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PIFE-PIC: PARALLEL IMMERSED FINITE ELEMENT

PARTICLE-IN-CELL FOR 3-D KINETIC SIMULATIONS OF

PLASMA-MATERIAL INTERACTIONS
⇤

DAORU HAN† , XIAOMING HE‡ , DAVID LUND† , AND XU ZHANG§

Abstract. This paper presents a recently developed particle simulation code package PIFE-PIC,
which is a novel three-dimensional (3-D) parallel immersed finite element (IFE) particle-in-cell (PIC)
simulation model for particle simulations of plasma-material interactions. This framework is based on
the recently developed nonhomogeneous electrostatic IFE-PIC algorithm, which is designed to handle
complex plasma-material interface conditions associated with irregular geometries using a Cartesian
mesh-based PIC. Three-dimensional domain decomposition is utilized for both the electrostatic field
solver with IFE and the particle operations in PIC to distribute the computation among multiple
processors. A simulation of the orbital motion-limited (OML) sheath of a dielectric sphere immersed
in a stationary plasma is carried out to validate parallel IFE-PIC and profile the parallel performance
of the code package. Furthermore, a large-scale simulation of plasma charging at a lunar crater
containing 2 million PIC cells (10 million FE/IFE cells) and about 1 billion particles, running for
20,000 PIC steps in about 154 wall-clock hours, is presented to demonstrate the high-performance
computing capability of PIFE-PIC.
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1. Introduction. Particle modeling of plasma dynamics has emerged as one of
the most appropriate algorithms for first-principle-based modeling of many plasma-
material interaction (PMI) problems. One of the fundamental phenomena in plasma-
material interactions is surface charging. When an object is immersed in a plasma,
its surface will collect charge from the plasma until it reaches an equilibrium sur-
face potential determined by the current balance condition. Many plasma-material
interaction problems involve multiple objects with complex geometries; therefore the
interface conditions between the plasma and object need to be accurately resolved.

Being one of the most popular kinetic methods for collisionless plasma simulations,
the particle-in-cell (PIC) method [11] models the charged particles as macroparticles
and tracks the motions of particles in the electrostatic/electromagnetic field. The
electric potential in a PIC simulation domain is governed by the second-order elliptic
partial di↵erential equations (PDEs) with discontinuous dielectric coe�cients and
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nonhomogeneous flux jumps across the material surface interface. Numerical methods
based on structured meshes, especially Cartesian meshes, are particularly desirable in
these simulations because they enable e�cient particle tracking and save computing
time in PMIs.

The immersed finite element (IFE) method is a finite element method (FEM)
for solving interface problems using interface-independent meshes such as Cartesian
meshes [22, 24, 58, 60, 71, 77]. The main idea of IFE is to adjust approximat-
ing functions locally to accommodate the physical interface conditions [12, 25, 41,
42, 57, 59, 78]. An IFE method can achieve optimal convergence on an interface-
independent mesh with the number and location of the degrees-of-freedom isomor-
phic to the standard FEM on the same mesh [28, 29, 46, 61, 87]. The first IFE
method was introduced by Li in [58] for solving one-dimensional (1-D) elliptic inter-
face problems with piecewise linear polynomials. Since then, the IFE method has
been extended to higher-order approximations [2, 12, 14, 26, 31], various discretiza-
tion techniques [1, 4, 21, 43, 44, 47, 64], higher-dimensional elliptic interface problems
[27, 30, 40, 63, 77], and other interface PDE models [3, 7, 48, 62, 85, 86].

Over the past decade, the IFE method has been successfully used together with
PIC in plasma particle simulations [5, 6, 16, 17, 18, 80]. Recently, a nonhomogeneous
IFE-PIC algorithm has been developed for particle simulations of PMIs with complex
geometries while maintaining the computational speed of the Cartesian mesh-based
PIC [15, 39, 45, 65, 66]. To the best of our knowledge, most existing IFE-PIC algo-
rithms are serial. The nonparallel algorithms have limitations in their capability to
handle large-scale particle simulations and their e�ciency in using multiple proces-
sors at the algorithm level. For a typical large-scale 3-D PIC simulation, millions to
billions of particles are tracked in the computation domain that contains millions of
elements. With the availability of multiprocessor computational facilities, the call for
parallel IFE-PIC algorithms is urgent.

The goal of this paper is to develop and test a new parallel IFE-PIC package for
particle simulations of electrostatic PMIs, namely, PIFE-PIC. We utilize a 3-D domain
decomposition technique for both field-solve and particle-push procedures of the PIC
model. The computations are distributed into multiple subdomains which can be han-
dled independently by multiple processors. The key is how to e�ciently exchange the
information between these subdomains. In this work, neighboring subdomains have
a small overlapping (“guard cells”) region which will be used as a common region
to interchange the PDE solutions and the particle data. Extensive numerical exper-
iments show that our PIFE-PIC scheme significantly outperforms the serial IFE-PIC
scheme. Although it maintains a similar accuracy as the serial IFE-PIC computa-
tional scheme, the high parallel performance dramatically reduces the computational
time for problems of practical interests. Hence, large-scale kinetic simulations of PMIs
can be carried out much more e�ciently.

The rest of this paper is organized as follows. In section 2, we describe the
details of 3-D domain decomposition for both IFE (field-solve) and PIC (particle-
push) procedures of PIFE-PIC. In section 3, we present a code validation using a
3-D sheath problem of a dielectric sphere immersed in a stationary plasma. Section
4 presents a parallel e�ciency test of the PIFE-PIC code for strong scaling. Section
5 presents an application of PIFE-PIC to simulations of lunar surface charging at a
crater. Finally, a summary and conclusion are given in section 6.

2. PIFE-PIC algorithms.

2.1. Overview of PIC and IFE-PIC. PIC is a widely-used kinetic parti-
cle simulation method for plasma dynamics [11, 50]. In PIC, charged particles of
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plasma species are represented by a number of simulation particles (also referred to
as macroparticles or superparticles) distributed “freely” in the entire computation
domain, while the field quantities such as electric potential are discretized on a mesh
(thus the name “particle-in-cell”). The kernel of PIC method is the “PIC loop” which
includes four essential steps: scatter, field-solve, gather, and particle-push (Figure
2.1). Within a PIC loop, quantities carried by the simulation particles are weighted
onto the mesh nodes (“scatter”) to form the right-hand side (RHS) term of the PDE
for the solution of the electrostatic/electromagnetic field (“field-solve”), which is in
turn interpolated at particle positions (“gather”) to update the velocity and position
of the particles (“particle-push”). Such data exchange between particles and field
quantities will iterate for a desired number of steps (or till a convergence criterion is
met) to obtain the self-consistent solution of both particles and fields.

For problems of PMIs, the mathematical model is an interface problem includ-
ing the electrostatic/electromagnetic field problem in a self-consistent solution to the
corresponding plasma dynamics problem (Figure 2.2(a)), together with the appropri-
ate interface conditions between the plasma region and the material region (Figure
2.2(b)). For electrostatic problems presented in this work, we consider the following
boundary value problem of the elliptic equation that governs the distribution of the
electric potential � [51]:

�r ·
�
"r�(X)

�
= ⇢(X), X = (x, y, z) 2 ⌦� [ ⌦+,(2.1)

�(X) = g(X), X 2 �D,(2.2)

@�(X)

@n�N

= p(X), X 2 �N .(2.3)

Fig. 2.1. Four essential steps in a PIC loop.

(a) Computation domain in-
cluding the interface

Medium 2

Medium 1

(b) Electric flux jump across the interface

Fig. 2.2. A sketch of the interface problem and interface condition.
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Here, ⌦ 2 R3 is assumed to be an open cuboidal domain, which is divided into two
subdomains ⌦+ and ⌦� by an interface surface � such that ⌦ = ⌦� [ ⌦+ [ �. The
boundary @⌦ consists of Dirichlet and Neumann portions, denoted by �D and �N ,
respectively, such that @⌦ = �D [ �N and �D \ �N = ;. The vector n�N is the unit
outward normal of �N . See the sketch in Figure 2.2(a). The functions ⇢, g, and p
are the source term, Dirichlet boundary function, and Neumann boundary function,
respectively. The electric field E = �r�(X) is discontinuous across the interface �
with the following jump conditions imposed:

[�(X)]� = 0,(2.4)

"
@�(X)

@n�

�

�

= q(X),(2.5)

where the jump [·]� is defined by [w(X)]� := w+(X)|� � w�(X)|�. The vector n�

is the unit normal of � pointing from ⌦� to ⌦+. The material-dependent coe�cient
"(X) is discontinuous across the interface. Without loss of generality, we assume it is
a piecewise constant function defined by

"(X) =

⇢
"�, X 2 ⌦�,
"+, X 2 ⌦+,

where min("+, "�) > 0.
In many applications of scientific and engineering interest, the shape of the in-

terface � is usually nontrivial. Traditionally, when solving field problems involving
complex-shaped objects, an unstructured body-fitting mesh is employed to improve
accuracy (Figure 2.3(a)). However, a structured mesh, such as Cartesian mesh (Fig-
ure 2.3(b)), is more advantageous in kinetic PIC modeling of plasma dynamics from
the perspective of computing speed and e�ciency, although, it has been limited to
problems with relatively simple geometries due to accuracy considerations inherited
from finite-di↵erence-based schemes. To solve this dilemma while taking into account
both accuracy and e�ciency, the IFE-PIC method was developed to handle complex

(a) Unstructured body-fitting FE mesh (b) Structured IFE mesh based on
Cartesian mesh

Fig. 2.3. Illustration of traditional body-fitting FE mesh and nonbody-fitting structured IFE mesh.
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Fig. 2.4. Flowchart of serial IFE-PIC.

interface conditions associated with irregular geometries while maintaining the com-
putational speed of the Cartesian mesh-based PIC. The detailed IFE formulation and
IFE-PIC steps are archived in [39], and the flowchart of the serial IFE-PIC algorithm
is shown in Figure 2.4. Over the past few years, the IFE-PIC method has matured to
successfully model plasma dynamics problems arising from many space applications,
such as ion thruster grid optics [13, 52, 54, 55], ion propulsion plume-induced contam-
ination [56, 79, 76], charging of lunar and asteroidal surfaces [20, 35, 36, 37, 38, 83],
and dust transport dynamics around small asteroids [84].

2.2. 3-D domain decomposition in PIFE-PIC. In our PIFE-PIC algorithm,
the 3-D computational domain is decomposed along each dimension using the message
passing interface (MPI) architecture (Figure 2.5). The domain is first decomposed
into cuboid blocks with the same PIC mesh resolution. Each subdomain is handled by
a processor for both field-solve and particle-push procedures of the PIC method. Two
overlapping PIC cells (“guard cells”) in each dimension are used in PIFE-PIC (Figure
2.6) taking advantage of the existing data structure of the serial IFE-PIC which has
one layer of “guard cells” for global particle boundary conditions. Therefore, the
boundaries of each subdomain are either on the global boundary or in the interior of
its neighboring subdomains. Local IFE mesh is then generated for each subdomain.
By virtue of the IFE formulation, PIC and IFE can use di↵erent mesh resolutions.
In PIFE-PIC, PIC mesh is globally uniform to better balance the loads of particles
among subdomains (processors). However, IFE mesh could be globally nonuniform
but still locally uniform within each subdomain. The data interaction between IFE
and PIC meshes of di↵erent resolutions is described in details in [56]. Figures 2.6
and 2.7 illustrate the 2-D and 3-D views of the domain decomposition and di↵erent
resolutions.

2.3. Parallel algorithm for IFE field solver. For the parallel electrostatic
field solver, Dirichlet-Dirichlet domain decomposition with overlapping cells is used
to distribute the subdomains among multiple MPI processes [8]. For each subdo-
main, the IFE solver is the same as the sequential IFE method with Dirichlet bound-
ary conditions [39, 53]. These Dirichlet boundary conditions are imposed at the
boundaries of the subdomain, which are interior for the neighboring subdomains
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Fig. 2.5. 3-D domain decomposition for PIC blocks. Overlapping cells are not displayed. In
this example, the global domain is decomposed into 2⇥3⇥4 subdomains. The blue-red color scale
indicates the MPI rank of each subdomain.

(a) Subdomains with two
overlapping PIC cells in
each dimension, globally
uniform PIC mesh.

(b) Subdomains with
two overlapping PIC
cells in each dimension,
globally uniform IFE
mesh.

(c) Subdomains with two
overlapping PIC cells in
each dimension, globally
nonuniform IFE mesh.

Fig. 2.6. 2-D projection showing the domain decomposition for PIC and IFE with overlapping
cells and di↵erent resolutions. The thick colored edges represent boundaries of each subdomain,
including one layer of guard cells in each dimension. Therefore, there are two overlapping layers of
PIC cells in each dimension.

(Figure 2.8, left). Therefore, the field solutions at respective neighboring subdomains
are used as Dirichlet boundary conditions for each subdomain. At each field-solve
step of PIC, domain decomposition method (DDM) iterations among subdomains are
performed such that the solutions of the overlapping cells are exchanged and updated
as the new Dirichlet boundary conditions for the respective neighboring subdomains.
We denote this level of iteration as the DDM iteration. The relative error erel of DDM
is defined with the L2 norm as below:
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(a) A globally uniform IFE mesh. (b) A globally nonuniform IFE mesh.

Fig. 2.7. 3-D view of globally uniform and nonuniform IFE meshes. The IFE mesh for each
subdomain is uniform (locally) but could be nonuniform for di↵erent subdomains (globally).

erel =
k�new � �oldkL2

k�oldkL2

,(2.6)

where �new and �old denote solutions at the new and old steps in the DDM iteration,
respectively. Within the field-solve part at each PIC step, DDM iterations are carried
out till the relative error reaches a preset tolerance or reaches the preset maximum
number of DDM iterations. It is noted here that since PIFE-PIC uses domain decom-
position in all 3 dimensions, which means there will be surfaces (side by side), edges
(2-D diagonal), and vertices (3-D diagonal) shared by two neighboring subdomains,
such MPI data exchange will be carried out at guard cell nodes on “surfaces” (+/�
neighbor in one direction, such as Rank 1 and Rank 2 in Figure 2.8), “edges” (+/�
neighbor in two directions, such as Rank 3 and Rank 6 in Figure 2.8), and “vertices”
(+/� neighbor in three directions).

2.4. Parallel scheme for PIC procedures. In PIFE-PIC, simulation particles
belonging to the same subdomain are stored together on the processor that solves the
electrostatic field of the same subdomain (Figure 2.8, right). In this sense, “particle
quantities” and “field quantities” of each subdomain are handled by the same proces-
sor. Each processor (MPI rank) handles its own particles belonging to its domain
without guard cells (see Figure 2.5). In particle-push, particles crossing the inner
boundaries are sent to the corresponding rank based on their destination positions.
Note that such particle motion includes similar cases as data exchange for field-solve,
which are “crossing one surface” (+/� neighbor in one direction, such as Rank 1
and Rank 2 in Figure 2.8), “crossing an edge (two surfaces)” (+/� neighbor in two
directions, such as Rank 3 and Rank 6 in Figure 2.8), and “crossing a vertex (three
surfaces)” (+/� neighbor in three directions).

2.5. Flowchart for PIFE-PIC. Figure 2.9 shows the flowchart of PIFE-PIC.
The steps in red are major steps involving MPI operations associated with domain
decomposition. In total, there are three levels of iteration in PIFE-PIC. The first
level is the matrix-solving iteration which uses the preconditioned conjugate gradi-
ent (PCG) algorithm (PCG level). The second one checks the relative error in the
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Fig. 2.8. MPI data exchange among neighboring subdomains within DDM iteration. In both
subfigures, the boundaries of the subdomains (with guard cells) of Ranks 1 to 6 are highlighted by
di↵erent colors, which are the same as the colors of the text “Rank” in the corresponding subdomains.
In the right subfigure, the thick red and black lines, which are the boundaries of the subdomains
without guard cells, represent the inner and outer particle boundaries, respectively. Left: for field-
solve operations: on the interior boundaries of the subdomains with guard cells, the nodes at a certain
subdomain’s boundary (e.g., Rank 1’s boundary nodes) are also interior nodes of its neighboring
subdomain (e.g., Rank 2). Therefore, the field quantities stored on interior nodes of Rank 2 are sent
to Rank 1 and used as Dirichlet boundary nodes. Since PIFE-PIC has 3-D domain decomposition,
such MPI data exchange will be carried out at guard cell nodes on “surfaces” (+/� neighbor in one
direction, such as Rank 1 and Rank 2), “edges” (+/� neighbor in two directions, such as Rank 3
and Rank 6), and “vertices” (+/� neighbor in three directions, not shown on this 2-D illustration).
As for the nodes on the outer boundaries, which are the boundary of the entire problem domain,
they will be handled based on the given boundary conditions of the entire problem domain, not by the
MPI data exchange. Right: For particle-push operations: each processor handles its own particles
belonging to its own subdomain without guard cells (see Figure 2.5). In particle-push, particles
crossing the inner particle boundaries are sent to the corresponding rank based on their destination
positions. Such particle motion also includes similar cases as data exchange for field-solve, which
are “crossing one surface” (+/� neighbor in one direction, such as Rank 1 and Rank 2), “crossing
an edge (two surfaces)” (+/� neighbor in two directions, such as Rank 3 and Rank 6), and “crossing
a vertex (three surfaces)” (+/� neighbor in three directions, not shown on this 2-D illustration).
For charge-weighting on the inner particle boundary, contributions from all neighboring subdomains
without guard cells should be summed. As for the particles crossing the outer particle boundaries,
they will be handled based on the given particle boundary conditions of the entire problem domain,
not by the MPI data exchange.

iterations of the domain decomposition method (DDM level). The third one tracks
the solution of each PIC step (PIC level).

3. Code validation. We apply the PIFE-PIC code to simulate the charging
of a small dielectric sphere immersed in a collisionless and stationary plasma in the
OML sheath regime. Successful validations of the serial IFE-PIC against analytic
OML solutions are presented in earlier work [39, 37].

3.1. Problem description and simulation setup. We consider a stationary,
collisionless hydrogen plasma of equal ion and electron temperatures (Ti = Te). The
analytic expressions for ion and electron densities in the plasma are given by the
revised OML theory [75, 19]. Therefore, the analytic potential profile near the sphere
can be numerically solved from Poisson’s equation in spherical coordinates.

3.1.1. Computation domain and mesh. In the simulation, we use a compu-
tation domain of a 5⇥5⇥5 Debye cube with a globally uniform PIC mesh with the
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Fig. 2.9. Flowchart of PIFE-PIC.

(a) IFE mesh (b) Simulation setup

Fig. 3.1. IFE mesh and setup used in the 3-D OML sheath problem for code validation. In
this example, the global domain is decomposed into 5⇥5⇥5 subdomains. Di↵erent layers (along z-
direction) of the subdomains are highlighted in di↵erent colors. 1/8 of the sphere is centered at the
origin.

size of h = 0.1�D in all dimensions, where �D is the Debye length of the plasma. The
entire simulation domain has 50⇥50⇥50 = 125,000 PIC cells which is 125,000⇥5 =
625,000 tetrahedral FE/IFE cells as each cuboid PIC cell is partitioned into 5 tetrahe-
dral FE/IFE cells in 3-D IFE-PIC [39, 37]. The IFE mesh size is also globally uniform
and the same as that of the PIC mesh. The dielectric sphere is centered at (0, 0, 0)
with a radius of Rs = 0.401. Due to symmetry in all three dimensions, only 1/8 of
the sphere is included in the domain. The entire domain is partitioned into 5⇥5⇥5
subdomains with each subdomain computed by one MPI process. Figure 3.1 shows
the 3-D IFE mesh and setup used in the simulation.
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3.1.2. Field setup. At Xmax, Ymax, and Zmax boundaries, the potentials are set
to 0 as the reference potential. At Xmin, Ymin, and Zmin boundaries, zero-Neumann
boundary conditions are applied due to symmetry (Figure 3.1(b)). The relative per-
mittivity of the sphere is set to 4. The floating potential of the sphere is calculated
from the nonhomogeneous flux jump condition at the sphere surface.

3.1.3. Particle setup. The simulation is carried out using the realistic ion-to-
electron mass ratio of mi/me = 1,836. Particles are preloaded into the domain before
the initial field solution and injected into the domain at Xmax, Ymax, and Zmax within
each PIC step. Particles hitting the Xmin, Ymin, and Zmin boundaries are reflected due
to symmetry. Particles hitting the Xmax, Ymax, and Zmax are absorbed and removed
from the simulation. The normalized time step size was set to be 0.01. There were
125 particles (5⇥5⇥5) per species per cell being loaded/injected into the domain.

3.2. Simulation results. The simulation of the validation case finished in about
2 hours for a total of 50,000 PIC steps on the Foundry cluster provided by the Cen-
ter of High-Performance Computing Research at Missouri University of Science and
Technology. The computing nodes are configured with Dell C6525 nodes each having
four node chassis with each node containing dual 32-core AMD EPYC Rome 7452
CPUs with 256 GB DDR4 RAM and six 480 GB SSD drives in RAID 0. All other
simulations presented in this work were also carried out on the same cluster.

For this test case, the maximum number of PCG iterations was set to 50 with
a tolerance of 1⇥ 10�6 for absolute residual, while the maximum number of initial
DDM iterations (solving the initial electrostatic field before main PIC loop starts)
was set to 150 and the maximum number of DDM iterations at each PIC iteration
step was set to 50 with a tolerance of 1⇥ 10�2. The simulation was set to run 50,000
PIC steps.

3.2.1. Initial field solution. The initial field solution (the zeroth PIC step)
took about 100 DDM iterations which are more than what is needed at each step
of the main PIC loop, to converge in terms of the relative error 1⇥ 10�2. The idea
of setting a relatively larger DDM iteration number is to obtain a better initial field
for the main PIC loop. Since the initial field was solved only once, the extra DDM
iterations contributed little to the overall wall-clock time of the entire simulation.

3.2.2. Solution history of main PIC loop. Figure 3.2 shows the field solution
convergence history including the maximum absolute PCG residual and maximum
DDM relative error as a function of PIC steps in the main PIC loop. A few phenomena
are observed here:

1. For most PIC steps, PCG took about 45–50 iterations to reach the tolerance
of 1⇥ 10�6. The “max” in the vertical axis stands for “maximum among all
subdomains” (first plot);

2. The maximum PCG absolute residual of the matrix solver has been main-
tained below 1⇥ 10�6 (second plot);

3. At early PIC steps, most DDM steps took about tens of iterations to converge
below 1⇥ 10�2, while later on as PIC approaches steady state, most DDM
steps were able to converge in less than 15 iterations (third and forth plots).

Figure 3.3 shows the global particle number history. At the steady state, there
are approximately 3.12⇥ 107 particles in the entire global domain. It is also shown
that the numbers of particles reached steady state at normalized simulation time of
about t̂ = 100.
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Fig. 3.2. Field convergence history of the code validation test case, PCG absolute residual, and
DDM relative error. The green line on maximum DDM relative error plot is the DDM tolerance.

Fig. 3.3. Global particle history of the code validation test case. “ntot” is the total number of
particles (electrons plus ions).

3.2.3. Comparison with analytic solution. Figure 3.4 shows the comparison
between PIFE-PIC simulation results against analytic solution for the OML sheath
problem as well as a 3-D potential contour. The potential profile agrees very well with
the analytic solution, as also shown in earlier work with the serial IFE-PIC [37, 39].

3.3. Performance profiling. Table 3.1 shows the detailed timer profile of PIFE-
PIC on the validation case for the entire 50,000 PIC steps, in terms of the per-
centage of total wall-clock time of key procedures in PIFE-PIC, namely, “gather,”
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(a) Potential profile patched by
5 subdomains (blocks) along z-
direction

(b) 3-D potential contours

Fig. 3.4. Validation of OML sheath solution: PIFE-PIC versus analytic and 3-D potential
contours.

Table 3.1
Time percentage breakdown for all 50,000 PIC steps.

Computing step Percent of total wall-clock time

In rank0001 In rank0050 In rank0100

Total wall-clock time 100.00% 100.00% 100.00%
Initialization time 0.05% 0.05% 0.05%

Main PIC Loop time 99.95% 99.95% 99.95%
Total gather time 11.21% 11.01% 10.49%

Total particle-push time 47.10% 47.10% 47.10%
Total particle-push-comm (AdjustOuter local) time⇤ 24.89%⇤ 24.88%⇤ 24.89%⇤

Total adjust-objects time 3.45% 3.45% 3.45%
Total scatter time 3.83% 3.83% 4.10%

Total field-solve time 31.79% 31.78% 31.78%
Total field-solve-phibc (Update Phi BC) time⇤⇤ 4.54%⇤⇤ 22.82%⇤⇤ 22.93%⇤⇤

Total other time 2.62% 2.83% 3.08%
⇤Included in the “particle-push time”
⇤⇤Included in the “field-solve time”

“particle-push,” “particle-push-comm” (particle adjustment at local boundaries and
communication among subdomains), “adjust-objects” (particle collection and charge
deposition), “scatter,” “field-solve,” “field-solve-phibc” (communication among sub-
domains and update of local potential boundary conditions), and “other” (including
particle injection at global boundaries and calculation of electric field), for selected
CPUs/subdomains (also the MPI ranks). Three subdomains (MPI ranks) are chosen,
namely, rank0001, rank0050, and rank0100.

Particularly, for “field-solve,” the communication time (“field-solve-phibc”) is sig-
nificantly higher for rank0050 and rank0100, indicating they spent more time in the
“MPI-wait” part of the communication (because all subdomains did MPI-send/receive
with similar load). This means that they were faster than rank0001 in the part
of “field-solve.” This is because, as shown in Figure 3.1(a), rank0001 is the only
subdomain with interface, which adds extra work to rank0001 compared with other
interface-free subdomains. Therefore, in order to improve the parallel e�ciency, the
working load of rank0001 should be reduced. This strategy will be utilized in the next
section.

The computing time of “particle-push” essentially depends on the number of
simulation particles in the domain, which also a↵ects the accuracy and smoothness
of the source term for Poisson’s equation. Therefore, in practical PIC simulations,
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large numbers of particles are preferred when computing resources are available. The
computing time of “field-solve” (including communication) depends on at least two
major factors: 1) the size of each subdomain (number of mesh cells and nodes) and
balance among subdomains, and 2) the number of DDM iterations. The size of each
subdomain can be determined by the domain decomposition configurations, while the
number of DDM iterations is a↵ected by the DDM relative error tolerance and the
maximum number of DDM iterations. In the following section, we investigate the
strong scaling performance of PIFE-PIC by varying 1) the size of each subdomain
and 2) the maximum number of DDM iterations.

4. Parallel e�ciency: Strong scaling. For most large-scale problems of prac-
tical interests, the problem size is usually determined by the physical phenomena to
be resolved. Therefore, to test the parallel e�ciency of PIFE-PIC, we use the strong
scaling approach such that the problem size is fixed while the number of processors
increases. For this set of tests, the problem size was fixed as a 10⇥10⇥10 Debye cube
with a globally uniform PIC mesh size of h = 0.1�D in all dimensions. The entire
simulation domain has 100⇥100⇥100 = 1 million PIC cells (5 million tetrahedral
FE/IFE cells) and about 54 million particles. For these runs, the maximum number
of PCG iteration was set to 1,000 with a tolerance of 1⇥ 10�6 for absolute residual.
For the initial field solution, the maximum number of DDM iteration was set to 100,
while for each step within the main PIC loop, the maximum number of DDM iteration
was set to be 10 or 6 for two di↵erent groups with same tolerance of 1⇥ 10�2. The
normalized time step size was set to be 0.01 and all simulations ran for 20,000 PIC
steps. The speedup is defined as S = Ts/Tp, where Ts is the serial runtime and Tp is
the parallel runtime on p MPI processes. The strong scaling parallel e�ciency is then
defined as E = S/p = Ts/(p · Tp). We chose two groups of configurations to test the
parallel e�ciency:

• Group I: Using at most 10 DDM iterations per main-loop PIC step;
• Group II: Using at most 6 DDM iterations per main-loop PIC step.

Table 4.1 lists the domain decomposition configurations for each test case, along
with the sizes of smallest and biggest subdomains in terms of number of cells in each
direction. The di↵erent sizes of subdomains indicate load imbalances among CPUs,
which may a↵ect the MPI communication cost as shown in Table 3.1, and thus a↵ect
the parallel e�ciency. Based on the above discussion for Table 3.1, Rank 1, which
handles the interface part, has extra computational cost compared with other CPUs,
hence should handle smaller subdomain in order to better balance the working loads.
Therefore, we utilize the following strategy to decompose the computation domain
in each direction: make the first subdomain (block) smaller (but still enclosing the
object) and the rest of the same size. For instance, to decompose the 100 cells in
one direction into 6 blocks, we use the configuration of (1⇥ 10 + 5⇥ 18 = 100), i.e.,
the first block takes 10 cells, and the rest 5 blocks take 18 cells each, totaling 100
cells in one direction. For other numbers of blocks to distribute the 100 cells in each
direction, we use the following configurations:

• 4 blocks: 1⇥ 19 + 3⇥ 27 = 100;
• 5 blocks: 1⇥ 12 + 4⇥ 22 = 100;
• 6 blocks: 1⇥ 10 + 5⇥ 18 = 100;
• 7 blocks: 1⇥ 10 + 6⇥ 15 = 100.

Table 4.2 lists the total wall-clock time, speedup, and parallel e�ciency of each
case for both Group I and Group II. The timer data was taken over all 20,000 PIC
steps. A few trends are observed here:
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Table 4.1
Domain Decomposition Configurations for Strong Scaling Test Cases.

# of subdomains DD configurations
Size of smallest

subdomain (cells)
Size of biggest

subdomain (cells)
1 (serial) 1⇥1⇥1 100⇥100⇥100 100⇥100⇥100

64 4⇥4⇥4 19⇥19⇥19 27⇥27⇥27
80 4⇥4⇥5 19⇥19⇥12 27⇥27⇥22
100 4⇥5⇥5 19⇥12⇥12 27⇥22⇥22
125 5⇥5⇥5 12⇥12⇥12 22⇥22⇥22
150 5⇥5⇥6 12⇥12⇥10 22⇥22⇥18
180 5⇥6⇥6 12⇥10⇥10 22⇥18⇥18
216 6⇥6⇥6 10⇥10⇥10 18⇥18⇥18
252 6⇥6⇥7 10⇥10⇥10 18⇥18⇥15
294 6⇥7⇥7 10⇥10⇥10 18⇥15⇥15
343 7⇥7⇥7 10⇥10⇥10 15⇥15⇥15

Table 4.2
Strong Scaling Test Results.

# of sub-
domains

Total time TI

(min)
Speedup SI

E�ciency
EI

Total time TII

(min)
Speedup SII

E�ciency
EII

1 (serial) 12,084 1 100.00% 12,084 1 100.00%
64 200 60.47 94.49% 173 69.77 109.02%
80 163 73.92 92.40% 135 89.59 111.99%
100 143 84.25 84.25% 113 106.57 106.57%
125 111 108.75 87.00% 96 125.98 100.79%
150 99 122.10 81.40% 85 142.49 94.99%
180 80 151.41 84.11% 74 164.01 91.12%
216 74 163.90 75.88% 62 193.57 89.62%
252 63 191.55 76.01% 58 209.40 83.10%
294 65 186.26 63.35% 60 200.95 68.35%
343 57 212.76 62.03% 53 227.99 66.47%

1. In general, the parallel e�ciency of cases in Group II (at most 6 DDM itera-
tions per PIC step) is higher than the corresponding case in Group I (at most
10 DDM iterations per PIC step). This is obviously because fewer DDM
iterations per PIC step would save more time in the field-solve part, thus
resulting in a shorter total wall-clock time.

2. For both Group I and Group II, the parallel e�ciency starts quite high (close
to or even above 100%) and gradually decays when the CPU number and
communications increase.

3. As mentioned above, we also notice that for Group II, some parallel cases
achieved >100% superlinear speedup in this strong scaling. One possible
reason is that, with domain decomposition, the number of mesh nodes of
each subdomain is significantly less than that of the entire domain (which
is the serial case). Therefore, the matrix size of each subdomain is much
smaller than that of the serial case. Since the PCG solver scales at N log(N)
where N is the size of the matrix, the PCG solution of parallel cases are
much faster than that of the serial case. Therefore, when the communication
overhead is not significant, superlinear speedup may occur. As the number of
CPUs increases, the superlinear speedup is suppressed by the communication
overhead.

Figure 4.1 plots the percentage of total wall-clock time to show the performance
of PIFE-PIC for each domain decomposition configuration in Group I and Group II.
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(a) Group I

(b) Group II

Fig. 4.1. Percentage of total wall-clock time of key procedures, for each domain decomposition
configuration.

Some trends are also observed: 1) The percentage breakdown of the key PIC proce-
dures is fairly consistent across all parallel configurations. 2) The “field-solve” step
took about 40% of the total wall-clock time across all parallel cases, whereas about
20% (of the total wall-clock time) was spent on the “field-solve-phibc” step. Based
on more detailed data, which is omitted due to the page limitation, we also observe
that the percentage of the time for “field-solve-phibc” varies within about 10% for all
subdomains/ranks. This is much better balanced than that shown in Table 3.1. 3)
The “particle-push” step takes about 35–40% of the total wall-clock time consistently
across all parallel cases, whereas about 20% (of the total wall-clock time) is spent on
the “particle-push-comm” step.

5. Application to lunar crater charging. In this section, we apply PIFE-
PIC to simulate the plasma charging at a lunar crater under average solar wind
(SW) conditions to demonstrate the large-scale simulation capability of PIFE-PIC.
In the following, we will first briefly describe the lunar surface charging problem, then
introduce the setup of the simulation, and finally present the results and discussion.

5.1. Problem description. The problem considered is SW plasma charging
near the lunar surface, specifically, near the lunar craters at the terminator region for
lunar exploration missions. The Moon is directly exposed to the solar radiation and
various space plasma environments which directly interact with the lunar surface. A
direct consequence of such interactions is surface charging. Observations have found
that the potential of the sunlit surface is typically a few tens of volts positive with
respect to ambient due to photoelectron emission, while that of the surface in shadow
can be hundreds to thousands of volts negative because of the hot electron flux from
ambient plasma that can dominate the charging process [10, 23, 32, 33, 34, 72, 74, 82].
Both solar illumination and plasma flow can have a substantial influence on lunar
surface charging. At the lunar terminator, the rugged surface terrain, such as that
near a crater, generates localized plasma wakes and shadow regions which can lead to
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Table 5.1
Average SW and photoelectron (at 90� Sun elevation angle) parameters.

Number
density n,
cm�3

Drifting
velocity
vd, km/s

Thermal
velocity
vt, km/s

Temperature T,
eV

Debye
length
�D, m

SW electron 8.7 468 1453 12 8.73
SW ion 8.7 468 31 10 N/A⇤

Photoelectron 64 N/A⇤ 622 2.2 1.38
⇤N/A denotes “not applicable”

strong di↵erential charging at the surface [9, 70, 81]. Both the localized plasma flow
field and the charged lunar surface are expected to have substantial influence on the
charging of spacecraft/landers/rovers/habitats for future surface missions.

The lunar surface is covered by the lunar regolith layer which separates the solid
bedrock from the plasma environment. The regolith layer in most areas is about
4 to 20 meters thick [68, 73]. A complete model of plasma charging on the lunar
surface needs to explicitly take into account the properties of the regolith layer, such
as permittivity, layer thickness, and the lunar electrical ground.

The serial version of IFE-PIC method has been successfully applied to simulations
of lunar plasma charging [38]. In order to illustrate the high performance computing
capability of the PIFE-PIC package in this paper, we apply PIFE-PIC to a much larger
scale parallel simulation with a larger simulation domain including a lunar crater and
much more simulation particles. The plasma environment is chosen to be the average
SW and photoelectron parameters at the lunar surface [81], as shown in Table 5.1. It
is noted here that the Debye length of photoelectrons at 90� Sun elevation angle (1.38
m) is used as the reference length to normalize spatial dimensions in PIFE-PIC.

5.2. Simulation setup.

5.2.1. Lunar crater geometry and simulation domain. In PIFE-PIC, the
geometry of the lunar crater is realized through an algebraic equation describing the
surface terrain in the form of z = z(x, y) where z denotes the surface height. For the
lunar crater considered here, the shape is realized by a few characteristic parameters
such as inner-rim radius, outer-rim radius, depth, rim height, etc. (Figure 5.1(a))
according to the Lunar Sourcebook [49]. The specific diameter of a real lunar crater
can be measured through NASA Jet Propulsion Laboratory’s website, Moon Trek
[69]. The crater considered in this study has these characteristic dimensions: inner-
rim radius 10.5⇥1.38 = 14.49 m, top-rim radius 20.2⇥1.38 = 27.88 m, outer-rim radius
30.9⇥1.38 = 42.64 m, and top height 6.7⇥1.38 = 9.25 m. Details of the approach to
set up the lunar crater geometry is given in [67].

The simulation domain has 200⇥100⇥100 = 2 million PIC cells (10 million tetra-
hedral FE/IFE cells) including half of the lunar crater due to symmetry with respect
to the X-Z plane at y = 0 (Figure 5.1(a)). Each PIC cell is a 1.38⇥1.38⇥1.38 cube.
In physical units, the domain size is approximately 276 m by 138 m by 138 m. At
the Zmin boundary, the simulation domain includes a layer of the lunar bedrock with
a thickness of Lbedrock = 4.5⇥1.38 = 6.21 m. On top of the bedrock is a layer of di-
electric regolith with a thickness of Lregolith = (9.5� 4.5)⇥1.38 = 6.9 m. The relative
permittivities of the lunar regolith layer and the bedrock are taken to be ✏regolith = 4
and ✏bedrock = 10, respectively [49]. Three-dimensional domain decomposition of
8⇥4⇥4 (total 128 MPI processes) is used to run the simulation (Figure 5.1(b)).
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(a) The geometry of the lunar crater re-
alized in PIFE-PIC. Color contours show
the “sunlight index” indicating the inner
product of Sun vector (10� above the
ground in the X � Z plane) and local
surface normal vector.

(b) The simulation domain including
the lunar bedrock (below the blue layer)
and the lunar regolith (between the blue
and green layers). The light-blue edges
show the domain decomposition (8⇥4⇥4
= 128 MPI processes).

Fig. 5.1. The lunar crater geometry and simulation domain.

5.2.2. Particle and field boundary conditions. Particles representing SW
ions and electrons are preloaded and injected into the domain with an angle of 10�

towards the surface in the X-Z plane (Figure 5.1(a)). Particles representing photo-
electrons are generated at the sunlit regions according to the local sunlight index. At
the global Xmin, Xmax, Ymax, and Zmax domain boundaries, ambient SW particles are
injected. Particles hitting the global Ymin boundary are reflected due to symmetry.
Particles hitting the lunar surface are collected, and their charges are accumulated to
calculate surface charging.

Dirichlet boundary condition of � = 0 is applied at the Zmax boundary (the un-
perturbed SW), whereas Neumann boundary condition of zero electric field is applied
on all other five domain boundaries. The PCG maximum iterations was set to 150
with a tolerance of 1⇥ 10�6 for absolute residual. The maximum number of DDM
iteration for initial field solution was set to 800, and the maximum number of DDM
iteration for each step within the main PIC loop was set to 200 with a tolerance of
1⇥ 10�3. The simulation ran for 20,000 PIC steps.

5.3. Convergence history. The run took about 154 hours to finish 20,000 PIC
steps with the time step size of 0.05 (total simulation time till t̂ = 1, 000). Figure
5.2 shows the convergence history of the lunar crater charging simulation including
the maximum absolute PCG residual and maximum DDM relative error and particle
number histories. It is shown that the field solution residuals and relative errors
started to level o↵ near PIC step of 10,000 (t̂ = 500), and at steady state, the entire
domain had about 1.03 billion particles. After t̂ = 500, the autosaved simulation
results are all similar. The results presented below are those at t̂ = 1, 000.

5.4. Surface charging results. Figure 5.3 illustrate the density contours of
SW ions, solar wind electrons, photoelectrons, and total space charge near the crater.
The SW ion and electron density contours clearly exhibit a localized plasma wake
formed by the crater rim. The photoelectron density contours clearly exhibit the lack
of photoemission in the shadow region. The total space charge density contours show
the nonneutral regions associated with the wake caused by the crater rim.
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(a) Field solution PCG absolute residual and DDM relative
error history.

(b) Global particle number history.

Fig. 5.2. The lunar crater simulation convergence history.

Figure 5.4 illustrates the potential contours of the domain and near the crater. It
is shown, for the average SW conditions considered here, the surface potential in the
sunlit region of the crater is charged to about 16⇥2.2 ' 35 V while the surface in the
shadow region is charged to about �24⇥ 2.2 ' �53 V. It is noted as this length scale
is on the order of tens of meters, such di↵erential surface charging will a↵ect the lunar
surface activities for exploration missions, such as the risk of discharging/arcing and
horizontal/vertical transport of lofted charged lunar dusts.

6. Summary and conclusion. In this paper, we presented a most recently
developed 3-D PIFE-PIC method, for kinetic particle simulations of PMIs especially
electrostatic surface charging. PIFE-PIC is based on the serial nonhomogeneous elec-
trostatic IFE-PIC algorithm, which was designed to handle complex interface condi-
tions associated with irregular geometries while maintaining the computational speed
of Cartesian mesh-based PIC. Three-dimensional domain decomposition is used in
both field-solve and particle-push procedures of PIC to distribute the computation
among multiple processors. A validation case of 3-D OML sheath of a dielectric
sphere immersed in a stationary plasma was carried out and results agreed well with
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(a) SW ion density contours. (b) SW electron density contours.

(c) Photoelectron density contours. (d) Total charge density contours.

Fig. 5.3. Normalized density contours. For electrons, numerical values include a negative
sign indicating the negative charges. The densities are normalized by 64 cm�3, and the spatial
dimensions are normalized by 1.38 m.

(a) Potential contours showing the dif-
ferential charging near the lunar crater.

(b) Zoom-in view of the potential con-
tours near the lunar crater.

Fig. 5.4. Potential contours of lunar crater charging. The potential values are normalized by
2.2 V, and the spatial dimensions are normalized by 1.38 m.
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the analytic solution. A series of strong scaling tests were performed to profile the
parallel e�ciency for a problem of fixed size which has 1 million PIC cells (5 million
tetrahedral FE/IFE cells), about 54 million particles, and running 20,000 PIC steps
on the Foundry cluster at Missouri University of Science and Technology. Parallel
e�ciency up to approximately 110% superlinear speedup was achieved.

An application of PIFE-PIC to a larger problem, SW plasma charging at a lunar
crater, is presented to show the capability of PIFE-PIC for practical problems of
science and engineering interest. The lunar crater charging simulation has 2 million
PIC cells (10 million tetrahedral FE/IFE cells), about 1 billion particles, and running
for 20,000 PIC steps. The simulation finished in about 154 wall-clock hours with
domain decomposition of 8⇥4⇥4 = 128 MPI processes. This demonstrates that PIFE-
PIC can be utilized to carry out realistic large-scale particle simulations of PMIs
routinely on supercomputers with distributed memory.
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