0.9997

Table 4.19: Errors of bilinear IPPG IFE solutions u− uh with β− = 1, β+ = 10.

N ‖ · ‖0,∞,Ω rate ‖ · ‖0,Ω rate | · |1,Ω rate
10 5.4440E−2 1.6660E−2 1.2709E−1
20 1.3785E−3 1.9816 4.2989E−3 1.9543 6.4753E−2 0.9728
40 3.9769E−4 1.7934 1.0745E−3 2.0003 3.2651E−2 0.9878
80 1.0582E−4 1.9100 2.6797E−4 2.0036 1.6386E−2 0.9947
160 3.1217E−5 1.7612 6.6872E−5 2.0026 8.2082E−3 0.9973
320 6.9364E−6 2.1701 1.6794E−5 1.9935 4.1071E−3 0.9989
640 1.9213E−6 1.8521 4.1934E−6 2.0017 2.0545E−3 0.9994
1280 4.9869E−7 1.9459 1.0472E−6 2.0015 1.0274E−3 0.9997

solution generated by NPPG scheme is significantly more accurate around the interface which
demonstrates again the effectiveness of the penalty terms introduced on interface edges.
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Figure 4.4: Point-wise error comparison of bilinear Galerkin IFE solution and NPPG IFE
solution uh.
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In Figure 4.5, we provide a comparison of Galerkin IFE schemes using bilinear IFE functions
and nonconforming rotated Q1 functions with both integral-value and midpoint-value degrees
of freedom. Gauged in L∞ norm, the nonconforming rotated Q1 Galerkin IFE method
with integral-value degrees of freedom seem to be the most reliable one among these three
methods, because its convergence rate seems to retain optimal O(h2) and the error produced
by this method is much smaller than the other two IFE methods when h is sufficiently
small. In L2 norm, the numerical solutions produced by bilinear IFE and nonconforming
rotated Q1 IFE methods with midpoint-value degrees of freedom seem to converge optimally
over meshes with moderately small mesh size. However, their convergence rates in L2 norm
seem to deteriorate on finer meshes. On the other hand, the Galerkin IFE method with
nonconforming rotated Q1 IFE functions with integral-value degrees of freedom behave more
stable and its optimal convergence rate is observed. In semi-H1 norm, we have the similar
observation.

A comparison of NPPG IFE schemes using these three types of IFE functions is given in
Figure 4.6. In L∞ norm, the convergence rates of NPPG schemes using nonconforming
rotated Q1 functions with integral-value degrees of freedom and the bilinear IFE functions
seem to retain optimal rate O(h2). By comparing the magnitudes of errors, we observe
that bilinear IFE methods generate more accurate numerical solutions than nonconforming
rotated Q1 IFE methods in this example. In L2 and semi-H1 norms, the performance of
these methods are quite similar. Optimal convergence is observed in NPPG IFE schemes
using each of these three IFE functions.

Now let us take a closer look at these IFE functions. We compare the discontinuity in global
basis functions for these IFE spaces in Figure 4.7. In this figure, each column contains plots
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Figure 4.5: Comparison of errors in different Galerkin IFE methods.
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Figure 4.6: Comparison of errors in different NPPG IFE methods.
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of global basis functions in these three IFE spaces corresponding to one configuration of
diffusion coefficient. In each configuration, β− is 1, but β+ is 1, 5, 1000, respectively. Plots
in the first row represent half of bilinear IFE global basis. In the second and third rows,
plots represent nonconforming rotated Q1 global basis with midpoint-value and integral-
value degrees of freedom, respectively. Since these IFE basis functions have discontinuities
on interface edges, we plot the difference of global IFE functions on the common interface
edge in the fourth row.

Plots in the first column represent the IFE global basis functions when coefficient has no
discontinuity i.e., β− = β+ = 1. As a matter of fact, these global IFE bases become
standard finite element global basis functions because of the consistency of IFE and FE
functions stated in Theorem 3.1. Consequently, in the plot at the bottom of this column,
the differences of these global FE basis functions on the common interface edge are completely
zero.

Plots in the second column demonstrate the discontinuity of IFE global basis functions with
a moderate coefficient discontinuity (β− = 1, β+ = 5). Note that all the three global IFE
basis functions have discontinuity across the interface edge. In the plot at the bottom of this
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Figure 4.7: Comparison of discontinuity for different IFE global basis functions with fixed
value β− = 1 and different values of β+ = 1, 5, 1000.
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column, the blue line represents the jump of the nonconforming rotated Q1 global IFE basis
with midpoint-value degrees of freedom, which has the value of zero (no discontinuity) at the
midpoint. The green line associates to the bilinear global IFE basis, which vanishes at two
endpoints on the interface edge due to the continuity imposed at vertices. The red line shows
the jump of the nonconforming rotated Q1 global IFE basis with integral-value degrees of
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freedom in which the average integral value of the jump is zero. By direct comparison, we
observe that the nonconforming rotated Q1 global IFE basis with the integral-value degrees
of freedom has smaller discontinuity over the interface edge than the other two types of IFE
bases.

Plots in the third column demonstrate the discontinuity of IFE global basis functions with
a large coefficient discontinuity (β− = 1, β+ = 1000). Note that the discontinuity of each
IFE global basis on the interface edge is larger than those with a moderate coefficient dis-
continuity in the second column. Observing from the plot at the bottom of this column, the
discontinuity of the nonconforming rotated Q1 global IFE basis with integral-value degrees of
freedom is much smaller compared to the other two global IFE bases. We also note that even
though the discontinuity in the coefficient increases greatly from the ratio of 5 to 1000, the
discontinuity of the nonconforming rotated Q1 global IFE basis with integral-value degrees
of freedom does not increase dramatically as the other two IFE bases.

The comparison of the global IFE basis functions indicates that the nonconforming rotated
Q1 IFE functions with integral-value degrees of freedom usually have smaller discontinuity
than bilinear IFE functions and the nonconforming rotated Q1 IFE functions with midpoint-
value degrees of freedom. We believe the reason for this phenomenon is the that the integral-
value degrees of freedom impose the continuity over the whole interface edge in a “global”
sense compared with the point-wise continuity “locally” imposed on the interface edge for
the other two types of IFE functions. In other words, the discontinuity in a nonconforming
rotated Q1 IFE function with integral-value degrees of freedom is less prominent across an
interface edge because the discontinuity is scattered throughout the interface edge which
leads to a less impact. Less discontinuity on interface edges is possibly the reason why
the partial penalization is unnecessary for nonconforming rotated Q1 IFE functions with
integral-value degrees of freedom.



Chapter 5

Nonconforming IFE Methods for
Elasticity Interface Problems

So far we have considered the application of nonconforming IFE methods to interface prob-
lems of scalar second order elliptic equations. In this chapter, we discuss the extension of
nonconforming IFE methods for solving interface problems involving a system of PDEs. In
particular, we plan to develop vector-valued nonconforming rotated Q1 IFE functions for
solving planar elasticity interface problems in solid mechanics.

Finite element methods have been widely employed to calculate deformation and stress
of elastic bodies subject to loads [25, 37, 45, 157]. If we model an object that consists
of multiple elasticity materials separated by a definite interface, the material parameters
in elasticity equilibrium equations are usually discontinuous. This leads to the elasticity
interface problems.

This chapter is organized as follows. In Section 5.1, we describe the elasticity interface model
problems and review existing numerical methods for these elasticity interface problems. In
Section 5.2, we introduce vector-valued nonconforming rotated Q1 IFE spaces based on the
integral-value degrees of freedom for the planar elasticity interface problems. Then we inves-
tigate fundamental properties of these new IFE spaces. In Section 5.3, we provide numerical
experiments to demonstrate that nonconforming rotated Q1 Galerkin IFE methods can solve
the elasticity interface problem effectively. In particular, the methods can circumvent “lock-
ing” effect when the elastic material is nearly incompressible. Some of the materials in this
chapter have been reported in articles [105, 108].

103
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5.1 Introduction

We consider the following planar elasticity pure displacement boundary value problem:

−∇ · σ(u) = f in Ω, (5.1)

u = g on ∂Ω. (5.2)

Without loss of generality, the solution domain Ω ⊂ R2 is assumed to be a rectangle (or
a union of several rectangles) formed with two types of elastic materials separated by an
interface Γ which is assumed to be a smooth curve. That means the domain Ω is the
union of two disjoint sub-domains Ω− and Ω+, each formed by one of the materials, such
that Ω = Ω− ∪ Ω+ ∪ Γ, as illustrated in Figure 5.1. Across the material interface Γ, the
displacement and traction are assumed to be continuous, i.e.,

[u)]Γ = 0, (5.3)[
σ(u) n

]
Γ

= 0. (5.4)

Figure 5.1: The domain of planar elasticity interface problems.

Γ

Ω−

Ω+

∂Ω

−→

−→

Here, we use letters in bold font to denote vector-valued functions and their associated
function spaces. The function u(x) = (u1(x, y), u2(x, y))t denotes the displacement vector
at a point x = (x, y) in the elastic body Ω. The function f = (f1, f2)t represents the given
body force and g = (g1, g2)t is the given displacement on the boundary ∂Ω. The vector n
denotes the outward normal of Γ. Also, we use the matrix function ε(u)) = (εij(u)))1≤i,j≤2

to denote the linearized strain tensor

εij(u) =
1

2

(∂ui
∂xj

+
∂uj
∂xi

)
. (5.5)

Let λ and µ denote the Lamé parameters given by

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
,
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where E and ν are Young’s modulus and Poisson’s ratio, respectively. Then, the stress tensor
σ(u) = (σij(u))1≤i,j≤2 of a linear isotropic elastic material is assumed to fulfill the following
linear constitutive relation:

σij(u) = λ(∇ · u)δij + 2µεij(u),

where δij denotes the Kronecker delta such that

δij =

{
1 if i = j,

0 if i 6= j.
(5.6)

The Lamé parameters λ, µ are assumed to be discontinuous across the interface Γ. For the
sake of simplicity, we assume that they are piece-wise constants such that

(λ(x), µ(x)) =

{
(λ−, µ−), if x ∈ Ω−,
(λ+, µ+), if x ∈ Ω+.

(5.7)

Elasticity interface problems appear in many applications such as the topology optimization
of solid structures which, as one of the important applications of the elasticity interface
problems, has been studied both theoretically and numerically in the past decades, see
[22, 23] and the reference therein. Topology optimization is to determine certain features
such as size, location and shape of holes of the target domain for finding the optimal lay-out
of certain structures in the prescribed domain.

In the minimum compliance design problem [22], for example, one desires to minimize the
compliance of a structure to increase its stiffness. Consider a mechanic body occupying a
domain which is a subset of Ω ⊂ R2. The reference domain Ω is chosen to define the load
and boundary conditions. The aim for this design is to find the optimal choice of stiffness
tensor Eijkl(x, y), which is a variable over the domain. Define the following energy bilinear
form,

a(u,v) ,
∫

Ω

Eijkl(x, y)εij(u)εkl(v) dx dy, (5.8)

with the linearized strain tensor ε(u) defined in (5.5). Also define the load linear form,

F (v) ,
∫

Ω

f · v dx dy.

Then the minimum compliance problem is described as:

min
u∈V

F (u)

subject to:
a(u,v) = F (v), ∀ v ∈ V, (5.9)

where V denotes the space of kinematically admissible displacement fields.
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If the elastic body is isotropic [133], i.e., the stiffness tensor has no preferred direction (an
applied force will give the same displacements no matter the direction in which the force is
applied), then the stiffness tensor can be written as

Eijkl(x, y) = λ(x, y)δijδkl + µ(x, y)(δikδjl + δilδjk). (5.10)

where δij is the Kronecker delta. Therefore the bilinear energy form (5.8) becomes

a(u,v) =

∫

Ω

(
2µ(x, y) ε(u) : ε(v) + λ(x, y) div(u) div(v)

)
dxdy. (5.11)

Hence the energy form (5.9) corresponds to the equilibrium equation (5.1). When mul-
tiple material phases design problems are considered, see [57, 132], the Laḿe parameters
λ(x, y), and µ(x, y) distribution are discontinuous, and this set-up leads to the elasticity in-
terface problems (5.1) - (5.4). Other applications for the elasticity interface problems include
problems in the crystalline materials [136], the simulation in the microstructural evolution
[79, 89], and the atomic interactions [55], etc.

There are many numerical methods developed to solve elasticity interface problems. Con-
ventional finite element methods [28, 45, 157], as one of the most popular approaches, can
work satisfactorily provided that meshes are tailored to fit interfaces, known as body-fitting
meshes, as illustrated in the plot on the left in Figure 1.2. The body-fitting restriction
makes conventional methods excessively expensive if interfaces evolve in a simulation. It is
therefore attractive to develop numerical methods based on non-body-fitting meshes, such
as Cartesian meshes, as illustrated in the middle and on the right of Figure 1.2.

There have been quite a few numerical methods developed to solve elasticity interface prob-
lems based on Cartesian meshes. In finite difference formulation, Yang, Li, and Li have
developed an immersed interface method for the planar linear elasticity interface problem
[150, 151]. However, the linear systems arising from this method are nonsymmetric and
become ill-conditioned as elastic materials become nearly incompressible, i.e., ν → 1/2.
In finite element formulation, Hansbo and Hansbo have proposed a bilinear finite element
method which employees a Nitsche’s idea and a modified weak formulation using weighted
average traction across interfaces [66]. Becker, Burman, and Hansbo have extended this
Nitsche finite element method for incompressible elastic materials using a mixed formulation
[21]. Hou, Li, Wang, and Wang [76] have modified the traditional finite element method
by designing trial functions to be a piecewise polynomial to fit jump condition across the
interface while keeping the test functions independent of interface. Due to the inconsistency
of trial and test function spaces, the resulting linear system in this method is nonsymmetric,
although positive-definiteness can be guaranteed under certain conditions.

IFE methods also have been applied to solve the elasticity interface problems. In [62, 97],
Gong, Li, and Yang have proposed a linear IFE method to solve elasticity interface problems
on triangular meshes. Point-wise convergence has been investigated in their articles. Their
numerical results indicated that linear IFE solutions can achieve at least an O(h) conver-
gence in L∞ norm. Recently, Lin and Zhang have developed a bilinear IFE method [108]
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based on the rectangular Cartesian meshes. This article has studied accuracy of linear and
bilinear IFE methods numerically, and the authors have reported that both linear and bilin-
ear IFE methods could converge optimally in both L2 and H1 norms. Nevertheless, both of
these IFE methods have limitations. First, the existence of these IFE functions cannot be
guaranteed for arbitrary configuration of elastic materials in an interface problem. Moreover,
both of these conforming type IFE methods can only solve the elasticity interface problem
satisfactorily for compressible elastic materials; once elastic materials become nearly incom-
pressible, i.e., the Poisson’s ratio ν of elastic material approaches 0.5, these IFE methods
encounter the “volume locking” effect [16]. This “locking” effect arises when displacements of
the elastic body are approximated by using the lowest-order conforming type finite elements
even for solving non-interface problems. As we know, in either the linear or the bilinear
IFE method, the majority of elements do not intersect with the material interface, where
standard conforming type finite element functions are utilized; hence, the “locking” can be
considered inevitable for these IFE methods.

There are many approaches developed to circumvent the “locking” effect, such as the mixed
finite element methods [4, 5, 6, 30, 122, 134], the nonconforming finite element methods
[29, 53, 67, 88, 113, 153], and the discontinuous Galerkin methods [46, 68, 126, 145]. In
the following sections in this chapter, we follow the route of nonconforming finite element
methods to eliminate the “locking” effect for elasticity interface problems. We first construct
the vector-valued nonconforming rotated Q1 IFE functions with integral-value degrees of
freedom for elasticity interface problems, and then use these IFE functions in displacement
Galerkin formulation to solve the elasticity interface problems.

5.2 Vector-Valued Nonconforming IFE Spaces

In this section, we introduce the vector-valued nonconforming rotated Q1 IFE functions
with integral-value degrees of freedom for elasticity interface problems. Note that for planar
elasticity problem, the displacement u of an elastic body has two components u = (u1, u2)t;
hence, each finite element basis is a vector-valued polynomial function which contains two
components. Similar to the elliptic interface problem, standard vector-valued nonconforming
rotated Q1 finite element functions are utilized on non-interface elements, and IFE functions
are constructed only on interface elements with appropriately interpreted interface jump
conditions. In our following discussion, we consider the integral-value degrees of freedom
only, since nonconforming rotated Q1 finite element functions with integral-value degrees of
freedom perform better and have more desirable features than the midpoint-value degrees
of freedom in the elliptic interface problem as shown in Section 4.3. Consequently, we omit
superscript I on FE/IFE functions and corresponding spaces.
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5.2.1 Nonconforming IFE functions

On each non-interface element T ∈ T nh , we define the vector-valued nonconforming rotated
Q1 finite element space Snh(T ) as follows:

Snh(T ) =
{
ΨT = (Ψ1,T ,Ψ2,T )t : Ψj,T ∈ Snh (T ), j = 1, 2

}
, (5.12)

where Snh (T ) = Span{1, x, y, x2−y2} is the standard local rotated Q1 finite element space as
introduced in Section 2.2. There are eight local basis functions Ψj,T ∈ Snh(T ), j = 1, · · · , 8,
on each non-interface element T ∈ T nh , which are chosen to satisfy the following average
integral-value restrictions:

1

|bi|

∫

bi

Ψj,T (x, y) ds =

(
δij
0

)
, j = 1, 2, 3, 4, (5.13)

and
1

|bi|

∫

bi

Ψj,T (x, y) ds =

(
0

δi,j−4

)
, j = 5, 6, 7, 8, (5.14)

where bi, i = 1, 2, 3, 4 are four edges of T , as illustrated in Figure 2.1. Then the vector-valued
nonconforming rotated Q1 local FE space Snh(T ) on a non-interface element T , as defined in
(5.12), can be also written as follows

Snh(T ) = Span {Ψj,T : j = 1, · · · , 8} . (5.15)

On an interface element T ∈ T ih , we assume that the interface curve Γ intersects the boundary
of T at points D and E. Similar to the discussion in Section 2.4, we classify interface elements
in two types: if D and E locate at two adjacent edges, we classify this element as Type I
interface element; if D and E locate at two opposite edges, we classify this element as Type II
interface element. Figure 2.6 provides illustrations for these two types of interface elements.
The line segment DE separates T into two sub-elements T− and T+.

Without loss of generality, we consider a typical interface element T = �A1A2A3A4 with
vertices

A1 =

(
0
0

)
, A2 =

(
h
0

)
, A3 =

(
0
h

)
, A4 =

(
h
h

)
. (5.16)

We label the four edges bi, i = 1, 2, 3, 4, of T as follows:

b1 = A1A2, b2 = A2A4, b3 = A4A3, b4 = A3A1. (5.17)

We also assume that

D =

(
dh
0

)
, E =

(
0
eh

)

for a Type I interface element, where 0 < d ≤ 1, 0 < e ≤ 1, and

D =

(
dh
0

)
, E =

(
eh
h

)
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for a Type II interface element, where 0 < d < 1 and 0 < e < 1. Note that every interface
element can be mapped into one of the above interface elements via an orthogonal affine
mapping.

On each interface element T ∈ T ih , we use piecewise vector-valued polynomials to construct
nonconforming local IFE functions. Specifically, on an interface element T , a vector-valued
IFE function ΦT is piece-wisely defined as follows:

ΦT (x) =





Φ−T (x) =

(
φ−1,T (x, y)
φ−2,T (x, y)

)
=

(
a−1 + b−1 x+ c−1 y + d−1 (x2 − y2)

a−2 + b−2 x+ c−2 y + d−2 (x2 − y2)

)
in T−,

Φ+
T (x) =

(
φ+

1,T (x, y)
φ+

2,T (x, y)

)
=

(
a+

1 + b+
1 x+ c+

1 y + d+
1 (x2 − y2)

a+
2 + b+

2 x+ c+
2 y + d+

2 (x2 − y2)

)
in T+.

(5.18)
Note that for every local IFE function ΦT defined in (5.18), there are 16 coefficients, i.e.,
asj , b

s
j , c

s
j , d

s
j , where j = 1, 2, and s = +,−. These coefficients are determined by average

integral-value of ΦT on edges together with the interface jump conditions described as follows:

• Average integral values vi, i = 1, · · · , 8, over the edges :

1

|bi|

∫

bi

ΦT (x) ds =

(
vi
vi+4

)
, ∀ i = 1, 2, 3, 4. (5.19)

These integral values provide eight restrictions.

• Displacement continuity at the intersection points D and E:

Φ+
T (D) = Φ−T (D), Φ+

T (E) = Φ−T (E). (5.20)

These equations provide four restrictions.

• Traction continuity :

∫

DE

σ(Φ+
T ) nDE ds =

∫

DE

σ(Φ−T ) nDE ds. (5.21)

This equation provides two restrictions.

• Second derivative continuity :
∂2Φ+

T

∂x2
=
∂2Φ−T
∂x2

. (5.22)

This equation provides two restrictions.

Overall we have sixteen restrictions matching the number of undetermined coefficients in
(5.18). We will show that these conditions (5.19) - (5.22) are linearly independent so that
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they can uniquely determine a vector-valued nonconforming rotated Q1 IFE function ΦT on
an interface element T .

Combining the conditions in (5.19)-(5.22) leads to the following algebraic system to determine
asj , b

s
j , c

s
j , d

s
j , j = 1, 2, s = +,−:

MCC = V, (5.23)

where
C =

(
a−1 , a

+
1 , a

−
2 , a

+
2 , b

−
1 , b

+
1 , b

−
2 , b

+
2 , c

−
1 , c

+
1 , c

−
2 , c

+
2 , d

−
1 , d

+
1 , d

−
2 , d

+
2

)t
,

V = (v1, v2, v3, v4, v5, v6, v7, v8, 0, 0, 0, 0, 0, 0, 0, 0)t . (5.24)

For a Type I interface element, the coefficient matrix MC = M I
C = (mI

i,j)16×16 with the
normalization h = 1, has the following form:

MC = M I
C = (5.25)



d 1− d 0 0 d2

2
1−d2

2
0 0 0 0 0 0 d3

3
1−d3

3
0 0

0 1 0 0 0 1 0 0 0 1
2

0 0 0 2
3

0 0

0 1 0 0 0 1
2

0 0 0 1 0 0 0 − 2
3

0 0

e 1− e 0 0 0 0 0 0 e2

2
1−e2

2
0 0 − e3

3
e3−1

3
0 0

0 0 d 1− d 0 0 d2

2
1−d2

2
0 0 0 0 0 0 d3

3
1−d3

3

0 0 0 1 0 0 0 1 0 0 0 1
2

0 0 0 2
3

0 0 0 1 0 0 0 1
2

0 0 0 1 0 0 0 − 2
3

0 0 e 1− e 0 0 0 0 0 0 e2

2
1−e2

2
0 0 − e3

3
e3−1

3

1 −1 0 0 d −d 0 0 0 0 0 0 d2 −d2 0 0

0 0 1 −1 0 0 d −d 0 0 0 0 0 0 d2 −d2

1 −1 0 0 0 0 0 0 e −e 0 0 −e2 e2 0 0

0 0 1 −1 0 0 0 0 0 0 e −e 0 0 −e2 e2

0 0 0 0 0 0 0 0 0 0 0 0 2 −2 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 −2

0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗



,

where the components denoted by ∗ are specified as follows

mI
15,5 = de(λ− + 2µ−), mI

15,6 = −de(λ+ + 2µ+), mI
15,7 = d2µ−,

mI
15,8 = −d2µ+, mI

15,9 = d2µ−, mI
15,10 = −d2µ+,

mI
15,11 = deλ−, mI

15,12 = −deλ+, mI
15,13 = d2e(λ− + µ−),

mI
15,14 = −d2e(λ+ + µ+), mI

15,15 = d(−e2λ− + d2µ−), mI
15,16 = d(e2λ+ − d2µ+),

mI
16,5 = d2λ−, mI

16,6 = −d2λ+, mI
16,7 = deµ−,

mI
16,8 = −deµ+, mI

16,9 = deµ−, mI
16,10 = −deµ+,

mI
16,11 = d2(λ− + µ−), mI

16,12 = −d2(λ+ + µ+), mI
16,13 = d(d2λ− − e2µ−),

mI
16,14 = −d(d2λ+ − e2µ+), mI

16,15 = −d2e(λ− + µ−), mI
16,16 = d2e(λ+ + µ+).

The coefficient matrix MC = M II
C = (mII

i,j)16×16 for a Type II interface element with normal-
ization h = 1 is given by

MC = M II
C = (5.26)
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d 1− d 0 0 d2

2
1−d2

2
0 0 0 0 0 0 d3

3
1−d3

3
0 0

0 1 0 0 0 1 0 0 0 1
2

0 0 0 2
3

0 0

e 1− e 0 0 e2

2
1−e2

2
0 0 e 1− e 0 0 e3−3e

3
3e−2−e2

3
0 0

1 0 0 0 0 0 0 0 1
2

0 0 0 − 1
3

0 0 0

0 0 d 1− d 0 0 d2

2
1−d2

2
0 0 0 0 0 0 d3

3
1−d3

3

0 0 0 1 0 0 0 1 0 0 0 1
2

0 0 0 2
3

0 0 e 1− e 0 0 e2

2
1−e2

2
0 0 e 1− e 0 0 e3−3e

3
3e−2−e2

3

0 0 1 0 0 0 0 0 0 0 1
2

0 0 0 − 1
3

0

1 −1 0 0 d −d 0 0 0 0 0 0 d2 −d2 0 0

0 0 1 −1 0 0 d −d 0 0 0 0 0 0 d2 −d2

1 −1 0 0 e −e 0 0 1 −1 0 0 e2 − 1 1− e2 0 0

0 0 1 −1 0 0 e −e 0 0 1 −1 0 0 e2 − 1 1− e2
0 0 0 0 0 0 0 0 0 0 0 0 2 −2 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 −2

0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗



,

where the components denoted by ∗ are specified as follows:

mII
15,5 = λ− + 2µ−, mII

15,6 = −(λ+ + 2µ+),

mII
15,7 = dµ− − eµ−, mII

15,8 = −dµ+ + eµ+,

mII
15,9 = dµ− − eµ−, mII

15,10 = −dµ+ + eµ+,

mII
15,11 = λ−, mII

15,12 = −λ+,

mII
15,13 = (d+ e)λ− + (d+ 3e)µ−, mII

15,14 = −(d+ e)λ+ − (d+ 3e)µ+,

mII
15,15 = λ− + (d2 − e2)µ−, mII

15,16 = λ+ − (d2 − e2)µ+,

mII
16,5 = (d− e)λ−, mII

16,6 = −(d− e)λ+,

mII
16,7 = µ−, mII

16,8 = −µ+,

mII
16,9 = µ−, mII

16,10 = −µ+,

mII
16,11 = (d− e)(λ− + 2µ−), mII

16,12 = −(d− e)λ+ − (2d− 2e)µ+,

mII
16,13 = (d2 − e2)λ−µ−, mII

16,14 = −(d2 − e2)λ+ + µ+,

mII
16,15 = −(d− e)λ− − (d− 3e)µ−, mII

16,16 = (d− e)λ+ + (d− 3e)µ+.

The procedure of finding vector-valued nonconforming rotated Q1 IFE basis functions on the
interface element T whose geometry is specified in (5.16) and (5.17) is similar to constructing
scalar-valued IFE basis functions in Section 2.3 and 2.4. We let V = Vj ∈ R16, j = 1, · · · , 8
be the j-th canonical unit vector such that vj = 1, and vi = 0 if i 6= j. For each vector
Vj, we can solve for C = Cj from (5.23) which contains the coefficients of an IFE function.
Then we use the values of Cj in (5.18) to form the j-th vector-valued nonconforming rotated
Q1 IFE local basis function, denoted by Φj,T , for either Type I or Type II interface element.

A typical vector-valued nonconforming rotated Q1 finite element local basis function Ψ4,T

on a non-interface element is plotted in Figure 5.2. The left plot is for the first component,
and the one on the right is for the second component. We note that the first component
of Ψ4,T is the scalar rotated Q1 finite element local basis function ψI4,T as formulated in
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(2.12d), and the second component of Ψ4,T is completely zero. As a comparison, the vector-
valued nonconforming rotated Q1 local IFE basis functions Φ4,T on Type I and Type II
interface elements are plotted in Figure 5.3 and Figure 5.4, respectively. Note that, the second
component of Φ4,T is not completely zero because the IFE basis function Φ4,T is constructed
to satisfy the interface jump conditions (5.19) - (5.22). Since the traction continuity (5.21)
involves both components of a vector-valued IFE function, in general neither of the two
components in these vector-valued IFE functions is zero.

Figure 5.2: A vector-valued nonconforming rotated Q1 finite element local basis function.

Figure 5.3: A vector-valued nonconforming rotated Q1 IFE local basis function on a Type I
interface element.

On each interface element T ∈ T ih , we define the local IFE space Sih(T ) by

Sih(T ) = Span {Φj,T : j = 1, · · · , 8} . (5.27)



Xu Zhang Chapter 5. Elasticity Interface Problems 113

Figure 5.4: A vector-valued nonconforming rotated Q1 IFE local basis function on a Type
II interface element.

The global IFE space on Ω is then defined as follows

Sh(Ω) =

{
Φ ∈ (L2(Ω))2 : Φ|T ∈ Snh(T ) if T ∈ T nh ,Φ|T ∈ Sih(T ) if T ∈ T ih ;

if T1 ∩ T2 = b, then

∫

b

Φ|T1ds =

∫

b

Φ|T2ds

}
. (5.28)

5.2.2 Properties of Nonconforming Rotated Q1 IFE Spaces

In this subsection, we discuss basic properties of vector-valued nonconforming rotated Q1

IFE basis functions and the corresponding IFE spaces.

Lemma 5.1. (Continuity) On each interface element T ∈ T ih , the local IFE space Sih(T )
is a subspace of C(T ).

Proof. Note that every IFE function ΦT ∈ Sih(T ) is a piecewise vector-valued polynomial;
hence, it suffices to show ΦT is continuous across the line segment DE. Note that the jump
of the function [ΦT ] = Φ+

T −Φ−T is linear because ΦT is made to satisfy the condition (5.22).
Then, [ΦT ] = 0 follows from (5.20).

Lemma 5.2. (Partition of Unity) On each interface element T ∈ T ih , the vector-valued
nonconforming rotated Q1 IFE basis functions Φj,T ∈ Sih(T ), j = 1, · · · , 8, satisfy the fol-
lowing partition of unity property:

4∑

j=1

Φj,T =

(
1
0

)
,

8∑

j=5

Φj,T =

(
0
1

)
. (5.29)
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Proof. By direct calculations, the coefficients of the IFE basis functions satisfy the following
condition

4∑

j=1

a−j,1 = 1,
4∑

j=1

b−j,1 = 0,
4∑

j=1

c−j,1 = 0,
4∑

j=1

d−j,1 = 0.

4∑

j=1

a−j,2 = 1,
4∑

j=1

b−j,2 = 0,
4∑

j=1

c−j,2 = 0,
4∑

j=1

d−j,2 = 0.

4∑

j=1

a+
j,1 = 1,

4∑

j=1

b+
j,1 = 0,

4∑

j=1

c+
j,1 = 0,

4∑

j=1

d+
j,1 = 0.

4∑

j=1

a+
j,2 = 1,

4∑

j=1

b+
j,2 = 0,

4∑

j=1

c+
j,2 = 0,

4∑

j=1

d+
j,2 = 0.

Applying these identities in (5.18) yields the first equation in (5.29). A similar argument
can be carried out to show the second equation.

Lemma 5.3. (Consistency) On each interface element T ∈ T ih , the vector-valued noncon-
forming rotated Q1 IFE local basis functions Φj,T ∈ Sih(T ), j = 1, · · · , 8, and the standard
vector-valued nonconforming rotated Q1 FE basis functions Ψj,T , j = 1, · · · , 8, are identical,
i.e., Φj,T = Ψj,T , j = 1, · · · , 8, under each of the following conditions:

• the elasticity parameters have no discontinuity, i.e., λ+ = λ−, µ+ = µ−;

• min{|T−|, |T+|} shrinks to zero, where |T s|, s = −,+, denotes the area of the polygon
T s.

Proof. For the first property, we let λ+ = λ− and µ+ = µ− and solve the linear system
(5.23). Direct calculations leads to Φj,T = Ψj,T , j = 1, · · · , 8.

For the second property, without loss of generality, we assume the area of |T−| approaches
zero. Then for Type I interface element, we have either d → 0, or e → 0; for Type II
interface element, we have both d→ 0 and e→ 0. Direct calculations lead to Φ+

j,T → Ψj,T ,

j = 1, · · · , 8 for both interface element types. Also, note that Φj,T becomes Φ+
j,T under this

assumption.

We now consider the important unisolvent property. For the planar elasticity interface prob-
lem, both linear [62, 97] and bilinear [108] vector-valued IFE functions possess the unisol-
vent property under certain conditions regarding the configurations of elasticity parameters
and interface location. A counter-example presented in [108] demonstrates that linear IFE
functions cannot be constructed for a certain configuration of the interface and the Lamé
parameters. This limitation of linear and bilinear vector-valued IFE functions for the planar
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elasticity interface problem hinders their applications. Hence it is very interesting to know
whether the nonconforming rotated Q1 vector-valued IFE functions have this unisolvent
property.

For the Type I interface element, the determinant of matrix M I
C defined in (5.25) can be

written as follows

det(M I
C) = P I

1 λ
+µ+ +P I

2 λ
−µ+ +P I

3 µ
+µ+ +P I

4 λ
+µ−+P I

5 λ
−µ−+P I

6 µ
+µ−+P I

7 µ
−µ−, (5.30)

where

P I
1 = d2e2

(
8d2 − 3d3 − 6de+ 3d2e+ 2e2 − 3de2 + 3e3

)
(
2d2 + 3d3 − 6de− 3d2e+ 8e2 + 3de2 − 3e3

)
,

P I
2 = de

(
9d7e+ 20e4 − 18d6e(1 + e) + d5e(−16 + 18e+ 27e2) + 4d4(5 + 15e2 − 9e4)

+2d2e2(20 + 30e2 + 9e3 − 9e4) + de3(−24− 16e2 − 18e3 + 9e4)

+d3e(−24− 104e2 + 27e4)
)
,

P I
3 = 2d2e2(5d2 − 6de+ 5e2)2,

P I
4 = P I

2 ,

P I
5 =

(
4d2 − 8d3e+ 3d4e+ 4e2 + 6d2e2 − 3d3e2 − 2de3 + 3d2e3 − 3de4

)
(
4d2 − 2d3e− 3d4e+ 4e2 + 6d2e2 + 3d3e2 − 8de3 − 3d2e3 + 3de4

)
,

P I
6 = 4de

(
5d2 − 6de+ 5e2

)(
4d2 − 5d3e+ 4e2 + 6d2e2 − 5de3

)
,

P I
7 = 2

(
− 4d2 + 5d3e− 4e2 − 6d2e2 + 5de3

)2
.

Note that λ± and µ± are all positive, it is interesting to know whether these coefficients P I
j ,

j = 1, · · · , 7 are non-negative.

Lemma 5.4. The coefficients P I
j , j = 1, · · · , 7 in (5.30) satisfy

P I
j > 0, (5.31)

for all 0 < d ≤ 1 and 0 < e ≤ 1.

Proof. We can verify (5.31) by direct computations. For instance,

P I
1 = d2e2

(
1

2
(3d− 2e)2 + 3d2(1− d) +

1

2
d2 +

3

2
e(d2 + e2) +

3

2
e(d− e)2

)

(
1

2
(3e− 2d)2 + 3e2(1− e) +

1

2
e2 +

3

2
d(d2 + e2) +

3

2
d(d− e)2

)

≥ d4e4

4
.

Since d, e are positive, then every term in the above equation is positive. Thus, P I
1 > 0 for

all 0 < d ≤ 1 and 0 < e ≤ 1. Similar arguments can be applied to P I
j , j = 2, 3, . . . , 7.
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For Type II interface element, the determinant of the coefficient matrix M II
C defined in (5.26)

can be written as follows,

det(M II
C ) = P II

1 λ+µ+ +P II
2 λ−µ+ +P II

3 µ+µ+ +P II
4 λ+µ−+P II

5 λ−µ−+P II
6 µ+µ−+P II

7 µ−µ−,
(5.32)

where

P II
1 =

(
5d− 9d2 + 11d3 − 3d4 + 5e− 6de+ d2e− 3e2 + de2 − e3 + 3e4

)
(
5d− 3d2 − d3 + 3d4 + 5e− 6de+ d2e− 9e2 + de2 + 11e3 − 3e4

)
,

P II
2 = 20d− 49d2 + 100d3 − 101d4 + 44d5 + 29d6 − 36d7 + 9d8 + 20e− 74de+ 104d2e

−108d3e+ 36d4e− 10d5e− 49e2 + 104de2 − 146d2e2 + 136d3e2 − 29d4e2 + 100e3

−108de3 + 136d2e3 − 124d3e3 + 36d4e3 − 101e4 + 36de4 − 29d2e4 + 36d3e4

−18d4e4 + 44e5 − 10de5 + 29e6 − 36e7 + 9e8,

P II
3 = 2(5d− 6d2 + 5d3 + 5e− 6de+ d2e− 6e2 + de2 + 5e3)2,

P II
4 = P II

2 ,

P II
5 =

(
4− 5d+ 13d2 − 11d3 + 3d4 − 5e− 2de− d2e+ 7e2 − de2 + e3 − 3e4

)
(
4− 5d+ 7d2 + d3 − 3d4 − 5e− 2de− d2e+ 13e2 − de2 − 11e3 + 3e4

)
,

P II
6 = 4

(
4− 5d+ 10d2 − 5d3 − 5e− 2de− d2e+ 10e2 − de2 − 5e3

)
(
5d− 6d2 + 5d3 + 5e− 6de+ d2e− 6e2 + de2 + 5e3

)
,

P II
7 = 2

(
− 4 + 5d− 10d2 + 5d3 + 5e+ 2de+ d2e− 10e2 + de2 + 5e3

)2
.

Similarly, we can verify that the coefficients P II
i , i = 1, · · · , 7 are positive.

Lemma 5.5. The coefficients P II
j , j = 1, · · · , 7 in (5.32) satisfy

P II
j > 0, (5.33)

for all 0 < d < 1 and 0 < e < 1.

Lemma 5.4 and Lemma 5.5 imply that the matricesM I
C andM II

C are nonsingular for arbitrary
interface location and elastic material configurations. Consequently, we conclude that the
nonconforming rotated Q1 vector-valued IFE functions (5.18) are unisolvent.

Theorem 5.1. A vector-valued nonconforming rotated Q1 IFE function ΦT defined by (5.18)
for the planar elasticity interface problem is uniquely determined by the its average integral
values stated in (5.19) and interface jump conditions (5.20) - (5.22).

5.2.3 Interpolation and Galerkin Method

In this subsection, we introduce vector-valued IFE interpolation to investigate the approx-
imation capability of vector-valued nonconforming rotated Q1 IFE spaces Sh(Ω). Then we
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use these vector-valued IFE functions to solve the planar elasticity interface problem (5.1) -
(5.4).

Assuming that Th is a Cartesian mesh of Ω, we define the local interpolation operator Ih,T :
H1(T )→ Sh(T ) such that

Ih,Tu =





8∑

j=1

cjΦj,T if T ∈ T ih ,
8∑

j=1

cjΨj,T if T ∈ T nh ,
(5.34)

where (
cj
cj+4

)
=

1

|bj|

∫

bj

u(x, y)ds, j = 1, 2, 3, 4. (5.35)

The global IFE interpolation Ih : H1(Ω)→ Sh(Ω) is defined by:

(Ihu)|T = Ih,Tu, ∀ T ∈ Th. (5.36)

In Section 5.3, we will use numerical examples to demonstrate the optimal- convergence
feature of the IFE interpolations which suggests the vector-valued nonconforming rotated Q1

IFE spaces also have optimal approximation capabilities as their finite element counterparts.

Next, we consider the Galerkin IFE methods for solving the planar elasticity interface prob-
lems. Partial penalization idea will not be used in the following Galerkin IFE schemes since
numerical examples in Section 4.3 for elliptic interface problems indicating that it may not
be necessary to add penalty terms if the degrees of freedom of nonconforming rotated Q1

functions are determined by the average integral values over edges.

Assume that u ∈ H1(Ω) solves (5.1) - (5.4) and u|Ωs ∈ H2(Ωs), s = +,−. Multiplying
Equation (5.1) by a test function v ∈ H1

0(Ω), integrating over each sub-domain Ωs, s = +,−
and applying Green’s formula lead to

∫

Ωs
2µsε(u) : ε(v) dxdy +

∫

Ωs
λs(∇ · u)(∇ · v) dxdy −

∫

Γ

σ(u)n · v ds

=

∫

Ωs
f · v dxdy, ∀ v ∈ H1

0(Ω), (5.37)

where the inner-product of two tensors is defined by

ε(u) : ε(v) =
2∑

i,j=1

εij(u)εij(v). (5.38)
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Summing (5.37) over sub-domains and applying the interface jump condition (5.4), we obtain
the following weak form of the planar elasticity interface problem:
∫

Ω

2µε(u) : ε(v) dxdy +

∫

Ω

λ(∇ · u)(∇ · v) dxdy =

∫

Ω

f · vdxdy, ∀ v ∈ H1
0(Ω). (5.39)

Then we define the nonconforming rotated Q1 Galerkin IFE method by: Find uh ∈ Sh(Ω)
such that

∑

T∈Th

∫

T

2µε(uh) : ε(vh)dxdy+
∑

T∈Th

∫

T

λ(∇·uh)(∇·vh)dxdy =

∫

Ω

f ·vhdxdy, ∀ vh ∈ S̊h(Ω),

(5.40)
and impose the boundary condition in the following sense:

∫

b

uhds =

∫

b

gds, ∀ b ∈ Ebh,

where the vector-valued nonconforming rotated Q1 test IFE function space S̊h(Ω) is defined
by

S̊h(Ω) =

{
Φ ∈ Sh(Ω) :

∫

b

Φds = 0 if b ∈ Ebh
}
. (5.41)

5.3 Numerical Experiments

In this section, we use numerical examples to demonstrate features of Galerkin IFE methods
for elasticity interface problems with vector-valued nonconforming rotated Q1 IFE functions.
Accuracy of both IFE interpolations and Galerkin IFE solutions with different configurations
of interface and Lamé parameters will be tested.

Let Ω = (−1, 1) × (−1, 1) be the solution domain. In the following experiments, we use a
family of Cartesian meshes {Th} on Ω. Each mesh Th is formed by partitioning Ω into N×N
congruent squares such that the edge length of square is h = 2/N .

For simplicity, we let Ihui, i = 1, 2 be the i-th component of the IFE interpolation Ihu of a
function u. Similarly, we use uhi to denote the i-th component of the IFE solution uh to the
elasticity interface problem.

Errors of an IFE approximation are given in the L∞, L2, and semi-H1 norms. Errors in the
L∞ norm are defined by

‖vhj − uj‖0,∞,Ω = max
T∈Th

(
max

(x,y)∈T̃⊂T
|vhj(x, y)− uj(x, y)|

)
, j = 1, 2, (5.42)

where, again, vhj = Ihuj or vhj = uhj, and T̃ consists of the 49 uniformly distributed points
in T as illustrated in Figure 3.2. In the following error tables, rates of convergence are
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computed by
1

ln(2)
ln

( ‖vhj − uj‖
‖uh/2,j − uj‖

)
, j = 1, 2, (5.43)

for a specific norm ‖ · ‖, where vhj = Ihuj or vhj = uhj.

The first elasticity interface problem that we consider has a circular interface Γ with radius
r0 = π/8. The interface Γ subdivides Ω into two sub-domains, denoted by Ω− and Ω+, i.e.,

Ω− =
{

(x, y)t : x2 + y2 < r2
0

}
, Ω+ =

{
(x, y)t : x2 + y2 > r2

0

}
. (5.44)

The boundary function g and the load function f in the interface problem (5.1) - (5.4) are
chosen such that the exact solution u is as follows:

u(x, y) =

(
u1(x, y)
u2(x, y)

)
=





(
u−1 (x, y)

u−2 (x, y)

)
=




1

λ−
rα1

1

λ−
rα2


 in Ω−,

(
u+

1 (x, y)

u+
2 (x, y)

)
=




1

λ+
rα1 +

(
1

λ−
− 1

λ+

)
rα1

0

1

λ+
rα2 +

(
1

λ−
− 1

λ+

)
rα2

0


 in Ω+,

(5.45)

where α1 = 5, α2 = 7, and r =
√
x2 + y2.

Example 5.1. (Convergence Test): In this experiment, we test the accuracy of IFE
interpolations and Galerkin IFE solutions using vector-valued nonconforming rotated Q1 IFE
functions.

We test three configurations of Lamé parameters all of which have been investigated by
bilinear IFE method in [108]. The first one is for a moderate discontinuity in the Lamé
parameters, i.e., λ+ = 5, λ− = 1, µ+ = 10, µ− = 2, and the Poisson’s ratio in this Lamé
parameter configuration is ν± = 0.1667. Errors in IFE interpolations and IFE solutions are
listed in Table 5.1. The second one is for a larger discontinuity in Lamé parameters, i.e.,
λ+ = 100, λ− = 1, µ+ = 200, µ− = 2, and Poisson’s ratio in this case is ν± = 0.1667.
Corresponding numerical errors are listed in Table 5.2. The third experiment is configured
by flipping the Lamé parameters over the sub-domains Ω− and Ω+ in the second experiment,
i.e., λ+ = 1, λ− = 100, µ+ = 2, µ− = 200, and Poisson’s ratio in this case is still ν± = 0.1667.
Errors of IFE interpolations and IFE solutions are listed in Table 5.3.

Data in Table 5.1, Table 5.2, and Table 5.3 indicate that both IFE interpolations and
Galerkin IFE solutions using nonconforming rotated Q1 vector-valued IFE functions con-
verge optimally in L∞, L2 and semi-H1 norms. Comparing these results with those of
bilinear IFE method in [108], we note that bilinear IFE solutions may also converge with
optimal rates in L2 and H1 norms, but only sub-optimal convergence rates are observed in
L∞ norm.
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Table 5.1: Errors of nonconforming rotated Q1 IFE interpolations and Galerkin IFE solutions
with λ+ = 5, λ− = 1, µ+ = 10, µ− = 2, ν± = 0.1667.

Ihu1 − u1 Ihu2 − u2

N ‖ · ‖0,∞,Ω rate ‖ · ‖0,Ω rate | · |1,Ω rate ‖ · ‖0,∞,Ω rate ‖ · ‖0,Ω rate | · |1,Ω rate
10 5.19E−2 1.76E−2 3.79E−1 1.98E−1 4.52E−2 9.91E−1
20 1.46E−2 1.83 4.46E−3 1.98 1.91E−1 0.99 5.98E−2 1.72 1.17E−2 1.96 5.06E−1 0.97
40 3.89E−3 1.91 1.12E−3 2.00 9.57E−2 1.00 1.65E−2 1.86 2.93E−3 1.99 2.55E−1 0.99
80 1.00E−3 1.96 2.80E−4 2.00 4.79E−2 1.00 4.32E−3 1.93 7.35E−4 2.00 1.27E−1 1.00
160 2.54E−4 1.98 7.00E−5 2.00 2.40E−2 1.00 1.11E−3 1.97 1.84E−4 2.00 6.37E−2 1.00
320 6.40E−5 1.99 1.75E−5 2.00 1.20E−2 1.00 2.80E−4 1.98 4.59E−5 2.00 3.19E−2 1.00
640 1.61E−5 1.99 4.38E−6 2.00 5.99E−3 1.00 7.05E−5 1.99 1.15E−5 2.00 1.59E−2 1.00

u1h − u1 u2h − u2

N ‖ · ‖0,∞,Ω rate ‖ · ‖0,Ω rate | · |1,Ω rate ‖ · ‖0,∞,Ω rate ‖ · ‖0,Ω rate | · |1,Ω rate
10 5.76E−2 2.28E−2 4.20E−1 1.98E−1 5.68E−2 1.05E−0
20 1.79E−2 1.69 5.67E−3 2.00 2.09E−1 1.01 5.90E−2 1.74 1.44E−2 2.00 5.37E−1 0.96
40 5.04E−3 1.83 1.42E−3 2.00 1.04E−1 1.00 1.72E−2 1.78 3.62E−3 2.00 2.70E−1 0.99
80 1.34E−3 1.91 3.54E−4 2.00 5.22E−2 1.00 4.77E−3 1.85 9.05E−4 2.00 1.35E−1 1.00
160 3.44E−4 1.96 8.84E−5 2.00 2.61E−2 1.00 1.25E−3 1.93 2.26E−4 2.00 6.77E−2 1.00
320 8.73E−5 1.98 2.21E−5 2.00 1.31E−2 1.00 3.22E−4 1.96 5.66E−5 2.00 3.38E−2 1.00
640 2.20E−5 1.99 5.52E−6 2.00 6.53E−3 1.00 8.15E−5 1.98 1.41E−5 2.00 1.69E−2 1.00

Table 5.2: Errors of nonconforming rotated Q1 IFE interpolations and Galerkin IFE solutions
with λ+ = 100, λ− = 1, µ+ = 200, µ− = 2, ν± = 0.1667.

Ihu1 − u1 Ihu2 − u2

N ‖ · ‖0,∞,Ω rate ‖ · ‖0,Ω rate | · |1,Ω rate ‖ · ‖0,∞,Ω rate ‖ · ‖0,Ω rate | · |1,Ω rate
10 2.59E−3 1.20E−3 2.52E−2 9.88E−3 2.26E−3 4.97E−2
20 9.70E−4 1.41 3.16E−4 1.93 1.36E−2 0.89 2.99E−3 1.72 5.84E−4 1.96 2.54E−2 0.97
40 3.46E−4 1.49 8.29E−5 1.93 7.13E−3 0.93 8.24E−4 1.86 1.47E−4 1.99 1.28E−2 0.99
80 9.64E−5 1.84 2.13E−5 1.96 3.66E−3 0.96 2.16E−4 1.93 3.69E−5 2.00 6.41E−3 1.00
160 2.55E−5 1.92 5.44E−6 1.97 1.86E−3 0.98 5.54E−5 1.97 9.24E−6 2.00 3.21E−3 1.00
320 6.55E−6 1.96 1.37E−6 1.99 9.37E−4 0.99 1.40E−5 1.98 2.31E−6 2.00 1.60E−3 1.00
640 1.68E−6 1.96 3.45E−7 1.99 4.70E−4 0.99 3.52E−6 1.99 5.78E−7 2.00 8.02E−4 1.00

u1h − u1 u2h − u2

N ‖ · ‖0,∞,Ω rate ‖ · ‖0,Ω rate | · |1,Ω rate ‖ · ‖0,∞,Ω rate ‖ · ‖0,Ω rate | · |1,Ω rate
10 3.54E−3 1.80E−3 2.65E−2 9.88E−3 2.91E−3 5.26E−2
20 1.15E−3 1.63 4.58E−4 1.97 1.44E−2 0.87 2.95E−3 1.74 7.38E−4 1.98 2.70E−2 0.96
40 3.42E−4 1.74 1.22E−4 1.90 7.65E−3 0.92 8.59E−4 1.78 1.86E−4 1.99 1.36E−2 0.99
80 1.12E−4 1.61 3.07E−5 1.99 3.95E−3 0.95 2.38E−4 1.85 4.64E−5 2.00 6.82E−3 1.00
160 3.20E−5 1.81 7.66E−6 2.00 2.01E−3 0.98 6.27E−5 1.93 1.16E−5 2.00 3.41E−3 1.00
320 8.57E−6 1.90 1.90E−6 2.01 1.01E−3 0.99 1.61E−5 1.96 2.90E−6 2.00 1.70E−3 1.00
640 2.24E−6 1.94 4.79E−7 1.99 5.08E−4 0.99 4.07E−6 1.98 7.24E−7 2.00 8.52E−4 1.00

Example 5.2. (“Locking” Test): In this experiment, we test the nonconforming rotated
Q1 Galerkin IFE method for elasticity interface problems with nearly incompressible materials
(ν ≈ 0.5).

First, we test the problem with a moderate discontinuity in Lamé parameters, i.e., λ+ =
20, λ− = 1, µ+ = 0.02, µ− = 0.001. In this case, both types of materials are nearly
incompressible and their Poisson’s ratios ν+ and ν− are approximately equal to 0.4995.
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Table 5.3: Errors of nonconforming rotated Q1 IFE interpolations and Galerkin IFE solutions
with λ+ = 1, λ− = 100, µ+ = 2, µ− = 200, ν± = 0.1667.

Ihu1 − u1 Ihu2 − u2

N ‖ · ‖0,∞,Ω rate ‖ · ‖0,Ω rate | · |1,Ω rate ‖ · ‖0,∞,Ω rate ‖ · ‖0,Ω rate | · |1,Ω rate
10 2.59E−1 8.79E−2 1.89E−0 9.88E−1 2.26E−1 4.95E−0
20 7.32E−2 1.83 2.23E−2 1.98 9.53E−1 0.99 2.99E−1 1.72 5.82E−2 1.96 2.53E−0 0.97
40 1.94E−2 1.91 5.58E−3 2.00 4.78E−1 1.00 8.24E−2 1.86 1.47E−2 1.99 1.27E−0 0.99
80 5.01E−3 1.96 1.40E−3 2.00 2.29E−1 1.00 2.16E−2 1.93 3.67E−3 2.00 6.37E−1 1.00
160 1.27E−3 1.98 3.49E−4 2.00 1.20E−1 1.00 5.54E−3 1.97 9.19E−4 2.00 3.19E−1 1.00
320 3.20E−4 1.99 8.73E−5 2.00 5.98E−2 1.00 1.40E−3 1.98 2.30E−4 2.00 1.59E−1 1.00
640 8.03E−5 1.99 2.18E−5 2.00 2.99E−2 1.00 3.52E−4 1.99 5.74E−5 2.00 7.97E−2 1.00

u1h − u1 u2h − u2

N ‖ · ‖0,∞,Ω rate ‖ · ‖0,Ω rate | · |1,Ω rate ‖ · ‖0,∞,Ω rate ‖ · ‖0,Ω rate | · |1,Ω rate
10 2.88E−1 1.11E−1 2.07E−0 9.87E−1 2.82E−1 5.23E−0
20 8.95E−2 1.67 2.77E−2 2.00 1.04E−0 0.99 2.95E−1 1.74 7.16E−2 1.98 2.69E−0 0.96
40 2.52E−2 1.83 6.92E−3 2.00 5.21E−1 1.00 8.58E−2 1.78 1.80E−2 2.00 1.35E−0 0.90
80 6.68E−3 1.91 1.73E−3 2.00 2.61E−1 1.00 2.38E−2 1.85 4.50E−3 2.00 6.77E−1 1.00
160 1.72E−3 1.96 4.32E−4 2.00 1.30E−1 1.00 6.27E−3 1.93 1.12E−3 2.00 3.38E−1 1.00
320 4.37E−4 1.98 1.08E−4 2.00 6.51E−2 1.00 1.61E−3 1.96 2.81E−4 2.00 1.69E−1 1.00
640 1.10E−4 1.99 2.70E−5 2.00 3.26E−2 1.00 4.07E−4 1.98 7.02E−5 2.00 8.46E−2 1.00

Then we solve this interface problem on the same Cartesian meshes by both the bilinear
IFE method proposed in [108] and the nonconforming rotated Q1 IFE method. Errors of
nonconforming rotated Q1 Galerkin IFE solutions are presented in Table 5.4. Errors of the
first component u1h generated by these two IFE methods are also compared in Figure 5.5.
The behavior of the approximations to the second component u2h is similar; hence, related
plots are omitted in this dissertation. Then, we compare these two IFE methods with a
larger discontinuity in Lamé parameters, i.e., λ+ = 200, λ− = 1, µ+ = 0.2, µ− = 0.001, and
ν± ≈ 0.4995. Corresponding errors are listed in Table 5.5.

Figure 5.5: Errors of bilinear IFE solutions and nonconforming rotated Q1 IFE solutions
u1h. From left to right: L∞, L2, H1 norms.
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In our computations for nearly incompressible materials, the nonconforming rotated Q1 IFE
solutions uh maintain the optimal convergence in the L∞, L2, and H1 norms. We also
observe a kind of super-convergence behavior in H1 norm at the first several runs in this
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Table 5.4: Errors of bilinear and nonconforming rotated Q1 Galerkin IFE solutions in “lock-
ing” test with λ+ = 20, λ− = 1, µ+ = 0.02, µ− = 0.001, ν± ≈ 0.4995.

u1h − u1 u2h − u2

N ‖ · ‖0,∞,Ω rate ‖ · ‖0,Ω rate | · |1,Ω rate ‖ · ‖0,∞,Ω rate ‖ · ‖0,Ω rate | · |1,Ω rate
Bilinear IFE Method

10 2.18E−2 1.89E−2 1.28E−1 4.18E−2 3.00E−2 2.49E−1
20 1.53E−2 0.51 1.27E−2 0.57 9.39E−2 0.44 2.44E−2 0.51 2.06E−2 0.54 1.63E−1 0.62
40 8.74E−3 0.80 7.02E−3 0.85 5.82E−2 0.69 1.42E−2 0.78 1.20E−2 0.78 9.09E−2 0.84
80 4.14E−3 1.08 2.94E−3 1.26 3.18E−2 0.87 6.48E−3 1.13 4.88E−3 1.29 4.37E−2 1.06
160 1.85E−3 1.17 9.99E−4 1.56 1.62E−2 0.98 2.34E−3 1.47 1.68E−3 1.54 2.16E−2 1.02
320 8.47E−4 1.12 3.55E−4 1.49 8.91E−3 0.86 1.62E−3 0.53 5.96E−4 1.49 1.39E−2 0.63
640 7.01E−4 0.27 1.96E−4 0.86 6.51E−3 0.45 9.51E−4 0.77 2.93E−4 1.02 8.54E−3 0.70
1280 3.75E−4 0.90 1.03E−4 0.93 4.29E−3 0.60 4.16E−4 1.19 1.50E−4 0.97 5.14E−3 0.73

Nonconforming Rotated Q1 IFE Method
10 1.76E−1 5.08E−2 6.50E−1 9.69E−2 3.92E−2 5.36E−1
20 6.21E−2 1.50 1.70E−2 1.57 2.91E−1 1.16 7.44E−2 0.38 1.48E−2 1.41 3.77E−1 0.51
40 2.60E−2 1.26 5.78E−3 1.56 1.45E−1 1.01 4.23E−2 0.81 5.27E−3 1.49 2.18E−1 0.79
80 8.02E−3 1.70 1.65E−3 1.81 5.80E−2 1.32 1.46E−2 1.54 1.53E−3 1.78 9.55E−2 1.19
160 2.14E−3 1.91 4.40E−4 1.91 2.24E−2 1.37 4.39E−3 1.73 4.12E−4 1.90 3.82E−2 1.32
320 5.77E−4 1.92 1.15E−4 1.94 9.07E−3 1.30 1.20E−3 1.87 1.08E−4 1.94 1.57E−2 1.28
640 1.43E−4 2.01 2.91E−5 1.98 3.86E−3 1.23 3.11E−4 1.95 2.74E−5 1.97 6.73E−3 1.22
1280 3.83E−5 1.90 7.33E−6 1.99 1.73E−3 1.16 8.08E−5 1.94 6.92E−6 1.99 3.02E−3 1.16

Table 5.5: Errors of bilinear and nonconforming rotated Q1 Galerkin IFE solutions in “lock-
ing” test with λ+ = 200, λ− = 1, µ+ = 0.2, µ− = 0.001, ν± ≈ 0.4995.

u1h − u1 u2h − u2

N ‖ · ‖0,∞,Ω rate ‖ · ‖0,Ω rate | · |1,Ω rate ‖ · ‖0,∞,Ω rate ‖ · ‖0,Ω rate | · |1,Ω rate
Bilinear IFE Method

10 3.74E−3 2.37E−3 2.05E−2 4.18E−3 3.11E−3 2.55E−2
20 4.07E−3 -.12 1.69E−3 0.49 2.11E−2 -.04 4.40E−3 -.07 2.20E−3 0.49 1.99E−2 0.36
40 3.66E−3 0.15 1.49E−3 0.18 2.03E−2 0.05 3.64E−3 0.28 1.41E−3 0.65 1.57E−2 0.35
80 3.53E−3 0.05 1.24E−3 0.27 1.97E−2 0.05 3.12E−3 0.22 8.96E−4 0.65 1.37E−2 0.19
160 1.93E−3 0.87 6.00E−4 1.05 1.27E−2 0.63 1.59E−3 0.97 4.41E−4 1.02 1.14E−2 0.27
320 6.97E−4 1.47 2.22E−4 1.44 6.05E−3 1.07 8.34E−4 0.93 1.64E−4 1.43 6.35E−3 0.84
640 3.83E−4 0.86 6.48E−5 1.77 3.58E−3 0.76 3.26E−4 1.36 6.18E−5 1.41 4.04E−3 0.65
1280 1.93E−4 0.99 2.42E−5 1.42 2.44E−3 0.55 1.61E−4 1.02 2.83E−5 1.13 2.88E−3 0.49

Nonconforming Rotated Q1 IFE Method
10 6.43E−2 1.50E−2 2.19E−1 2.99E−2 7.01E−3 1.08E−1
20 2.11E−2 1.61 5.91E−3 1.34 1.01E−1 1.12 2.49E−2 0.14 3.83E−3 0.87 1.03E−1 0.06
40 1.51E−2 0.48 3.15E−3 0.91 7.99E−2 0.34 2.15E−2 0.21 2.71E−3 0.50 1.05E−1 -.03
80 6.20E−3 1.29 1.40E−3 1.17 4.32E−2 0.89 1.23E−2 0.81 1.26E−3 1.10 6.59E−2 0.67
160 1.87E−3 1.73 4.39E−4 1.68 1.75E−2 1.30 4.11E−3 1.58 4.01E−4 1.65 2.91E−2 1.18
320 5.27E−4 1.83 1.17E−4 1.91 6.60E−3 1.41 1.15E−3 1.83 1.08E−4 1.90 1.11E−2 1.39
640 1.45E−4 1.86 3.04E−5 1.94 2.44E−3 1.43 3.05E−4 1.92 2.82E−5 1.93 4.13E−3 1.43
1280 3.77E−5 1.95 7.73E−6 1.98 8.94E−4 1.45 7.90E−5 1.95 7.18E−6 1.97 1.49E−3 1.47

experiment. As we refining meshes, it returns to the usual O(h).

In comparison, these experiments indicate that the bilinear Galerkin IFE method encounters
the “locking” phenomenon as expected. As the mesh size becomes small, the convergence
rates are far below the optimal rates in the L∞, L2, and H1 norms (see data in Tables 5.4
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and 5.5 and illustrations in Figure 5.5). Therefore, these experiments strongly suggest that
the nonconforming rotated Q1 Galerkin IFE method is more reliable because of its desirable
“locking-free” feature for solving the elasticity interface problems.

In the next few examples, we consider another interface problem described by (5.1)–(5.4)
in which the interface is a straight line. Specifically, we assume that the interface Γ is a
vertical straight line x = x0 that divides the solution domain Ω = (−1, 1)× (−1, 1) into two
sub-domains, denoted by Ω− and Ω+, i.e.,

Ω− =
{

(x, y)t ∈ Ω : x < x0

}
, Ω+ =

{
(x, y)t ∈ Ω : x > x0

}
. (5.46)

The boundary condition function g and the load function f in this interface problem are
chosen such that the exact solution u is as follows:

u(x, y) =

(
u1(x, y)
u2(x, y)

)
=





(
u−1 (x, y)

u−2 (x, y)

)
=




1

λ− + 2µ−
(x− x0) cos(2xy)

1

µ−
(x− x0) cos(2xy)


 in Ω−,

(
u+

1 (x, y)

u+
2 (x, y)

)
=




1

λ+ + 2µ+
(x− x0) cos

(
(x+ x0)y

)

1

µ+
(x− x0) cos

(
(x+ x0)y

)


 in Ω+.

(5.47)

Example 5.3. (“Moving” Interface Test): In this experiment, we use one mesh to
solve five elasticity interface problems whose interfaces have different locations as a kind of
“moving” interface test.

We let interfaces be vertical straight line located at x = x0 where

x0 = − π

100
, − π

200
, 0,

π

200
,

π

100
,

The Cartesian mesh formed in Ω = (−1, 1)× (−1, 1) contains 320× 320 congruent squares.
Lamé parameters in this experiment are λ+ = 2, λ− = 1, µ+ = 3, µ− = 2 which represent a
typical compressible material configuration with a moderate coefficient jump. The materials
are compressible such that ν+ = 0.2, ν− ≈ 0.1667. Errors in the Galerkin IFE solutions
generated on this fixed mesh are listed in Table 5.6. Data presented in this table indicate
that IFE solutions to all of these interface problems have comparable accuracy in the L∞,
L2, and semi-H1 norms even though the interfaces locations differ in these problems. This
phenomenon suggests that Galerkin IFE methods is potentially advantageous in applications
that require to solve an elasticity interface problems with a sequence of material interfaces.

Note that when the interface line is at x0 = 0, the interface line coincides with a mesh
line x = 0. In this case, the mesh contains no interface elements so that the elasticity



Xu Zhang Chapter 5. Elasticity Interface Problems 124

interface problem is solved by nonconforming rotated Q1 Galerkin FE method because of
the consistency of the nonconforming rotated Q1 IFE functions as stated in Lemma 5.3.
Errors listed in Table 5.6 confirm that the IFE method can perform as accurately as the FE
method, but the IFE method has the advantage that its mesh does not have to be generated
according to the interface location.

Table 5.6: Errors of nonconforming rotated Q1 Galerkin IFE solutions for problems whose
interfaces are at different locations.

u1h − u1 u2h − u2

Interface: x0 ‖ · ‖0,∞,Ω ‖ · ‖0,Ω | · |1,Ω ‖ · ‖0,∞,Ω ‖ · ‖0,Ω | · |1,Ω
−π/100 1.1777E−5 2.5923E−6 1.7824E−3 2.4343E−5 7.3793E−6 4.3019E−3
−π/200 1.1887E−5 2.6252E−6 1.8043E−3 2.4573E−5 7.4702E−6 4.3544E−3

0 1.1997E−5 2.6583E−6 1.8263E−3 2.4803E−5 7.5610E−6 4.4070E−3
π/200 1.2107E−5 2.6915E−6 1.8483E−3 2.5034E−5 7.6520E−6 4.4597E−3
π/100 1.2218E−5 2.7249E−6 1.8703E−3 2.5264E−5 7.7430E−6 4.5123E−3

Example 5.4. (Boundary Layer Test): In this experiment, we assume that a straight
line interface is located close to the boundary of Ω, i.e., x = −1 + π/300. The sub-domain
Ω− becomes a very thin layer.

If the standard FE method is used to solve this interface problem, the body-fitting restriction
requires that a solution mesh has to be fine enough around the interface so that an element
can be placed entirely inside the thin layer. Generating a body-fitting mesh for a solution
domain with a boundary layer is not only complicated, but also leads to an unstructured mesh
with a large number of degrees of freedom usually. Since an IFE method allows interfaces to
be immersed in some elements, a simple Cartesian mesh with much less degrees of freedom
can be used for solving the same interface problem.

In Figure 5.6, we compare these two types of meshes for the thin layer interface problem.
The body-fitting mesh on the left has 5128 triangular elements while the Cartesian mesh
on the right contains only 400 rectangles. If the linear FE method are used on the body-
fitting mesh to solve this boundary layer interface problem, the number of global degrees of
freedom is 5402. On the other hand, if we solve by nonconforming rotated Q1 Galerkin IFE
method on the Cartesian mesh, the number of global degrees of freedom is 1600. Comparing
of these numbers indicates that the computational costs for IFE method is much less than
the FE method. Errors in both methods are listed in Table 5.7. We can observe that the
accuracies of solutions obtained by smaller IFE systems and by the much larger FE system
are not much different. Therefore, the IFE method has its advantage over the FE method
for interface problems with thin layers.

Next, we test the convergence of the nonconforming rotated Q1 Galerkin IFE method for this
boundary layer interface. We test for both compressible (λ+ = 2, λ− = 1, µ+ = 3, µ− = 2,
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Figure 5.6: A comparison of body-fitting triangular mesh with a non-body-fitting Cartesian
mesh for a boundary layer problem.

Table 5.7: Comparison of errors of the linear FE and nonconforming rotated Q1 IFE solutions
for the boundary layer example with λ+ = 2, λ− = 1, µ+ = 3, µ− = 2, ν+ = 0.2, ν− ≈ 0.1667.

u1h − u1 u2h − u2

Method ‖ · ‖0,∞,Ω ‖ · ‖0,Ω | · |1,Ω ‖ · ‖0,∞,Ω ‖ · ‖0,Ω | · |1,Ω
FE method 3.61E−4 2.38E−4 7.17E−3 7.16E−4 5.53E−4 1.89E−2
IFE method 8.70E−4 1.97E−4 8.42E−3 1.96E−3 5.34E−4 2.20E−2

ν+ = 0.2, ν− ≈ 0.1667) and the nearly incompressible (λ+ = 2000, λ− = 1000, µ+ = 3,
µ− = 1, ν+ ≈ 0.4993, ν− ≈ 0.4995) materials. Errors of IFE solutions are listed in Table 5.8
and Table 5.9, respectively. Numerical results indicate that the nonconforming rotated Q1

IFE method can solve the thin layer elasticity interface problem optimally in L∞, L2 and
H1 norms for both compressible and nearly incompressible materials. In Figure 5.7, we plot
error data in different norms for the incompressible material configuration for an illustration
of the convergence behavior.

We note that, in the first few runs until the mesh size reaches h = 2/160, the interface
x = −1 + π/300 is completely in the first layer of elements adjacent to the left boundary
of Ω. But on those meshes whose mesh sizes are 2/320 and smaller, the interface line is
no longer in the first layer of elements. This property demonstrates the robustness of this
Galerkin IFE method from the point of view of the interface location in a mesh.

Similar to the Example 5.2, the errors in H1 norm for a nearly incompressible case in Table
5.9 demonstrate a kind of super-convergence behavior with coarse meshes. As we continue
mesh refinement, the convergence rate tends to be an optimal O(h) order.
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Table 5.8: Errors of nonconforming rotated Q1 IFE solutions for the boundary layer example
with λ+ = 2, λ− = 1, µ+ = 3, µ− = 2, ν+ = 0.2, ν− ≈ 0.1667.

u1h − u1 u2h − u2

N ‖ · ‖0,∞,Ω rate ‖ · ‖0,Ω rate | · |1,Ω rate ‖ · ‖0,∞,Ω rate ‖ · ‖0,Ω rate | · |1,Ω rate
10 3.15E−3 7.52E−4 1.68E−2 7.40E−3 2.03E−3 4.38E−2
20 8.70E−4 1.86 1.97E−4 1.94 8.42E−3 1.00 1.96E−3 1.92 5.34E−4 1.93 2.20E−2 1.00
40 2.37E−4 1.87 5.07E−5 1.95 4.22E−3 1.00 5.36E−4 1.87 1.38E−4 1.95 1.10E−2 1.00
80 7.09E−5 1.74 1.30E−5 1.97 2.12E−3 0.99 1.53E−4 1.81 3.51E−5 1.97 5.52E−3 0.99
160 2.32E−5 1.61 3.24E−6 2.00 1.07E−3 0.99 4.61E−5 1.73 8.76E−6 2.00 2.78E−3 0.99
320 5.95E−6 1.97 8.18E−7 1.98 5.34E−4 1.00 1.28E−5 1.85 2.22E−6 1.98 1.39E−3 1.00
640 1.48E−6 2.01 2.04E−7 2.00 2.67E−4 1.00 3.38E−6 1.92 5.54E−7 2.00 6.94E−4 1.00

Table 5.9: Errors of nonconforming rotated Q1 IFE solutions for the boundary layer example
with λ+ = 2000, λ− = 1000, µ+ = 3, µ− = 1, ν+ ≈ 0.4993, and ν− ≈ 0.4995.

u1h − u1 u2h − u2

N ‖ · ‖0,∞,Ω rate ‖ · ‖0,Ω rate | · |1,Ω rate ‖ · ‖0,∞,Ω rate ‖ · ‖0,Ω rate | · |1,Ω rate
10 7.63E−2 6.63E−2 2.56E−1 8.86E−2 6.98E−2 2.89E−1
20 1.83E−2 2.06 1.69E−2 1.97 6.76E−2 1.92 2.26E−3 1.97 1.78E−2 1.98 7.71E−2 1.91
40 4.69E−3 1.96 4.41E−3 1.94 1.93E−2 1.81 5.66E−3 2.00 4.52E−3 1.97 2.26E−2 1.77
80 1.23E−3 1.93 1.19E−3 1.89 6.58E−3 1.55 1.45E−3 1.96 1.17E−3 1.95 8.72E−3 1.37
160 3.23E−4 1.93 3.20E−4 1.90 2.81E−3 1.23 3.71E−4 1.97 3.07E−4 1.94 4.05E−3 1.11
320 8.00E−5 2.01 7.88E−5 2.02 1.29E−4 1.12 9.23E−5 2.01 7.59E−5 2.01 1.74E−3 1.22
640 1.98E−5 2.01 1.95E−5 2.02 6.31E−4 1.03 2.30E−5 2.01 1.88E−5 2.01 8.39E−4 1.05
1280 4.99E−6 1.99 4.91E−6 1.99 3.16E−4 1.00 5.76E−6 2.00 4.74E−6 1.99 4.17E−4 1.01

Figure 5.7: Errors of nonconforming rotated Q1 IFE solutions uh for the boundary layer
example in different norms.
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Chapter 6

Applications of IFEs to Moving
Interface Problems

Many simulations in science and engineering involves a moving interface. For instance, the
Stefan problem [34] describes the temperature distribution in the melting process of ice
passing into water. In this simulation, the interface evolves.

As we already shown in previous chapters, in IFE methods, solution meshes are independent
of the interface. For stationary interface problems, such as the elliptic and elasticity inter-
face problems, IFE methods can use Cartesian meshes even if the interface has a nontrivial
geometry. Consequently, for time dependent problems involving moving interfaces, the im-
mediate benefit to use IFE methods is that a fixed Cartesian mesh can be used throughout
the whole simulation.

In this chapter, we consider potential applications of IFE methods to moving interface prob-
lems. For simplicity, we assume that the interface location is known a priori for each time
considered, and our effort here focus on how to solve the governing PDE efficiently. We
acknowledge that in practice, the locations of moving interfaces are barely known a priori,
but we hope the preliminary results here can be combined with evolution techniques such as
front tracking methods [58, 59, 81, 138], and level set methods [19, 116, 117, 131] to solve
true moving interface problems arising in applications.

In Section 6.1, we describe the parabolic type moving interface problems and discuss short-
comings and advantages of FE and IFE schemes for solving these problems. In Section 6.2, we
discuss the IFE method of lines (MoL) using semi-discrete schemes for solving the parabolic
moving interface problems. In Section 6.3, we consider fully discrete Crank-Nicolson (CN)
IFE schemes as alternative approaches for solving these moving interface problems. In Sec-
tion 6.4, we discuss some implementation issues for the IFE-MoL semi-discrete and CN-IFE
fully discrete schemes. In Section 6.5, we provide numerical experiments to demonstrate
features of the proposed IFE methods. Some of the materials in this chapter have been

127
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reported in articles [75, 102].

6.1 Introduction

We consider the following parabolic moving interface problem:

ut −∇ · (β∇u) = f(t,X), if X ∈ Ω, t ∈ (0, Tend], (6.1)

u(t,X) = g(t,X), if X ∈ ∂Ω, t ∈ (0, Tend], (6.2)

u(0, X) = u0(X), if X ∈ Ω. (6.3)

Here, the domain Ω ⊂ R2 is assumed to be an open rectangle (or a union of open rectangles)
that is separated into two sub-domains Ω+(t) and Ω−(t) by a moving interface curve Γ(t)
defined by a smooth function Γ : [0, Tend] → Ω, see Figure 6.1 for an illustration of the
solution domain Ω.

Figure 6.1: Solution domain of moving interface problems.

Γ(t)

Ω−(t)

Ω+(t)

∂Ω

−→

−→

The diffusion coefficient β(t,X) is discontinuous across the moving interface Γ(t), which is
assumed to be known a priori. For simplicity, we assume that β(t,X) is a piece-wise constant
function defined as follows:

β(t,X) =

{
β−, if X ∈ Ω−(t),
β+, if X ∈ Ω+(t).

(6.4)

Across the moving interface Γ(t), the solution u(t,X) is required to satisfy the usual jump
conditions:

[u]|Γ(t) = 0, (6.5)

[β∇u · n]|Γ(t) = 0. (6.6)
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Conventional finite element methods can solve the time dependent PDEs satisfactorily [137].
In dealing with interface problems, if the interface does not change its shape and location,
then methods such as those discussed in [137] can be straightforwardly utilized provided that
the meshes are tailored to match the interface [9, 26, 39].

However, the requirement of using body-fitting mesh makes traditional FE methods ineffi-
cient for solving moving interface problems. First, for a problem with a moving interface,
the body-fitting restriction requires a new mesh to be generated at each time level. This
is usually a time-consuming task, especially for those applications with complicated moving
interface. Secondly, if the interface changes with respect to time in a problem, as the con-
sequence of having to use body-fitting meshes, the number and locations of global degrees
of freedom and elements in meshes at two consecutive time levels in a method based on
traditional FE functions will usually be different, and this causes many difficulties including,
but not limited to, those in the following list:

• Change in Solution Dimensions: Different number of elements in body-fitting
meshes at two different time levels implies that the finite element spaces used at these
time levels will usually have different global degrees of freedom. Consequently, the
related FE equations (in either a semi-discrete scheme or a fully discrete scheme) will
be defined through a non-square algebraic system which demands more efforts to solve.
We note that it is possible to generate body-fitting meshes with the same number of
elements at different time levels for a domain with a moving interface, but this usually
requests an extra computational cost and has a great potential of losing accuracy unless
the geometry of the interface changes in a simple way.

• Loss of Local Assembling Feature: The so-called “local assembling” procedure is
one of the most desirable features of FE methods. To assemble a global matrix in
the algebraic system of a FE method, one can first construct the related local matrix
in each element and then assemble its entries into the global matrix. This simplicity
is lost for a moving interface problem when assembling a global matrix involving FE
functions defined at two different time levels because their meshes usually do not share
any common elements. Complicated and time consuming quadrature procedures have
to be developed for assembling matrices in conventional FE methods.

• Inapplicability of Methods of Lines: The method of lines (MoL) [124, 140, 152] is
an efficient technique for solving initial boundary value problems of parabolic PDEs.
This technique reduces a PDE initial boundary value problem to an initial value prob-
lem of a system of ODEs. One can then solve this ODE system via an ODE solver
with desirable features to generate a solution to the original PDE problem. The abun-
dant choices of efficient and robust ODE solvers make the MoL popular for solving the
time dependent PDEs. However, for problems with moving interfaces, the body-fitting
restriction on the meshes makes the application of the MoL difficult, if not impossible,
in the FE formulation. The main obstacle is the change of global degrees of freedom



Xu Zhang Chapter 6. Moving Interface Problems 130

with respect to the time, possibly in both number and locations, and this forbids a
correct formulation of the ODEs in the semi-discretization for a time dependent PDE
to be solved.

Compared with a conventional FE space, an IFE space has two key features. First, by allow-
ing the mesh to be independent of the interface, an IFE space can be defined on Cartesian
meshes for interface problems with a nontrivial geometry without loss of accuracy. Second,
instead of universal polynomials in each element of a mesh, an IFE function in each element
cut by the interface is a piecewise polynomial of a specified degree constructed according to
the interface jump conditions.

Therefore, we can use IFE functions to carry out the discretization in the spatial variables
over a fixed structured (Cartesian) mesh for a parabolic PDE whose diffusion coefficient
is discontinuous across a moving interface. An immediate benefit of this approach is the
avoidance of regenerating meshes through the whole computational procedure, even if the
interface changes with respect to time. More importantly, even though the IFE spaces at
different time levels are formed according to the location of the interface, the global degrees
of freedom as well as their locations in all the IFE spaces used in the whole simulation can
be maintained the same.

In the following sections, we discuss the IFE method of lines semi-discrete schemes and
Crank-Nicolson IFE fully discrete schemes for solving parabolic type moving interface prob-
lems.

6.2 IFE Method of Lines Semi-Discrete Schemes

In this section, we discuss the IFE method of line (MoL) semi-discrete schemes for solving
the parabolic moving interface problem (6.1) - (6.6). We use linear IFE functions [95, 96] to
carry out the discussion and we note that the proposed IFE-MoL schemes can be applied to
other IFE functions especially nonconforming rotated Q1 IFE functions.

Let Th = {T} be a triangular Cartesian mesh of Ω as illustrated by the plot on the right in
Figure 6.2. Let T i,th and T n,th denote the collections of interface elements and non-interface
elements at the time t, respectively. In the discussion from now on, we assume that Th =
T i,th ∪ T n,th does not change with respect to t while T i,th and T n,th may vary according to the
interface location.

Let Nh = N 0
h ∪ N b

h be the set of nodes of Th where N 0
h and N b

h denote the sets of interior
nodes and boundary nodes, respectively. Also, we let N i,t

h be the set of nodes of all interface
elements at time t and let N n,t

h = Nh/N i,t
h be the set containing the rest of the nodes. Again,

since Th is time independent, the node set Nh is also time independent while N i,t
h and N n,t

h

may change with respect to time.
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Figure 6.2: A body-fitting triangular mesh (left) and a non-body-fitting triangular Cartesian
mesh (right).

Let Sth(Ω) be the linear IFE space at time t. Note that each global basis function in Sth(Ω),
denoted by φj, is associated with a node in the mesh. Therefore, a semi-discrete linear IFE
solution to the parabolic interface problem (6.1) - (6.6) can be written in the following form:

uh(t,X) =
∑

Xj∈Nh
uj(t)φ

t
j(X). (6.7)

Here we put a superscript t on the global basis function φtj to emphasize that some of the
global basis functions depend on the interface location Γ(t) and therefore depend on time t.

Taking the partial derivative with respect to t of the IFE solution in (6.7), we have

∂uh(t,X)

∂t
=
∑

Xj∈Nh

∂uj(t)

∂t
φtj(X) +

∑

Xj∈N i,th

uj(t)
∂φtj(X)

∂t
. (6.8)

Note that the summation in the second term on the right hand side of (6.8) is only for nodes
in N i,t

h because the time derivative of φtj(X) is zero if Xj 6∈ N i,t
h .

Now we derive the semi-discrete scheme for the moving interface problem starting from the
following weak form at a given time t:

∫

Ω

∂u

∂t
vdX +

∫

Ω

(β∇u) · ∇vdX =

∫

Ω

fvdX, ∀ v ∈ H1
0 (Ω), (6.9)

which is equivalent to

∑

T∈Th

∫

T

∂u

∂t
vdX +

∑

T∈Th

∫

T

(β∇u) · ∇vdX =

∫

Ω

fvdX, ∀ v ∈ H1
0 (Ω). (6.10)
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Consequently, this weak form leads to the following spatial discrete formulation: At each
time t ∈ (0, Tend], find uh(t, ·) ∈ Sth(Ω), such that

∑

T∈Th

∫

T

∂uh
∂t

vhdX +
∑

T∈Th

∫

T

(β∇uh) · ∇vhdX =

∫

Ω

fvhdX, ∀ vh ∈ S̊th(Ω), (6.11)

where S̊th(Ω) = Span{φtj ∈ Sth(Ω) : Xj ∈ N 0
h}. Plugging (6.7) and (6.8) into (6.11), and

substituting φti ∈ S̊th(Ω) for vh, the above semi-discrete form becomes: Find the coefficient
functions uj(t) in uh(t,X) =

∑
Xj∈Nh uj(t)φ

t
j(X) such that

∑

Xj∈Nh
u′j(t)

∫

Ω

φtiφ
t
jdX +

∑

Xj∈N ih,t

uj(t)

∫

Ω

φti

(
∂

∂t
φtj

)
dX

+
∑

Xj∈Nh
uj(t)

∫

Ω

β∇φti · ∇φtjdX =

∫

Ω

fφtidX, ∀φti ∈ S̊th(Ω).

Imposing the boundary condition (6.2), we obtain

∑

Xj∈N 0
h

u′j(t)

∫

Ω

φtiφ
t
jdX +

∑

Xj∈N i,0h,t

uj(t)

∫

Ω

φti

(
∂

∂t
φtj

)
dX +

∑

Xj∈N 0
h

uj(t)

∫

Ω

β∇φti · ∇φtjdX

=

∫

Ω

fφtidX −
∑

Xj∈N bh

g′j(t)

∫

Ω

φtiφ
t
jdX −

∑

Xj∈N i,bh,t

gj(t)

∫

Ω

φti

(
∂

∂t
φtj

)
dX

−
∑

Xj∈N bh

gj(t)

∫

Ω

β∇φti · ∇φtjdX, ∀φti ∈ S̊th(Ω)

(6.12)

where gj(t) = g(t,Xj), for Xj ∈ N b
h . We can write (6.12) in the equivalent matrix form as

follows
M(t)u′(t) +

(
K(t) + A(t)

)
u(t) = f(t)− bc(t), (6.13)

with the initial condition
u(0) = u0, (6.14)

where

• M(t) = (mij(t)) is the mass matrix with mij =
∫

Ω
φtiφ

t
jdX.

• K(t) = (kij(t)) with kij =
∫

Ω
φti

∂φtj
∂t

dX.

• A(t) = (aij(t)) is the stiffness matrix with aij =
∫

Ω
∇φti ·

(
β∇φtj

)
dX.

• f(t) = (fi(t)) is the source term vector with fi(t) =
∫

Ω
fφtidX.
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• u(t) = (uj(t)), u′(t) =
(
u′j(t)

)
, and u0 = (u0(Xj)) with Xj ∈ N 0

h .

• bc(t) is the boundary vector associated with the the last three terms in (6.12).

We call equations (6.13) and (6.14) an IFE-MoL for solving the parabolic moving interface
problem (6.1) - (6.6).

Compared with the traditional semi-discrete FE method for the initial boundary value prob-
lems of parabolic equations, the IFE-MoL (6.13) contains an extra term involving matrix
K(t) that depends on the time derivative of IFE basis functions due to the moving interface.
This method is consistent with the standard FE-MoL in the sense that the matrix K(t) is
a zero matrix and this method becomes the standard MoL if β(t,X) is continuous, or if the
interface is static and a body-fitting mesh is used.

Remark 6.1. The matrix K(t) is much sparser than the mass matrix M(t) and the stiffness
matrix A(t), because only those IFE basis functions associated with interface nodes in N i,t

h

have non-zero time derivatives. When the mesh is fine enough, the majority of nodes are
non-interface nodes which belong to N n,t

h . Consequently, it costs little time to assemble the
matrix K(t).

The IFE-MoL (6.13) and (6.14) can be written in following standard ODE form for u(t)

u′(t) = F(t,u), u(0) = u0. (6.15)

where u0 = (u0(Xj)), with Xj ∈ N 0
h , and

F(t,u) = M−1(t)

(
−
(
K(t) + A(t)

)
u(t) + f(t)− bc(t)

)
. (6.16)

A preferred ODE solver can be used to solve this ODE system in the IFE-MoL.

Single Step Methods

Implicit Runge-Kutta (IRK) methods are good choices for the IFE-MoL because they are
often A-stable and some of them work effectively for stiff problems. A general s-stage IRK
method can be described conveniently in the following Butcher diagram [31]:

c1 a11 a12 · · · a1s

c2 a21 a22 · · · a2s
...

...
...

. . .
...

cs as1 as2 · · · ass
b1 b2 · · · bs

(6.17)

However, when a high order multistage fully implicit Runge-Kutta method is used, comput-
ing the stage values, denoted by Ki, i = 1, · · · , s, is usually a big hurdle. This is because we
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have to solve for these vectors from an (s dim(u)) × (s dim(u)) block linear system whose
dimension is very high when a fine mesh is used and the band structure is more complicated
than that of each block. One possible way to alleviate this difficulty is to use a so-called Di-
agonally Implicit Runge-Kutta (DIRK) method [64] for which the coefficient matrix (aij)

s
i,j=1

in (6.17) is a lower triangular matrix. In a DIRK method, Ki, i = 1, · · · , s are determined
by s decoupled linear systems, each of them is of the size dim(u) × dim(u), and they all
have the same band structure. Specifically, the s-stage DIRK scheme for solving (6.15) can
described as follows:

Given un, and τ , we find un+1 by

1. Compute K1 by solving
(
Mn+c1 + a11τ

(
Kn+c1 + An+c1

))
K1 = −

(
Kn+c1 +An+c1

)
un+fn+c1−bcn+c1 . (6.18)

2. Compute Ki, i = 2, · · · , s, by solving
(
Mn+ci + aiiτ

(
Kn+ci + An+ci

))
Ki

= −
(
Kn+ci + An+ci

)
(un + τ

i−1∑

j=1

aijKj) + fn+ci − bcn+ci . (6.19)

3. Find un+1 from

un+1 = un + τ
s∑

i=1

biKi. (6.20)

Here

An+ci = A(tn + ciτ), Kn+ci = K(tn + ciτ), Mn+ci = M(tn + ciτ), 1 ≤ i ≤ s,

with the matrices A(t), K(t) and M(t) defined in (6.13). The same convention applies to the
involved vectors.

Multi-step Methods

Compared to the DIRK methods, linear multi-step methods usually require less function
evaluations per time step. The family of Adams Methods are popular for non-stiff problems,
and Backward Difference Formula (BDF) methods are effective for stiff systems [7]. Since
the ODE system in a MoL for an initial boundary value problem of a time dependent PDE is
usually stiff, BDF methods are usually preferable. A k-step BDF method [7] can be written
as

k∑

i=0

αiu
n+1−i = hβ0F

n+1, (6.21)
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where Fn+1 = F(tn+1,un+1). The k-step BDF scheme for solving (6.15) are described as
follows:

Given un−k+1, un−k+2, · · · , un and τ , we find un+1 by solving

(
α0M

n+1 + τβ0(An+1 +Kn+1)
)
un+1 = τβ0(fn+1 − bcn+1)−Mn+1

k∑

i=1

αiu
n+1−i, (6.22)

where

An+1 = A(tn+1), Kn+1 = K(tn+1), Mn+1 = M(tn+1),

and the same convention applies to vectors.

Comparison of Single Step and Multi-Step Methods

A single step method approximates un+1 by taking into account only the behavior of u(t) be-
tween tn and tn+1, while a multi-step method require information from a number of previous
time steps. This means a single step method needs nothing except u0 to start up the itera-
tion in time. On the other hand, to start a multi-step method, k initial values u0, · · · ,uk−1

are required. Usually, an appropriate single step method can be used to generate the rest of
the initial values u1, · · · ,uk−1.

To achieve a comparable high order accuracy, a multi-step method usually requires less
matrices assembling and less linear system solving at each time step than a DIRK method.
At each time level, the BDF method (6.22) needs to generate 2 + ε matrices, which are
M(t), A(t) and K(t), and solve only one linear system. Here ε emphasizes the fact that
assembling K(t) costs significantly much less time than M(t), A(t). On the other hand, an
s-stage DIRK method needs to assemble s(2 + ε) matrices and solve s linear systems at each
time step. We also note that single step methods are convenient for the implementation of
adaptivity in the time step size which is usually preferred for producing a reliable solution
to a complicated ODE system.

6.3 Crank-Nicolson IFE Fully Discrete Algorithms

In this section, we consider fully discrete Crank-Nicolson IFE algorithms as alternative ap-
proaches for solving the parabolic moving interface problem (6.1) - (6.6).

We will consider two basic discretization procedures for a time-dependent problem. One of
them is to discretize the space variables followed by the time variable, and the other one
carries out the procedure in the reversed order.
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CN-IFE Algorithm 1

As in Section 6.2, we carry out the spatial discretization first followed by the discretization
in time. Linear IFE approximations are used to discrete in space. For time discretization,
we use a uniform partition 0 = t0 < t1 < · · · < tNt = Tend, where tn = nτ with τ = Tend/Nt.
Then we look for un = (unj ) ≈ u(tn), for n = 1, 2, · · · , Nt in

unh(X) =
∑

Xj∈Nh
unj φ

tn
j (X)

to approximate u(tn, X). We apply the Crank-Nicolson scheme to fully discretize (6.13), then
we obtain

Mh(tn+ 1
2
)
un+1 − un

τ
+
(
Ah(tn+ 1

2
) +Kh(tn+ 1

2
)
) un+1 + un

2
= f(tn+ 1

2
). (6.23)

For simplicity, we assume the Dirichlet boundary condition is homogeneous, i.e., g = 0. To
facilitate the following discussion, we introduce some notations with multiple superscripts
to describe the evaluations of different functions at different time levels. Let nv, nu, nβ,
and nf denote the time levels for the test function v, trial function u, coefficient function β,
source function f , respectively. Then, we define the matrices and vectors as follows:

• Mnv ,nu
h =

(
mnv ,nu
ij

)
is mass matrix, where mnv ,nu

ij =
∫

Ω
φ
tnv
i φ

tnu
j dX.

• Anβ ,nv ,nuh =
(
a
nβ ,nv ,nu
ij

)
is stiffness matrix, where a

nβ ,nv ,nu
ij =

∫
Ω
∇φtnvi · (βtnβ∇φtnuj )dX.

• Knv ,nu
h =

(
knv ,nuij

)
, where knv ,nuij =

∫
Ω
φ
tnv
i

(
∂
∂t
φ
tnu
j

)
dX.

• fnv ,nf =
(
f
nv ,nf
i

)
is right hand side vector, where f

nv ,nf
i =

∫
Ω
φ
tnv
i f tnf dX.

Using the above notations, we write (6.23) as follows

M
n+ 1

2
,n+ 1

2
h

un+1 − un

τ
+
(
A
n+ 1

2
,n+ 1

2
,n+ 1

2
h +K

n+ 1
2
,n+ 1

2
h

) un+1 + un

2
= fn+ 1

2
,n+ 1

2 , (6.24)

which leads to the first algorithm: Given un, we find un+1 by

• CN-IFE Algorithm 1

(
M

n+ 1
2
,n+ 1

2
h +

τ

2
A
n+ 1

2
,n+ 1

2
,n+ 1

2
h +

τ

2
K
n+ 1

2
,n+ 1

2
h

)
un+1

=
(
M

n+ 1
2
,n+ 1

2
h − τ

2
A
n+ 1

2
,n+ 1

2
,n+ 1

2
h − τ

2
K
n+ 1

2
,n+ 1

2
h

)
un + τ fn+ 1

2
,n+ 1

2 .
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CN-IFE Algorithm 2

Another approach to obtain a fully discrete formulation is to discretize in time first, and

then in space. In this way, the matrix K
n+ 1

2
,n+ 1

2
h caused by the time derivative of IFE basis

functions will not appear in the fully discrete formulation.

This procedure can be carried out as follows. We evaluate the parabolic equation (6.1) at
time tn+ 1

2
to have

ut(tn+ 1
2
, X)−∇ · (β(tn+ 1

2
, X)∇u(tn+ 1

2
, X)) = f(tn+ 1

2
, X). (6.25)

Using central difference to approximate the time derivative in (6.25) leads to

u(tn+1, X)− u(tn, X)

τ
−∇ · (β(tn+ 1

2
, X)∇u(tn+ 1

2
, X)) ≈ f(tn+ 1

2
, X). (6.26)

Multiplying a test function v ∈ H1
0 (Ω) on both side of (6.26), integrating over Ω, and

applying Green’s formula, we obtain

∑

T∈Th

∫

T

v(X)
u(tn+1, X)− u(tn, X)

τ
dX

+
∑

T∈Th

∫

T

∇v(X) ·
(
β(tn+ 1

2
, X)∇u(tn+ 1

2
, X)

)
dX

≈
∫

Ω

v(X)f(tn+ 1
2
, X)dX, ∀v ∈ H1

0 (Ω). (6.27)

We approximate ∇u(tn+ 1
2
, X) by the average of ∇u(tn, X) and ∇u(tn+1, X), then (6.27)

yields

∑

T∈Th

∫

T

v(X)
u(tn+1, X)− u(tn, X)

τ
dX +

∑

T∈Th

∫

T

∇v(X) ·
(
β(tn+ 1

2
, X)
∇u(tn+1, X) +∇u(tn, X)

2

)
dX

≈
∫

Ω

v(X)f(tn+ 1
2
, X)dX, ∀v ∈ H1

0 (Ω).

Then, we can introduce the discretization in space to obtain the following fully discrete
scheme: Given unh ∈ Sh,tn(Ω), we find un+1

h ∈ Sh,tn+1(Ω) in

∑

T∈Th

∫

T

vh(X)
un+1
h (X)− unh(X)

τ
dX +

∑

T∈Th

∫

T

∇vh(X) ·
(
β(tn+1/2, X)

∇un+1
h (X) +∇unh(X)

2

)
dX

=

∫

Ω

vh(X)f(tn+ 1
2
, X)dX, ∀vh ∈ S̊h,tn+1/2

.
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It is equivalent to: Given un, we find un+1 from the following equations,


1

τ

∑

Xj∈Nh

∫

Ω

φ
tn+1/2

i φ
tn+1

j dX +
1

2

∑

Xj∈Nh

∫

Ω

∇φtn+1/2

i ·
(
βtn+1/2∇φtn+1

j

)
dX


un+1

+


−1

τ

∑

Xj∈Nh

∫

Ω

φ
tn+1/2

i φtnj dX +
1

2

∑

Xj∈Nh

∫

Ω

∇φtn+1/2

i ·
(
βtn+1/2∇φtnj

)
dX


un

=

∫

Ω

φ
tn+1/2

i f tn+1/2dX, ∀φtn+1/2

i ∈ S̊h,tn+1/2
.

Writing the above equation using the following matrix notations leads to our second algo-
rithm

• CN-IFE Algorithm 2

(
M

n+ 1
2
,n+1

h +
τ

2
A
n+ 1

2
,n+ 1

2
,n+1

h

)
un+1 =

(
M

n+ 1
2
,n

h − τ

2
A
n+ 1

2
,n+ 1

2
,n

h

)
un + τ fn+ 1

2
,n+ 1

2 .

The CN-IFE Algorithm 2 is a natural extension of the classic Crank-Nicolson Algorithm
for treating the moving interface. However, the matrices in this algorithm are defined by
function values at different time levels.

CN-IFE Algorithm 3

Note that IFE functions are made to preserve the continuity of flux on the interface. There-
fore we may average the flux instead of the gradient of u in (6.27) to have

∑

T∈Th

∫

T

v(X)
u(tn+1, X)− u(tn, X)

τ
dX +

∑

T∈Th

∫

T

∇v(X) ·
(β(tn+1, X)∇u(tn+1, X) + β(tn, X)∇u(tn, X)

2

)
dX

≈
∫

Ω

v(X)f(tn+ 1
2
, X)dX, ∀v ∈ H1

0 (Ω).
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Then, we can further discretize the spatial variables in a similar way to obtain another fully
discrete scheme: Find un+1

h ∈ Sh,tn+1 such that

∑

T∈Th

∫

T

vh(X)
un+1
h (X)− unh(X)

τ
dX +

∑

T∈Th

∫

T

∇vh(X) ·
(β(tn+1, X)∇un+1

h (X) + β(tn, X)∇unh(X)

2

)
dX

=

∫

Ω

vh(X)f(tn+ 1
2
, X)dX, ∀vh ∈ S̊h,tn+1/2

.

Writing the above equation in a matrix form, we have our third algorithm:

• CN-IFE Algorithm 3

(
M

n+ 1
2
,n+1

h +
τ

2
A
n+1,n+ 1

2
,n+1

h

)
un+1 =

(
M

n+ 1
2
,n

h − τ

2
A
n,n+ 1

2
,n

h

)
un + τ fn+ 1

2
,n+ 1

2 .

In the derivation of CN-IFE Algorithm 3, we have used the average of the flux β∇u rather
than the gradient of u in the discretization. In this configuration, the flux continuity is
retained at each time level, which is consistent with the main idea of using IFEs. However,
this algorithm is different from the classic Crank-Nicolson scheme since it replaces the ex-
act coefficient βn+ 1

2 by βn and βn+1 at different time levels. We note that this coefficient
replacement seems to cause the CN-IFE Algorithm 3 to be conditionally stable, i.e., this
algorithm has to use a small time step in order to produce convergent numerical solutions
especially when the diffusion coefficient has a large discontinuity.

6.4 Implementation for Moving Interfaces

In this section, we discuss some implementation issues for the CN-IFE and IFE-MoL schemes
for solving parabolic moving interface problems.

At every time t, the process of assembling global matrices from local matrices follows the
standard procedure for traditional FE computations. A standard FE matrix assembler can
be employed to form local matrices over all non-interface elements; hence, our focus here is
the process of generating local matrices on interface elements.

Local Matrices for CN-IFE-A1 and IFE-MoL

The implementations of CN-IFE Algorithm 1 and IFE-MoL are much simpler than that
of CN-IFE Algorithms 2 and 3 because all test functions, trial functions and coefficient
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functions are evaluated on the same time level t = tn+ 1
2
.

Assembling local mass and stiffness matrices M(t) and A(t) follows the same procedure as
those for the IFE methods for time independent interface problems. The only difference is
to update the interface location for a given value of t.

For the matrix K(t) in (6.13), we note that each of its entries involves the inner product of
an IFE basis function and its time derivative function, i.e.,

kij(t) =

∫

Ω

φti(X)

(
∂

∂t
φtj(X)

)
dX.

Hence, constructing kij(t) needs the time derivative ∂
∂t
φtj of the IFE basis function φtj. As

usual, we only need to derive the time derivative of the local nodal IFE basis functions on
interface elements.

Without loss of generality, and in order to simplify the notations, we focus on the derivation
of time derivatives of local linear IFE nodal basis functions φti,T , i = 1, 2, 3, on the following
triangular interface element with vertices

A1 = (x1, y1) = (0, 0), A2 = (x2, y2) = (h, 0), A3 = (x3, y3) = (0, h).

Assume the intersection points D(t) = (xD(t), yD(t)) and E(t) = (xE(t), yE(t)) are on A1A2,
and A2A3, respectively, as illustrated in Figure 6.3. We can write coordinates of D(t) and
E(t) in terms of time dependent ratios d(t), and e(t) as follows,

xD(t) = x1 + d(t)(x3 − x1), yD(t) = y1 + d(t)(y3 − y1), (6.28)

xE(t) = x1 + e(t)(x2 − x1), yE(t) = y1 + e(t)(y2 − y1), (6.29)

where 0 ≤ d(t) ≤ 1, 0 ≤ e(t) ≤ 1.

A linear IFE function on an interface element such as the one in Figure 6.3 can be written
in the following form [42, 96],

φtT (x, y) =

{
φt−T (x, y) = v1ψ1,T + c2(t)ψ2,T + c3(t)ψ3,T , if (x, y) ∈ T−(t),

φt+T (x, y) = c1(t)ψ1,T + v2ψ2,T + v3ψ3,T , if (x, y) ∈ T+(t).
(6.30)

Here ψi,T , i = 1, 2, 3 are standard linear FE nodal basis functions on T such that

ψi,T (Aj) = δij, 1 ≤ i, j ≤ 3.

In (6.30), v1, v2, and v3 are nodal values of the IFE function φtT (x, y) at vertices A1, A2, and
A3, respectively. The time dependent coefficients c1(t), c2(t), and c3(t) are determined by
imposing the interface jump conditions (6.5) and (6.6) on φtT (x, y) [95, 96], i.e.,

φt+T (xD, yD) = φt−T (xD, yD), φt+T (xE, yE) = φt−T (xE, yE), (6.31)
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Figure 6.3: A sketch of the interface configuration in a triangle at time t.

Γ(t)

T−(t)

T+(t)

A1 A2

A3

D(t)

E(t)

nΓ(t,xD ,yD)

tA1A3

β+∇φt+T (x, y) · nDE = β−∇φt−T (x, y) · nDE. (6.32)

It has been shown [96], for each fixed t, the coefficients c1(t), c2(t), and c3(t) are uniquely
determined by the nodal values vi, i = 1, 2, 3.

Local linear IFE basis functions φti,T , i = 1, 2, 3, can be obtained by imposing the interface
jump conditions (6.31) and (6.32) to (6.30). This leads to the following linear system for
coefficients c1(t), c2(t), c3(t):




1− d 0 −d
1− e −e 0

β+(d+ e) β−d β−e






c1

c2

c3


 =




1− d 0 −d
1− e −e 0

β−(d+ e) β+d β+e






v1

v2

v3


 , (6.33)

where d = d(t), and e = e(t). Using (6.30) for the nodal IFE basis function φti,T , we can
calculate their time derivative as follows

∂

∂t
φti,T (x, y) =

{
∂
∂t
φt−i,T (x, y) = c′2(t)ψ2,T + c′3(t)ψ3,T , if (x, y) ∈ T−(t),

∂
∂t
φt+i,T (x, y) = c′1(t)ψ1,T , if (x, y) ∈ T+(t).

(6.34)

Moreover, derivatives c′i(t), i = 1, 2, 3, can be calculated from the following linear system
obtained by taking the derivative on both sides of (6.33),



1− d 0 −d
1− e −e 0

β+(d+ e) β−d β−e






c′1
c′2
c′3




=




−d′ 0 −d′
−e′ −e′ 0

β−(d′ + e′) β+d′ β+e′






v1

v2

v3


−




−d′ 0 −d′
−e′ −e′ 0

β+(d′ + e′) β−d′ β−e′






c1

c2

c3


 . (6.35)
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Note that the coefficient matrix of c′i(t), i = 1, 2, 3, in (6.35) is the same as the one of ci(t),
i = 1, 2, 3, in (6.33). Hence, the unisolvent property for IFE nodal basis [96] guarantees that
c′i(t), i = 1, 2, 3 can be uniquely determined as long as d′(t) and e′(t) exist.

The remaining task is to find d′(t) and e′(t). Let us assume that the moving interface Γ(t)
is described by the equation Γ(t, x, y) = 0. Hence, we have

Γ(t, xD(t), yD(t)) = 0, Γ(t, xE(t), yE(t)) = 0. (6.36)

Taking the derivative with respect to t on both sides of these equations leads to equations
about d′(t) and e′(t). By direct calculations, we obtain

d′(t) =
−Γt(t, xD, yD)

Γx(t, xD, yD)(x3 − x1) + Γy(t, xD, yD)(y3 − y1)
, (6.37)

e′(t) =
−Γt(t, xE, yE)

Γx(t, xE, yE)(x2 − x1) + Γy(t, xE, yE)(y2 − y1)
. (6.38)

The procedures developed in this section can be easily extended to assembling matrices for
the IFE-MoL with other IFE functions.

Local Matrices for CN-IFE-A2 and CN-IFE-A3

The implementation for CN-IFE Algorithms 2 and 3 is more complicated than that of CN-
IFE Algorithm 1 because test functions, trial functions and coefficient functions in the ma-
trices of these algorithms are not evaluated at the same time level. Essentially, we need a
local matrix assembler that can handle multiple interface curves within one element and all
the possible configurations of interface locations have to be considered. We note that all the
matrices are defined according to bilinear forms integrating the product of a test function
and a trial function, and a coefficient function. For the CN-IFE Algorithm 2, the coefficient
functions and test functions are evaluated at the same time tn+ 1

2
, but the trial functions are

evaluated at different time tn or tn+1. For the CN-IFE Algorithm 3, the coefficient functions
and trial functions are evaluated at the same time tn or tn+1 while the test functions are
evaluated at a different time tn+ 1

2
. Hence, for CN-IFE Algorithm 2 and 3, each interface

element can contain up to two interfaces.

Note that the interface curve Γ(t) restricted in an interface element is approximated by a line
segment DE. If an element T contains only one interface linear segment, then the related
computations for generating a local matrix should be carried out through two sub-elements
of T . If T contains two interfaces at two consecutive time levels, then T is partitioned into
4 or 3 sub-elements by the interface line segments depending on whether these two line
segments intersect within or outside T , see illustrations in Figure 6.4 through Figure 6.9.
Accordingly, the computations for assembling a local matrix should be carried out over all
of these sub-elements.



Xu Zhang Chapter 6. Moving Interface Problems 143

Figure 6.4: Cases of interface triangle cut by two interface line segments that intersect inside
the triangle.

Figure 6.5: Cases of interface triangle cut by two interface line segments that intersect outside
the triangle.

Figure 6.6: Cases of Type I interface rectangle cut by two interface line segments that
intersect inside the rectangle.

Figure 6.7: Cases of Type I interface rectangle cut by two interface line segments that
intersect outside the rectangle.

6.5 Numerical Experiments

In this section, we present numerical examples to demonstrate features of the IFE-MoL and
CN-IFE algorithms for solving the parabolic moving interface problem.
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Figure 6.8: Cases of Type II interface rectangle cut by two interface line segments that
intersect inside the rectangle.

Figure 6.9: Cases of Type II reference rectangle cut by two interface line segments that
intersect outside the rectangle.

The solution domain is Ω × [0, 1], where Ω = (−1, 1) × (−1, 1) and the interface Γ(t) is a
moving circle centered at origin with a radius r(t) that separates Ω into two sub-domains
Ω−(t) = {(x, y) ∈ Ω : x2 + y2 < r(t)2} and Ω+(t) = {(x, y) ∈ Ω : x2 + y2 > r(t)2}. The
exact solution is chosen as:

u(t, x, y) =

{
1
β−

(x2 + y2)
5/2

cos(t), (x, y) ∈ Ω−(t),
1
β+ (x2 + y2)

5/2
cos(t) +

(
1
β−
− 1

β+

)
r(t)5 cos(t), (x, y) ∈ Ω+(t).

(6.39)

We use triangular Cartesian meshes Th which are formed by partitioning Ω with Ns × Ns

rectangles of size h = 2/Ns and then cutting each rectangle into two triangles alone one of
its diagonal line, see right plot in Figure 6.2 for an illustration. For the discretization in the
time variable, we denote its step size by τ and define tn = nτ , with n = 1, 2, · · · , Nt such
that Ntτ = 1.

Example 6.1. (Second Order ODE Solvers) In this example, we test some ODE solvers
which are O(τ 2) accuracy. Since the linear IFE approximation have O(h2) and O(h) accura-
cies in L2 norm and in H1 norm, respectively [95], then we expect the related IFE-MoL using
this kind of ODE solve to have an overall O(h2) accuracy in L2 norm and O(h) accuracy in
H1 norm if we choose τ = h.

We assume the radius of the interface circle is governed by the function r(t) = r0

(
sin(t)+3

4

)

with r0 = π
6.28

in Examples 6.1 and 6.2. The following second order DIRK scheme [7] is used
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to solve the ODE system in the IFE-MoL:

γ γ 0
1 γ 1− γ

γ 1− γ
(6.40)

where γ = 2−
√

2
2

. Numerical experiments are carried out for both a small coefficient jump,
(β−, β+) = (1, 2) and a large coefficient jump (β−, β+) = (1, 100), and in both cases, we
choose τ = h. Errors in numerical solutions generated by the IFE-MoL are computed at
the final time level t = 1 in both L2 and semi-H1 norms and they are presented in Table
6.1. Applying linear regression on these data we can see that the IFE solutions obey the
following error estimates:

• DIRK2 (Small Jump)

‖unh − u(tn, ·)‖0,Ω ≈ 0.9686h1.9963, |unh − u(tn, ·)|1,Ω ≈ 2.9195h0.9994,

• DIRK2 (Large Jump)

‖unh − u(tn, ·)‖0,Ω ≈ 0.0412h1.8696, |unh − u(tn, ·)|1,Ω ≈ 0.1219h0.9109,

which correlate well with the expected error bound:

‖unh − u(tn, ·)‖k,Ω ≤ C(h2−k + τ 2), k = 0, 1.

Table 6.1: Errors of linear IFE solutions with β− = 1 using DIRK2 at time t = 1.

β+ = 2 β+ = 100
h τ ‖ · ‖0,Ω | · |1,Ω ‖ · ‖0,Ω | · |1,Ω

1/16 1/16 3.8203E-2 1.8269E-1 2.4420E-4 9.6691E-3
1/32 1/32 9.5852E-4 9.1447E-2 6.0966E-5 5.2348E-3
1/64 1/64 2.4018E-4 4.5738E-2 1.6860E-5 2.7664E-3
1/128 1/128 6.0174E-5 2.2873E-2 4.4807E-6 1.4708E-3
1/256 1/256 1.5081E-5 1.1438E-2 1.3824E-6 7.7637E-4

Example 6.2. (Higher Order ODE Solvers) One of the motivations to use a MoL for
solving time dependent PDEs is the easy employment of higher order schemes for solving the
related ODE system. In this example, we present numerical results generated by a represen-
tative fourth order single step method and and a fourth order multi-step method.
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For the single step method, we use the following fourth order DIRK scheme [64]:
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(6.41)

For the multi-step method, we use the following fourth order BDF scheme [7]:

un+1 =
1

25

(
48un − 36un−1 + 16un−2 − 3un−3 + 12τFn+1

)
.

Table 6.2: Errors of linear IFE solutions with β− = 1, β+ = 2 using 4th order schemes at
time t = 1.

DIRK4 BDF4
h τ ‖ · ‖0,Ω | · |1,Ω ‖ · ‖0,Ω | · |1,Ω

1/8 1/8 1.5087E-2 3.6392E-1 1.5143E-2 3.6392E-1
1/32 1/16 9.3618E-4 9.1447E-2 9.5054E-4 9.1447E-2
1/128 1/32 5.6341E-5 2.2873E-2 5.9474E-5 2.2872E-2
1/512 1/64 3.1699E-6 5.7210E-3 3.7318E-6 5.7209E-3

Exact initial values ui = (u(ti, Xj)), i = 0, 1, 2, 3, Xj ∈ N 0
h are used to start the time iteration

by the BDF scheme. Errors of IFE solutions generated by both schemes at the final time
level t = 1 are listed in Table 6.2. Since both schemes are fourth order accurate in time
steps, we expect the errors to obey

‖unh − u(tn, ·)‖k,Ω ≤ C(h2−k + τ 4), k = 0, 1.

Therefore, to observe the convergence rate in term of h, we use h = 8τ 2 to make h2 propor-
tional to τ 4 for the chosen mesh sizes. By linear regression we can see that the data in Table
6.2 have the following estimates:

• DIRK4

‖unh − u(tn, ·)‖0,Ω ≈ 1.0627h2.0352, |unh − u(tn, ·)|1,Ω ≈ 2.9072h0.9987,

• BDF4

‖unh − u(tn, ·)‖0,Ω ≈ 0.9653h1.9979, |unh − u(tn, ·)|1,Ω ≈ 2.9073h0.9987.
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The linear regression of the errors demonstrates the optimal rates of convergence in both L2

and semi H1 norms for the IFE-MoL combined with these higher order ODE solvers.

Example 6.3. (Adaptive ODE Solver) An advantage to use a MoL is the availability of
reliable and efficient adaptive ODE solvers that can automatically adjust the time step size
according to the rate of change of the exact solution with respect to t so that the local error
can be maintained within a prescribed amount. This adaptivity is particular desirable when
one needs to solve a moving interface problem in which the interface changes with respect to
the time in a complicated way. In this example, we combine the linear IFE approximation
with an adaptive ODE solver to test the performance of the IFE-MoL.

We consider the moving interface problem described at the beginning of this section in which
a moving circular interface has the radius governed by

r(t) =
1

400
exp
( 1

5(0.6− t)2 + 0.25

)
+

1

300
exp
( 1

(1.1− t)2 + 0.19

)
+ 0.25.

It is easy to see that this interface changes with respect to t at a varying rate, as illustrated
in the left plot in Figure 6.10. The adaptive ODE solver used in our numerical experiments
for this problem is the popular embedded DIRK45 scheme [64] described by the following
Butcher diagram:
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(6.42)

When we use this DIRK45 scheme to solve the ODE system in the IFE-MoL for this moving
interface problem, we set its local tolerance as tol = h2, and choose the maximum time step
size τmax = 5h. The initial step size is set as τ0 = h.

The right plot in Figure 6.10 displays a set of time step sizes automatically determined by
the IFE-MoL combined with the adaptive DIRK45 ODE solver in a computation for solving
this moving interface problem. Comparing this plot with the curve of |α′(t)| on the left, we
can see that this adaptive IFE-MoL can handle the change in the interface with respect to
time very well. The method uses relatively larger time step sizes for t < 0.3 where |α′(t)|
is small, i.e., the interface location α(t) changes slowly. The time step sizes used by this
method decrease in 0.3 < t < 0.55 since the interface change more rapidly within this time
interval. The curve of the time step sizes has two peaks around t = 0.6 and t = 0.75 where
the interface changes at smaller rates; hence larger time steps are allowed. The step sizes
become smaller and smaller after t > 0.8 due to a faster change of the interface location.
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All these observations agree well with our expectation according to the behavior of interface
movement.

Figure 6.10: The left plot shows how the radius r(t) of the interface circle Γ(t) changes;
the right plot is for the time step sizes used by the IFE-MoL combined with the adaptive
DIRK45 ODE solver.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

Time

A
b

so
lu

te
 v

al
u

e 
o

f 
r’

(t
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.002

0.004

0.006

0.008

0.01

0.012

Time

T
im

e 
st

ep
 s

iz
e 

τ

Table 6.3: Errors of linear IFE adaptive DIRK45 solutions with β− = 0.5, β+ = 2 at time
t = 1.

h N ‖ · ‖0,Ω | · |1,Ω
1/8 14 1.7976E-2 4.2420E-1
1/16 49 4.4131E-3 2.1544E-1
1/32 182 1.1625E-3 1.0981E-1
1/64 667 2.9050E-4 5.5990E-2
1/128 2369 7.6317E-5 2.8762E-2

Moreover, the adaptive IFE-MoL can produce accurate solutions to moving interface prob-
lems by automatic adjustment of time step size according a prescribed error tolerance. To
see this, we present some of our numerical numerical results in Table 6.3 in which errors of
IFE solutions at the final time t = 1 in both L2 norm and semi-H1 norm are listed. The
number N in this table denotes the total number of iterations used in each computation. By
linear regression we can see that these errors obey

• Adaptive DIRK45

‖unh − u(tn, ·)‖0,Ω ≈ 1.0592h1.9685, |unh − u(tn, ·)|1,Ω ≈ 3.1846h0.9709,
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which suggest the optimal convergence of the IFE-MoL.

Then, we compare the IFE solution generated by the IFE-MoL combined with the adaptive
DIRK45 ODE solver on a Cartesian mesh of h = 1/64 with other IFE solutions produced
by methods with a fixed time step size. In the computation to generate this IFE solution,
the DIRK45 ODE solver automatically carries out 667 iterations in time. Then, we generate
two additional IFE solutions by the IFE-MoL combined with the ODE solver DIRK4 and
the CN-IFE Algorithm 1 on the same mesh, respectively, and we use 667 equally spaced
time steps in both of these two methods. The L∞ norm errors in these three IFE solutions
are compared in Figure 6.11, from which we can that the adaptive IFE-MoL has a better
control on the error in its solution while errors in those IFE solutions based a uniform time
step size grow faster along with the time. These numerical results indicate that the adaptive
IFE-MoL can produce more reliable numerical solution than methods with a fixed time step
size.

Figure 6.11: The left plot contains curves of L∞ norm error for three IFE solutions generated
on the same mesh with h = 1/64. The right plot is the enlarged part for time between 0.8
to 1.
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In the next few examples, we test the numerical performance for CN-IFE fully discrete

schemes. Again, we assume the radius change is governed by r(t) = r0

(
sin(t)+3

4

)
with

r0 = π
6.28

which are the same as we have used in Examples 6.1 and 6.2.

Example 6.4. (CN-IFE Small Jump) In this example we test the numerical performance
of three CN-IFE fully discrete schemes for a small coefficient discontinuity β− = 1, β+ = 2.

We test these CN-IFE algorithms with τ = h and τ = 1
8
h. Errors at the final time level

in the L2 and semi-H1 norms are listed in Table 6.4 and Table 6.5, respectively. Linear
regression for these data yield the following estimates:
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• CN-IFE Algorithms with β− = 1, β+ = 2, τ = h, n = Nt:

A1 : ‖unh − u(tn, ·)‖0,Ω ≈ 1.0144h1.9980, |unh − u(tn, ·)|1,Ω ≈ 2.8972h0.9969.

A2 : ‖unh − u(tn, ·)‖0,Ω ≈ 1.0071h1.9966, |unh − u(tn, ·)|1,Ω ≈ 2.9097h0.9985.

A3 : ‖unh − u(tn, ·)‖0,Ω ≈ 0.5248h1.7634, |unh − u(tn, ·)|1,Ω ≈ 1.5298h0.7686.

• CN-IFE Algorithms with β− = 1, β+ = 2, τ = 1
8
h, n = Nt:

A1 : ‖unh − u(tn, ·)‖0,Ω ≈ 1.0287h1.9983, |unh − u(tn, ·)|1,Ω ≈ 2.9105h0.9986.

A2 : ‖unh − u(tn, ·)‖0,Ω ≈ 1.0287h1.9983, |unh − u(tn, ·)|1,Ω ≈ 2.9105h0.9986.

A3 : ‖unh − u(tn, ·)‖0,Ω ≈ 1.0174h1.9944, |unh − u(tn, ·)|1,Ω ≈ 2.8623h0.9928.

Table 6.4: Errors of linear CN-IFE solutions with β− = 1, β+ = 2 and τ = h at time t = 1.

CN-IFE A1 CN-IFE A2 CN-IFE A3
h ‖ · ‖0,Ω | · |1,Ω ‖ · ‖0,Ω | · |1,Ω ‖ · ‖0,Ω | · |1,Ω

1/10 1.020E-2 2.918E-1 1.012E-2 2.918E-1 1.021E-2 2.932E-1
1/20 2.551E-3 1.463E-1 2.550E-3 1.462E-1 2.611E-3 1.501E-1
1/30 1.134E-3 9.759E-2 1.133E-3 9.755E-2 1.247E-3 1.061E-1
1/40 6.380E-4 7.323E-2 6.377E-4 7.318E-2 6.950E-4 8.087E-2
1/50 4.087E-4 5.861E-2 4.084E-4 5.855E-2 5.069E-4 7.150E-2
1/60 2.840E-4 4.889E-2 2.837E-4 4.880E-2 3.419E-4 5.928E-2
1/70 2.087E-4 4.193E-2 2.084E-4 4.183E-2 2.925E-4 5.884E-2
1/80 1.599E-4 3.670E-2 1.596E-4 3.661E-2 2.336E-4 5.346E-2
1/90 1.264E-4 3.264E-2 1.261E-4 3.254E-2 2.070E-4 5.192E-2
1/100 1.025E-4 2.942E-2 1.022E-4 2.930E-2 1.764E-4 5.030E-2

From Table 6.4 and Table 6.5 and their linear regression results, we can see that both CN-
IFE errors in Algorithms 1 and 2 seem to have optimal orders with either large or small time
steps. As we expected, CN-IFE Algorithm 3 have some difficulties when a large time step τ
is used. Data in Table 6.4 suggest that numerical solutions generated by CN-IFE Algorithm
3 with τ = h converge to the exact solution, but not in an optimal rate. However, when
we shrink the time step size from τ = h to τ = 1

8
h, the optimal convergence for CN-IFE

Algorithm 3 can be recovered.

Example 6.5. (CN-IFE Large Jump) In this example we test the numerical performance
of three CN-IFE fully discretization schemes for a large coefficient jump β− = 1, β+ = 100.

We choose τ = 1
8
h in our numerical experiments, and the related errors of numerical solutions

at the final time level in the L2 and semi-H1 norms are listed in Table 6.6. Linear regression
of these errors yields
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Table 6.5: Errors of linear CN-IFE solutions with β− = 1, β+ = 2 and τ = 1
8
h at time t = 1.

CN-IFE A1 CN-IFE A2 CN-IFE A3
h ‖ · ‖0,Ω | · |1,Ω ‖ · ‖0,Ω | · |1,Ω ‖ · ‖0,Ω | · |1,Ω

1/10 1.032E-2 2.917E-1 1.032E-2 2.917E-1 1.032E-2 2.917E-1
1/20 2.588E-3 1.462E-1 2.588E-3 1.462E-1 2.587E-3 1.463E-1
1/30 1.150E-3 9.754E-2 1.150E-3 9.754E-2 1.150E-3 9.766E-2
1/40 6.473E-4 7.317E-2 6.473E-4 7.317E-2 6.503E-4 7.347E-2
1/50 4.144E-4 5.854E-2 4.144E-4 5.854E-2 4.154E-4 5.866E-2
1/60 2.878E-4 4.879E-2 2.878E-4 4.879E-2 2.880E-4 4.900E-2
1/70 2.115E-4 4.182E-2 2.115E-4 4.182E-2 2.131E-4 4.219E-2
1/80 1.619E-4 3.659E-2 1.619E-4 3.659E-2 1.627E-4 3.688E-2
1/90 1.280E-4 3.253E-2 1.280E-4 3.253E-2 1.286E-4 3.278E-2
1/100 1.037E-4 2.928E-2 1.037E-4 2.928E-2 1.049E-4 2.983E-2

• CN-IFE Algorithms with β− = 1, β+ = 100, τ = 1
8
h, n = Nt:

A1 : ‖unh − u(tn, ·)‖0,Ω ≈ 0.0506h1.9256, |unh − u(tn, ·)|1,Ω ≈ 0.1196h0.9064.

A2 : ‖unh − u(tn, ·)‖0,Ω ≈ 0.0507h1.9266, |unh − u(tn, ·)|1,Ω ≈ 0.1205h0.9090.

Data in this table indicate that numerical solutions generated by CN-IFE Algorithms 1 and
2 converge to the exact solution and the convergence rates are close to optimal. On the other
hand, numerical solutions generated by CN-IFE Algorithm 3 do not converge at all because
of its instability. This observation further suggests that CN-IFE Algorithm 3 cannot handle
large changes in the coefficient, either caused by a large jump or a large time step.

Our numerical experiments indicate that CN-IFE Algorithm 3 can still produce good nu-
merical results provided that the time step is small enough. As we shrink the time step size
τ further, the numerical solutions form CN-IFE Algorithm 3 converge and the corresponding
errors become comparable to those generated by Algorithms 1 and 2. Corresponding data
can be found in Table 6.7.

Example 6.6. (CN-IFE Algorithm 1*) In this example, we consider a variant of CN-IFE
Algorithm 1 by omitting those terms involving K and we call it CN-IFE Algorithm 1∗:
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CN-IFE Algorithm 1∗ is simpler than CN-IFE Algorithm 1. More importantly, at each time
level, the matrix in the linear system is symmetric positive definite.

Errors from the numerical solutions generated by CN-IFE Algorithm 1∗ are listed in Table
6.8. By linear regression, we have
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Table 6.6: Errors of linear CN-IFE solution with β− = 1, β+ = 100 and τ = 1
8
h at time

t = 1.

CN-IFE A1 CN-IFE A2 CN-IFE A3
h ‖ · ‖0,Ω | · |1,Ω ‖ · ‖0,Ω | · |1,Ω ‖ · ‖0,Ω | · |1,Ω

1/10 5.759E-4 1.448E-2 5.760E-4 1.449E-2 1.073E-2 4.894E-1
1/20 1.665E-4 8.055E-3 1.666E-4 8.055E-3 6.278E-1 5.292E+1
1/30 7.284E-5 5.564E-3 7.285E-5 5.565E-3 2.143E+3 2.659E+5
1/40 4.072E-5 4.271E-3 4.070E-5 4.265E-3 4.880E+6 4.374E+8
1/50 2.718E-5 3.461E-3 2.715E-5 3.457E-3 5.936E+7 1.246E+10
1/60 1.962E-5 2.914E-3 1.959E-5 2.902E-3 5.991E+10 1.432E+13
1/70 1.455E-5 2.530E-3 1.453E-5 2.519E-3 9.439E+10 1.639E+13
1/80 1.084E-5 2.247E-3 1.083E-5 2.244E-3 2.100E+17 6.150E+19
1/90 8.462E-6 2.027E-3 8.450E-6 2.019E-3 1.216E+17 3.926E+19
1/100 7.004E-6 1.815E-3 6.991E-6 1.803E-3 1.287E+25 4.480E+27

Table 6.7: Errors of linear IFE solutions in CN-IFE Algorithm 3 with β− = 1 and β+ = 100
at time t = 1.

τ = h/16 τ = h/64 τ = h/256
h ‖ · ‖0,Ω | · |1,Ω ‖ · ‖0,Ω | · |1,Ω ‖ · ‖0,Ω | · |1,Ω

1/10 6.263E-4 1.670E-2 5.768E-4 1.448E-2 5.760E-4 1.448E-2
1/20 1.146E-3 9.479E-2 1.723E-4 8.097E-3 1.674E-4 8.041E-3
1/30 1.140E-3 1.415E-1 1.606E-4 6.314E-3 8.201E-5 5.557E-3
1/40 6.639E-2 1.156E+1 9.318E-5 5.772E-3 4.377E-5 4.259E-3

• CN-IFE A1 * with β− = 1, β+ = 2, τ = h, n = Nt:

‖unh − u(tn, ·)‖0,Ω ≈ 1.0135h1.9977, |unh − u(tn, ·)|1,Ω ≈ 2.8972h0.9969.

• CN-IFE A1* with β− = 1, β+ = 2, τ = 1
8
h, n = Nt:

‖unh − u(tn, ·)‖0,Ω ≈ 1.0291h1.9983, |unh − u(tn, ·)|1,Ω ≈ 2.9105h0.9986.

• CN-IFE A1* with β− = 1, β+ = 100, τ = 1
8
h, n = Nt:

‖unh − u(tn, ·)‖0,Ω ≈ 0.0504h1.9255, |unh − u(tn, ·)|1,Ω ≈ 0.1196h0.9064.

Comparing the data in Table 6.8 with the corresponding data of CN-IFE A1 in Tables 6.4
through 6.6, we note that the numerical performance of CN-IFE Algorithm 1∗ is not much
different from the original CN-IFE Algorithm 1. It is an interesting research topic in the
future to analyze more carefully about the importance of the matrix K.
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Table 6.8: Errors of linear IFE solution using CN-IFE-A1∗ with β− = 1 and τ = h at time
t = 1.

β+ = 2, τ = h β+ = 2, τ = 1
8
h β+ = 100, τ = 1

8
h

Ns ‖ · ‖0,Ω | · |1,Ω ‖ · ‖0,Ω | · |1,Ω ‖ · ‖0,Ω | · |1,Ω
20 1.020E-2 2.918E-1 1.032E-2 2.917E-1 5.741E-4 1.448E-2
40 2.551E-3 1.463E-1 2.588E-3 1.462E-1 1.661E-4 8.055E-3
60 1.134E-3 9.759E-2 1.151E-3 9.754E-2 7.260E-5 5.564E-3
80 6.381E-4 7.323E-2 6.473E-4 7.317E-2 4.054E-5 4.271E-3
100 4.088E-4 5.861E-2 4.145E-4 5.854E-2 2.704E-5 3.461E-3
120 2.841E-4 4.889E-2 2.879E-4 4.879E-2 1.953E-5 2.914E-3
140 2.088E-4 4.193E-2 2.115E-4 4.182E-2 1.451E-5 2.530E-3
160 1.600E-4 3.670E-2 1.619E-4 3.659E-2 1.081E-5 2.247E-3
180 1.264E-4 3.264E-2 1.280E-4 3.253E-2 8.444E-6 2.027E-3
200 1.026E-4 2.942E-2 1.037E-4 2.928E-2 6.985E-6 1.815E-3



Chapter 7

Future Work

In this chapter, we list a few research topics beyond this dissertation. The future work
regarding IFEs contains both developing new algorithms and error analysis.

IFE Methods for Fluid Flow Models

Fundamental equations such as incompressible Stokes and Navier-Stokes equations are used
to model multi-phase flow in fluid dynamics. Viscosity and density coefficients may have
discontinuity across the fluid interface. A variety of numerical methods have been developed
based on finite difference formulations for solving these fluid flow interface problems on
Cartesian meshes [91, 110, 120]. One of our future research topics is to develop new IFE
methods to solve these fluid flow interface problems. Using Galerkin methods [27, 37] with
nonconforming finite elements or mixed methods with appropriate stable finite element pairs
which satisfy “inf-sup” condition will be ideal choices to be combined with IFE schemes.

IFE methods for Free Boundary Problems

Free boundary problems, such as Stefan problems [34], are another important class of inter-
face problems. In many applications, the governing PDEs for the velocity are coupled with
differential equations used for the motion of the boundary. A frequently used technique is
to solve the governing PDEs with a “temporarily fixed” interface or boundary location to
update velocity field and then use the computed velocity to evolve the interface or boundary.
Currently, IFE methods can satisfactorily solve the moving interface PDEs if the interface is
assumed a priori [75, 101, 102]. Combining with suitable evolution techniques, such as front
tracking methods [58, 59, 81, 138], and level set methods [19, 116, 117, 131], it is possible to
efficiently solve true moving interface problems arise in physical applications.

154
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Error Analysis of IFE Methods

For elliptic interface problems, Galerkin IFE solutions using nonconforming rotated Q1 func-
tions with integral-value degrees of freedom are observed to have the optimal convergence.
This observation motivates us to carry out error analysis for this scheme in the near fu-
ture. Error analysis for elasticity interface problem will be another interesting future work.
Until now there are rarely any published results concerning error estimation of related IFE
methods for elasticity interface problems.

We have shown that IFE functions can be efficiently applied in the interior penalty DG
formulations to solve the second order elliptic interface problems [72, 109]. One of the
advantages of using DG formulations is the flexibility in performing h-, p- or hp- refinements.
Adaptation of mesh refinements usually requires a reliable local error indicator, and this error
indicator has to be computable. Due to this reason, it is desirable to have a posteriori error
estimate for IFE methods. We plan to work on this topic in the future.
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[13] Ivo Babuška and Jen M. Melenk. The partition of unity method. Internat. J. Numer.
Methods Engrg., 40(4):727–758, 1997.

[14] Ivo Babuška, Victor Nistor, and Nicolae Tarfulea. Generalized finite element method
for second-order elliptic operators with Dirichlet boundary conditions. J. Comput.
Appl. Math., 218(1):175–183, 2008.
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