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1. Introduction

Let Ω ⊂ R2 be a rectangular domain or a union of rectangular domains. Assume that Ω is separated by a smooth curve
Γ into two sub-domains Ω− and Ω+, i.e., Ω = Ω− ∪ Ω+ ∪ Γ , see the left plot in Fig. 1. Let [0, T ] be a time interval. We
consider the linear parabolic interface problem

∂u
∂t

− ∇ · (β∇u) = f (x, t), x = (x, y) ∈ Ω+
∪ Ω−, t ∈ (0, T ], (1.1)

u = g(x, t), x ∈ ∂Ω, t ∈ (0, T ], (1.2)

u = u0(x), x ∈ Ω, t = 0. (1.3)

Here, the diffusion coefficient β(x, t) is time independent and, without loss of generality, a piecewise constant function over
Ω , i.e.,

β(x) =


β−, x ∈ Ω−,

β+, x ∈ Ω+,
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Fig. 1. The simulation domain Ω (left) and an interface element (right).

and min{β−, β+
} > 0. Across the interface curve Γ , we assume that the solution and the normal component of the flux are

continuous for any time t ∈ [0, T ], i.e.,

[[u ]]Γ = 0, (1.4)
β

∂u
∂n


Γ

= 0. (1.5)

Here [[v ]]Γ = (v|Ω+)|Γ − (v|Ω−)|Γ denotes the jump across the interface Γ .
In science and engineering, many physical phenomenons can be described by interface problems such as (1.1)–(1.5).

Hence, solving interface problems accurately and efficiently is of great importance and has been studied for decades.
It is well-known that classic numerical methods, such as finite element methods, use body-fitting meshes to solve
interface problem to get optimal convergence [1–3]. The terminology body-fitting means a solution mesh has to be aligned
with interfaces. Such restriction on mesh can hinder the applicability of conventional finite element methods in certain
simulations. For example, it could prevent the use of structured meshes unless the interface geometry is trivial. In addition,
when dealingwith amoving interface problem, i.e.β = β(x, t), solutionmeshes have to be regenerated for each time step to
be considered,which inevitably increases its computational costs. In order to overcome this limitation from the conventional
finite element methods, the immersed finite element (IFE) methods have been developed and extensively studied in the
past two decades since the first article [4]. A prominent feature of IFE methods is that the solution mesh is independent of
interface because IFE methods allow an interface to cut through elements, see the right plot in Fig. 1. Consequently, one can
use structured or even Cartesian meshes to solve problems with nontrivial interface geometry. This renders IFE methods
great popularity in solving a variety of interface problems, such as elliptic interface problem [5–12], elasticity interface
problems [13–15], biharmonic interface problems [16], and Stokes interface problems [17], to name only a few.

So far, most IFE methods are developed for stationary interface problems. Recently, it starts to gain more attention
on developing IFE methods for time-dependent interface problems. For instance, in [18], transient advection–diffusion
equations with interfaces were treated by an immersed Eulerian–Lagrangian localized adjoint method. In [19], numerical
solution to parabolic interface problem was considered by applying IFE methods together with the Laplacian transform.
Crank–Nicolson-type fully discrete IFE methods and IFE method of lines were derived for parabolic problems with moving
interface in [20,21]. Error analysis for a parabolic interface problem was presented in [22].

Discontinuous Galerkin (DG) finite element methods were introduced in 1970s [23,24]. Because the discontinuous
approximation functions are employed, DG methods have many advantages such as high parallelizability, localizability,
and easy handling of complicated geometries; therefore, DGmethods have been used widely in solving different types PDEs
[25–28]. The idea of combining IFE and DG methods together to solve elliptic interface problems was proposed in [29,30].
Numerical analysis for discontinuous Galerkin immersed finite element (DG-IFE) methods was studied in our recent
paper [31] for elliptic interface problem. The optimal convergence was obtained in a mesh-dependent energy norm. The
aim of this paper is to extend the DG-IFE methods and error analysis for parabolic interface problem. One motivation to
study the DG-IFE methods is that there is no continuity imposed on IFE space. Hence, it is more flexible to perform local
adaptive h and p-refinement, at the same time keeping solution meshes structured. This feature was demonstrated in [31]
by various examples.

The rest of this paper is organized as follows. In Section 2, we consider the semi-discrete method and two prototypical
fully discrete methods, i.e., backward Euler and Crank–Nicolson methods. In Sections 3 and 4, we derive the a priori error
estimates for semi-discrete and fully discrete methods, respectively. In Section 5, some numerical examples are reported to
verify our theoretical estimates. A few concluding remarks are presented in Section 6.

2. Discontinuous Galerkin immersed finite element methods

In this section, we introduce the discontinuous Galerkin immersed finite element methods for solving the parabolic
interface problem (1.1)–(1.5).
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2.1. Notations and preliminaries

Throughout this paper, we use standard notations for Sobolev spaces and their norms. In addition, we need to define
piecewise Sobolev spaces which depend on the location of interface. Let D be a subset of Ω that is cut through by the
interface Γ . For r ≥ 1, we define

H̃r(D) = {v ∈ L2(D) : v|D∩Ωs ∈ Hr(D ∩ Ω s), s = + or −}

equipped with the norm

∥v∥
2
H̃r (D)

:= ∥v∥
2
Hr (D∩Ω−)

+ ∥v∥
2
Hr (D∩Ω+)

.

For a function u(x, t), we consider it as mapping from the time interval [0, T ] to a normed space V equipped with the norm
∥ · ∥V . Furthermore, for any nonnegative number k ≥ 1, we define

Lk(0, T ; V ) =


u : [0, T ] → V measurable :

 T

0
∥u(·, t)∥k

Vdt < ∞


,

and

∥u∥Lk(0,T ;V ) =

 T

0
∥u(·, t)∥k

Vdt
1/k

.

Similarly, we can define the standard space Hp(0, T ; V ) for any integer p > 0. Throughout this paper, we will use the letter
C to denote a generic positive constant which may take different values in different places. We usually use ut , utt , etc. to
denote the partial derivatives of uwith respect to the time variable t .

Let Th = {K} be a Cartesian triangular or rectangular mesh of Ω with mesh size h. An element K is called an interface
element if it is cut through by the interface Γ . Otherwise, we name it a non-interface element. The set of interface elements
and non-interface elements of Th is denoted by T i

h and T n
h , respectively.

Let Eh = {e} be the set of all edges in the mesh Th. Let E̊h and Eb
h be the set of interior edges and boundary edges,

respectively. Clearly, Eh = E̊h ∪ Eb
h . An edge e is called an interface edge if it intersects with Γ , otherwise it is a noninterface

edge. The set of interface edges and non-interface edges is denoted by E i
h and En

h , respectively. Moreover, E̊ i
h and E̊n

h denote
the set of interior interface edges and interior non-interface edges, respectively.

Without loss of generality, we assume that the following hypotheses of mesh [31] hold:

(H1) If one edge of an element meets the interface Γ at more than one point, this edge is part of Γ .
(H2) If the interface Γ meets the boundary of an element at two points, these two points are on different edges of this

element.

According to conditions (H1) and (H2), each interface element intersects with the interface Γ at two points, located on
different edges. The intersection points are denoted by D and E, and the line segment DE divides K into two parts K+ and
K− such that K = K+

∪K−
∪DE, see the right plot of Fig. 1. We introduce the broken Sobolev space H̃2(Th) on the mesh Th:

H̃2(Th) = {v ∈ L2(Ω) : ∀K ∈ T n
h , v|K ∈ H2(K);

∀K ∈ T i
h , v|K ∈ H1(K), v|K s ∈ H2(K s), s = +, −}.

For each edge e ∈ Eh, we assign a unit normal vector ne according to the following rules: if e ∈ Eb
h , then ne is taken to be

the unit outward normal vector of ∂Ω; if e ∈ E̊h, shared by two elements Ke,1 and Ke,2, the normal vector ne is oriented from
Ke,1 to Ke,2. For a function u defined on Ke,1 ∪ Ke,2, which may be discontinuous across e, we define its average and jump as
follows

{{u}}e =

1
2


(u|Ke,1)|e + (u|Ke,2)|e


, if e ∈ E̊h

u|e, if e ∈ Eb
h ,

[[u ]]e =


(u|Ke,1)|e − (u|Ke,2)|e, if e ∈ E̊h

u|e, if e ∈ Eb
h .

(2.1)

For simplicity, we often drop the subscript e from these notations as long as there is no danger to cause any confusions.

2.2. DG-IFE methods

In this subsection, we derive the DG-IFE methods for the parabolic interface problem (1.1)–(1.5). First, we multiply
Eq. (1.1) by a test function v ∈ H̃2(Th) and then integrate both sides on each element K ∈ Th. For a non-interface element,
a direct application of Green’s formula gives

K
utvdx +


K

β∇u · ∇vdx −


∂K

β∇u · nKvds =


K
f vdx. (2.2)
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For an interface element, (2.2) holds true as we perform Green’s formula piecewisely on each sub-element separated by the
interface. For more details of this procedure, we refer readers to [31]. Then we summarize (2.2) over all elements to obtain

Ω

utvdx +


K∈Th


K

β∇u · ∇vdx −


K∈Th


∂K

β∇u · nKvds =


Ω

f vdx.

Rewriting the third term as the summation over all edges in Eh, and using the notations in (2.1) we have
Ω

utvdx +


K∈Th


K

β∇u · ∇vdx −


e∈Eh


e
{{β∇u · ne}} [[v]]ds =


Ω

f vdx. (2.3)

Let Hh = H̃2(Ω) + H̃2(Th), then we can define a bilinear form aϵ: Hh × Hh → R:

aϵ(u, v) =


K∈Th


K

β∇u · ∇vdx −


e∈Eh


e
{{β∇u · ne}} [[v]]ds

+ ϵ

e∈Eh


e
{{β∇v · ne}} [[u]]ds +


e∈Eh


e

σe

|e|
[[u]][[v]]ds, (2.4)

where σe ≥ 0 is the penalty parameter and |e| stands for the length of e. The parameter ϵ in aϵ(·, ·) may take the value −1,
0, or 1. Note that aϵ(·, ·) is symmetric if ϵ = −1 and is nonsymmetric otherwise. The regularity of exact solution u ∈ H1(Ω)
implies [[u]] = 0 on every interior edge e ∈ E̊h. Thus, for every ϵ we have

ϵ

e∈E̊h


e
{{β∇v · ne}} [[u]]ds = 0, and


e∈E̊h


e

σe

|e|
[[u]][[v]]ds = 0.

We define the linear form L: Hh → R:

L(v) =


Ω

f vdx +


e∈Eb

h


e


ϵ(β∇v · ne) +

σe

|e|
v


gds.

Now, we obtain the weak form of the parabolic interface problem (1.1)–(1.5):

(ut , v) + aϵ(u, v) = L(v), ∀v ∈ H̃2(Th), (2.5)
u|t=0 = u0. (2.6)

We now introduce finite-dimensional IFE subspaces of the broken Sobolev space H̃2(Th), which will be used to
approximate (2.5)–(2.6). For each element K ∈ Th, let dK = 3 for triangular elements and dK = 4 for rectangular elements.
If K ∈ T n

h , we choose φi(x), 1 ≤ i ≤ dK to be the standard linear or bilinear nodal functions. Otherwise, φi(x), 1 ≤ i ≤ dK
are chosen to be the linear or bilinear IFE basis functions defined in [32,8] and [33,6], respectively. For each element K ∈ Th,
we define the local FE/IFE space to be

Sh(K) = span{φi, 1 ≤ i ≤ dK }.

Then, the discontinuous IFE space over the mesh Th is defined as

Sh(Th) = {v ∈ L2(Ω) : v|K ∈ Sh(K), ∀K ∈ Th}.

For every noninterface element K ∈ T n
h , Sh(K) is a subspace of H2(K). For interface element K ∈ T i

h , every function
v ∈ Sh(K) is either a linear or a bilinear IFE function. It has been shown in [32,33,6] that such IFE function v ∈ H1(K) and
v|K s ∈ H2(K s), s = ±, but v ∉ H2(K). It can be easily shown that Sh(Th) ⊂ H̃2(Th). Wewill use Sh(Th) to discretize the weak
formulation (2.5) and (2.6) of the parabolic interface problem.
Semi-discrete DG-IFE scheme: Find uh : [0, T ] → Sh(Th) such that

uh,t , vh

+ aϵ(uh, vh) = L(vh), ∀vh ∈ Sh(Th), (2.7)

uh(x, 0) = u0h(x), x ∈ Ω, (2.8)

where u0h is an approximation of u0 in the space Sh(Th).
For a positive integer Nt , let 1t = T/Nt be the time step and tn = n1t (n = 0, 1, . . . ,Nt ). For any function ϕ(t), we let

ϕn
= ϕ(tn), n = 0, 1, . . . ,Nt . For a sequence {ϕn

}
Nt
n=0, we define

ϕn,θ
= θϕn

+ (1 − θ)ϕn−1
∀ 0 ≤ θ ≤ 1, ∂tϕ

n
=

ϕn
− ϕn−1

1t
, n = 1, 2, . . . ,Nt .
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Fully discrete DG-IFE scheme: Find a sequence

un
h

Nt

n=0 of functions in Sh(Th) such that
∂tun

h, vh

+ aϵ(u

n,θ
h , vh) = Ln,θ (vh), ∀vh ∈ Sh(Th), (2.9)

u0
h(x) = u0h(x), x ∈ Ω, (2.10)

where

Ln,θ (v) =


Ω

f n,θvdx +


e∈Eb

h


e


ϵ(β∇v · ne) +

σe

|e|
v


gn,θds.

Note that the fully discrete DG-IFE scheme is the backward Euler scheme when θ = 1, and it is the Crank–Nicolson scheme
when θ = 1/2.

3. Error estimation for semi-discrete schemes

In this section, we derive a priori error estimates for semi-discrete scheme (2.7)–(2.8). The error bounds are based on the
following mesh dependent energy norm:

|||v||| =


K∈Th


K

β|∇v|
2dx +


e∈Eh


e

σe

|e|
[[v ]]

2 ds

1/2

,

for all v ∈ H̃2(Th). We will first recall some results from [31] for elliptic problem.

Lemma 3.1 (Trace Inequalities for IFE Functions). Let Th be a Cartesian triangular or rectangular mesh and let K ∈ Th be an
interface triangle or rectangle with diameter hK and let e be an edge of K . There exists a constant C, independent of interface
location but depending on the jump of the coefficient β , such that for every linear or bilinear IFE function v defined on K , the
following inequality holds:

∥β∇v · ne∥L2(e) ≤ Ch−1/2
K ∥


β∇v∥L2(K). (3.1)

Lemma 3.2 (Coercivity). There exists a constant κ > 0 such that

aϵ(vh, vh) ≥ κ|||vh|||
2, ∀ vh ∈ Sh(Th) (3.2)

holds for ϵ = 1 unconditionally and holds for ϵ = 0 or ϵ = −1 when the penalty parameter σe in aϵ(·, ·) is large enough.

For every t ∈ [0, T ], we define the elliptic projection Phu of the exact solution u by

aϵ(u − Phu, vh) = 0, ∀vh ∈ Sh(Th). (3.3)

It is easy to know that the solution to (3.3) exists and is unique. Moreover, it has the following error estimates.

Lemma 3.3 (Estimate for Elliptic Projection). Assume that u ∈ H2(0, T ; H̃3(Ω)), for every t ∈ [0, T ], then the following error
estimates hold

|||u − Phu||| ≤ Ch∥u∥H̃3(Ω), (3.4)

|||(u − Phu)t ||| ≤ Ch∥ut∥H̃3(Ω), (3.5)

|||(u − Phu)tt ||| ≤ Ch∥utt∥H̃3(Ω). (3.6)

Proof. The estimate (3.4) follows from the estimate derived for the DG-IFE methods for elliptic problems in [31]. Taking the
time derivative of (3.3) we have

0 =
d
dt

aϵ(u − Phu, vh) = aϵ (ut − (Phu)t , vh) , ∀vh ∈ Sh(Th),

which implies that (Phu)t = Phut . Thus, for any t ∈ [0, T ], ut(·, t) ∈ H̃3(Ω). Applying the estimate (3.4) to ut , we get

|||(u − Phu)t ||| = |||ut − Phut ||| ≤ Ch∥ut∥H̃3(Ω).

This concludes the estimate (3.5). Following a similar argument, we can obtain (3.6). �
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Now we are ready to derive an a priori error estimate for the semi-discrete IFE scheme (2.7)–(2.8). First, we write

uh − u = (uh − Phu) + (Phu − u) , ξ + η, (3.7)

where Phu is the elliptic projection of u defined by (3.3). From (3.4), we can bound |||η||| as follows

|||η||| ≤ Ch∥u(·, t)∥H̃3(Ω) ≤ Ch

∥u0∥H̃3(Ω) + ∥ut∥L2(0,T ;H̃3(Ω))


. (3.8)

It suffices to bound |||ξ |||. From (2.5), (2.7) and (3.2), we get the error equation for ξ

(ξt , vh) + aϵ(ξ , vh) = (ηt , vh) , ∀vh ∈ Sh(Th). (3.9)

Let vh = ξt , then (3.9) becomes

∥ξt∥
2
+ aϵ(ξ , ξt) = (ηt , ξt) . (3.10)

To proceed the analysis, we discuss the symmetric and nonsymmetric cases separately.
(i) If ϵ = −1, then aϵ(·, ·) is symmetric, and

∥ξt∥
2
+

1
2

d
dt

aϵ(ξ , ξ) ≤ ∥ηt∥ ∥ξt∥ ≤
1
2

∥ηt∥
2
+

1
2

∥ξt∥
2 . (3.11)

Note that uh0 = Phu0, thus ξ(·, 0) = 0. We integrate both sides of (3.11) from 0 to t to obtain

1
2

 t

0
∥ξt∥

2 dτ +
1
2
aϵ(ξ(·, t), ξ(·, t)) ≤

1
2

 t

0
∥ηt∥

2 dτ ≤ Ch2
 T

0
∥ut∥

2
H̃3(Ω)

dt. (3.12)

The second inequality in (3.12) can be obtained from (3.5). The coercivity of aϵ(·, ·) leads to

∥ξt∥L2(0,t;L2(Ω)) + |||ξ ||| ≤ Ch∥ut∥L2(0,T ;H̃3(Ω)). (3.13)

Dropping the first term in (3.13) leads to a bound for |||ξ |||.
(ii) If ϵ = 1 or 0, then aϵ(·, ·) is nonsymmetric. We have

aϵ (ξ , ξt) =
1
2

d
dt

aϵ(ξ , ξ) +
1
2

(aϵ (ξ , ξt) − aϵ (ξt , ξ)) ≥
1
2

d
dt

aϵ(ξ , ξ) −
C
2

|||ξt |||
2
−

C
2

|||ξ |||
2. (3.14)

Substituting (3.14) into (3.10) and integrating it from 0 to t , we have t

0
∥ξt∥

2dτ + |||ξ |||
2

≤ C
 t

0
(∥ηt∥

2
+ |||ξt |||

2
+ |||ξ |||

2)dτ . (3.15)

Taking derivative of (3.9) with respect to t leads to

(ξtt , vh) + aϵ(ξt , vh) = (ηtt , vh) , ∀vh ∈ Sh(Th). (3.16)

Choosing vh = ξt in (3.16) and using the coercivity of aϵ(·, ·), we get

1
2

d
dt

∥ξt∥
2
+ κ|||ξt |||

2
≤

1
2
(∥ηtt∥

2
+ ∥ξt∥

2).

Integrating from 0 to t and using the Gronwall inequality, we have t

0
|||ξt |||

2dτ ≤ C
 t

0
∥ηtt∥

2dτ + C∥ξt(·, 0)∥2. (3.17)

Set t = 0 and vh = ξt(·, 0) in (3.9), then we obtain

∥ξt(·, 0)∥ ≤ ∥ηt(·, 0)∥. (3.18)

Substitute (3.17) and (3.18) into (3.15) and apply the Gronwall inequality, then t

0
∥ξt∥

2dτ + |||ξ |||
2

≤ C
 t

0
(∥ηt∥

2
+ ∥ηtt∥

2)dτ + C∥ηt(·, 0)∥2.

Applying the estimates (3.5) and (3.6) to the right hand side of the above inequality gives

∥ξt∥L2(0,t;L2(Ω)) + |||ξ ||| ≤ Ch

∥ut(·, 0)∥H̃3(Ω) + ∥ut∥L2(0,T ;H̃3(Ω)) + ∥utt∥L2(0,T ;H̃3(Ω))


. (3.19)

Again, dropping the first term leads to a bound for |||ξ |||. We summarize the above discussion in the following theorem.
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Theorem 3.1. Assume that the exact solution u of problem (1.1)–(1.5) satisfies u ∈ H1(0, T ; H̃3(Ω)) for ϵ = −1 and
u ∈ H2(0, T ; H̃3(Ω)) for ϵ = 0, 1, and u0 ∈ H̃3(Ω). Let uh be the DG-IFE solution of (2.7)–(2.8) and let uh(·, 0) = Phu0
be the elliptic projection of u0. Then there exists a constant C such that for all t ∈ [0, T ]

|||uh(·, t) − u(·, t)||| ≤ Ch

∥u0∥H̃3(Ω) + ∥ut∥L2(0,T ;H̃3(Ω))


(3.20)

for ϵ = −1, and

|||uh(·, t) − u(·, t)||| ≤ Ch

∥u0∥H̃3(Ω) + ∥ut(0)∥H̃3(Ω) + ∥ut∥L2(0,T ;H̃3(Ω)) + ∥utt∥L2(0,T ;H̃3(Ω))


(3.21)

for ϵ = 0 or 1.

4. Error estimation for fully discrete schemes

Now we derive error estimates for the fully discrete DG-IFE schemes (2.9)–(2.10). We will consider two prototypical
cases.

4.1. Backward Euler scheme

The backward Euler scheme corresponds to (2.9)with θ = 1. Subtracting (2.5) from (2.9), we canwrite the error equation
as follows

∂tξ
n, vh


+ aϵ(ξ

n, vh) =

∂tη

n, vh

+ (rn, vh), ∀vh ∈ Sh(Th), (4.1)

where rn = −(un
t − ∂tun). Let vh = ∂tξ

n in (4.1), we obtain

∥∂tξ
n
∥
2
+ aϵ(ξ

n, ∂tξ
n) ≤ ∥∂tη

n
∥
2
+ ∥rn∥2

+
1
2
∥∂tξ

n
∥
2. (4.2)

Again, the discussion for the second term is different for symmetric and nonsymmetric bilinear forms. We proceed in the
following two cases.

(i) ϵ = −1. The bilinear aϵ(·, ·) is symmetric.

aϵ(ξ
n, ∂tξ

n) =
1

1t
aϵ(ξ

n, ξ n
− ξ n−1)

=
1

21t


aϵ(ξ

n, ξ n) − aϵ(ξ
n−1, ξ n−1) + aϵ(ξ

n
− ξ n−1, ξ n

− ξ n−1)


≥
1

21t


aϵ(ξ

n, ξ n) − aϵ(ξ
n−1, ξ n−1)


.

Then we substitute it into (4.2) to get

1
2
∥∂tξ

n
∥
2
+

1
21t


aϵ(ξ

n, ξ n) − aϵ(ξ
n−1, ξ n−1)


≤ ∥∂tη

n
∥
2
+ ∥rn∥2. (4.3)

Multiplying (4.3) by 21t and then summing over n from 1 to any positive integer k, we have

1t
k

n=1

∥∂tξ
n
∥
2
+ aϵ(ξ

k, ξ k) ≤ 21t
k

n=1


∥∂tη

n
∥
2
+ ∥rn∥2


. (4.4)

Now we bound two terms on the right hand side of (4.4). By Hölder’s inequality and (3.5),

∥∂tη
n
∥
2

=


Ω

 1
1t

 tn

tn−1
ηtdτ

2
dx ≤

1
1t

 tn

tn−1
∥ηt∥

2dτ ≤ C
h2

1t

 tn

tn−1
∥ut∥

2
H̃3(Ω)

dτ , (4.5)

∥rn∥2
=


Ω

|un
t − ∂tun

|
2dx =


Ω

 1
1t

 tn

tn−1
(t − tn−1)uttdt


2

dx ≤
1t
3

 tn

tn−1
∥utt∥

2dτ . (4.6)

Hence, by the coercivity of aϵ(·, ·), we obtain

1t
k

n=1

∥∂tξ
n
∥
2
+ |||ξ k

|||
2

≤ C

h2

∥ut∥
2
L2(0,T ;H̃3(Ω))

+ (1t)2∥utt∥
2
L2(0,T ;L2(Ω))


. (4.7)
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Substituting (3.8) and (4.7) to uk
h − uk

= ξ k
+ ηk, and applying the triangle inequality yields

|||uk
h − uk

||| ≤ C

h

∥u0∥H̃3(Ω) + ∥ut∥L2(0,T ;H̃3(Ω))


+ 1t∥utt∥L2(0,T ;L2(Ω))


. (4.8)

(ii) ϵ = 0 or 1. The bilinear form is nonsymmetric.

aϵ(ξ
n, ∂tξ

n) =
1

21t


aϵ(ξ

n, ξ n) − aϵ(ξ
n−1, ξ n−1)


+

1
21t

aϵ(ξ
n, ξ n

− ξ n−1) −
1

21t
aϵ(ξ

n
− ξ n−1, ξ n−1)

=
1

21t


aϵ(ξ

n, ξ n) − aϵ(ξ
n−1, ξ n−1)


+

1
2


aϵ(∂tξ

n, ξ n) − aϵ(ξ
n−1, ∂tξ

n)


≥
1

21t


aϵ(ξ

n, ξ n) − aϵ(ξ
n−1, ξ n−1)


− C


|||∂tξ

n
|||
2
+ |||ξ n−1

|||
2
+ |||ξ n

|||
2

.

Substituting it into (4.2) leads to

1
2
∥∂tξ

n
∥
2
+

1
21t


aϵ(ξ

n, ξ n) − aϵ(ξ
n−1, ξ n−1)


≤ ∥∂tη

n
∥
2
+ ∥rn∥2

+ C

|||∂tξ

n
|||
2
+ |||ξ n−1

|||
2
+ |||ξ n

|||
2

. (4.9)

Multiplying (4.9) by 21t and then summing over n, we obtain

1t
k

n=1

∥∂tξ
n
∥
2
+ κ|||ξ k

|||
2

≤ 21t
k

n=1

(∥∂tη
n
∥
2
+ ∥rn∥2) + C1t

k
n=1

|||∂tξ
n
|||
2
+ C1t

k
n=1

|||ξ n
|||
2. (4.10)

From (4.1) we have

1
1t


∂tξ

n
− ∂tξ

n−1, vh

+ aϵ(vh, ∂tξ

n) =

∂ttη

n, vh

+ (∂t rn, vh), ∀vh ∈ Sh(Th). (4.11)

Let vh = ∂tξ
n in (4.11). Then

1
21t


∥∂tξ

n
∥
2
− ∥∂tξ

n−1
∥
2

+ κ|||∂tξ
n
|||
2

≤ (∥∂ttη
n
∥ + ∥∂t rn∥)∥∂tξ n

∥.

Multiplying the equation by 21t , and taking summation over n, we obtain

∥∂tξ
k
∥
2
+ 1t

k
n=2

|||∂tξ
n
|||
2

≤ C1t
k

n=2

(∥∂ttη
n
∥
2
+ ∥∂t rn∥2) + C∥∂tξ

1
∥
2. (4.12)

Set n = 1 and vh = ∂tξ
1

= ξ 1/1t in (4.1), then we have

∥∂tξ
1
∥
2
+

1
1t

aϵ(ξ
1, ξ 1) ≤ (∥∂tη

1
∥ + ∥r1∥)∥∂tξ 1

∥.

Applying the coercivity of a(·, ·) and Young’s inequality, we have

∥∂tξ
1
∥
2
+

1
1t

|||ξ 1
|||
2

≤ C(∥∂tη
1
∥
2
+ ∥r1∥2).

Note that 1t|||∂tξ 1
|||
2

= |||ξ 1
|||
2/1t . Substituting the above inequality into (4.12) we have

k
n=1

1t|||∂tξ n
|||
2

≤ C
k

n=2

1t(∥∂ttηn
∥
2
+ ∥∂t rn∥2) + C(∥∂tη

1
∥
2
+ ∥r1∥2). (4.13)

Substituting (4.13) in (4.10), and applying the Gronwall inequality, we obtain

|||ξ k
|||
2

≤

k
n=1

1t(∥∂tηn
∥
2
+ ∥rn∥2) + C

k
n=2

1t(∥∂ttηn
∥
2
+ ∥∂t rn∥2) + C(∥∂tη

1
∥
2
+ ∥r1∥2). (4.14)

Now we bound the last four right-hand side terms in (4.14). First

∥∂ttη
n
∥
2

=


Ω


ηn

− 2ηn−1
+ ηn−2

(1t)2

2

dx

=


Ω


1

(1t)2

 tn

tn−1
ηtt(tn − t)dt −

1
(1t)2

 tn−1

tn−2
ηtt(tn−1

− t)dt

2

dx

≤
1

31t

 tn

tn−2
∥ηtt∥

2dt.
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By (3.6), we have

1t
k

n=2

∥∂ttη
n
∥
2

≤ Ch2
∥utt∥

2
L2(0,T ;H̃3(Ω))

. (4.15)

For the second term,

∂t rn =
un
t − un−1

t

1t
−

un
− 2un−1

+ un−2

(1t)2

=

 tn

tn−1
utttdt −

1
(1t)2

 tn

tn−1
uttt(tn−1

− t)2dt +
1

(1t)2

 tn−1

tn−2
uttt(t − tn−2)2dt.

Applying Hölder’s inequality, we get
k

n=2

1t∥∂t rn∥2
≤ (1t)2

k
n=2

 tn

tn−1
∥uttt∥

2dt +
1
5

 tn

tn−1
∥uttt∥

2dt +
1
5

 tn−1

tn−2
∥uttt∥

2dt


≤ C(1t)2∥uttt∥

2
L2(0,T ;L2(Ω))

. (4.16)

As for the last two terms, we have

∥∂tη
1
∥
2

≤
1

1t

 1t

0
∥ηt∥

2dt ≤ h2


1
1t

 1t

0
∥ut∥

2
H̃3(Ω)

dt


(4.17)

and

∥r1∥2
=


Ω

|u1
t − ∂tu1

|
2dx ≤

(1t)2

3


1

1t

 1t

0
∥utt∥

2dt


. (4.18)

Now, substituting (4.5), (4.6) and (4.15)–(4.18) into (4.14), we obtain

|||ξ k
|||
2

≤ Ch2


∥ut∥
2
L2(0,T ;H̃3(Ω))

+ ∥utt∥
2
L2(0,T ;H̃3(Ω))

+
1

1t

 1t

0
∥ut∥

2
H̃3(Ω)

dt


+ C(1t)2


∥utt∥
2
L2(0,T ;L2(Ω))

+ ∥uttt∥
2
L2(0,T ;L2(Ω))

+
1

1t

 1t

0
∥utt∥

2dt


.

Now, we summarize all the analysis above for the backward Euler DG-IFE method in the following theorem.

Theorem 4.1. Assume the exact solution u of (1.1)–(1.5) satisfies u ∈ H2(0, T ; H̃3(Ω))∩H3(0, T ; L2(Ω)) and u0 ∈ H̃3(Ω). Let
the sequence


un
h

Nt
n=0 be the solution of the backward Euler scheme (2.9)–(2.10). Then, we have the following estimates satisfied

for all 0 ≤ n ≤ Nt

(1) If ϵ = −1, then there exists a positive constant C independent of h and 1t such that

|||un
h − un

||| ≤ C

h

∥u0∥H̃3(Ω) + ∥ut∥L2(0,T ;H̃3(Ω))


+ 1t∥utt∥L2(0,T ;L2(Ω))


. (4.19)

(2) If ϵ = 0 or 1, then there exists a positive constant C independent of h and 1t such that

|||un
h − un

||| ≤ Ch


∥u0∥H̃3(Ω) + ∥ut∥L2(0,T ;H̃3(Ω)) + ∥utt∥L2(0,T ;H̃3(Ω)) +


1

1t

 1t

0
∥ut∥

2
H̃3(Ω)

dt
1/2



+ C1t


∥utt∥L2(0,T ;L2(Ω)) + ∥uttt∥L2(0,T ;L2(Ω)) +


1

1t

 1t

0
∥utt∥

2dt
1/2


. (4.20)

4.2. Crank–Nicolson scheme

Nowwe consider the error analysis for the Crank–Nicolson scheme corresponding to θ = 1/2 in (2.9). We only consider
the symmetric case in which ϵ = −1.

From (2.5), (2.9) and (3.2), we have
∂tξ

n, vh

+

1
2
aϵ(ξ

n
+ ξ n−1, vh) = (∂tη

n, vh) + (rn1 , vh) + (rn2 , vh), ∀vh ∈ Sh(Th), (4.21)

where

rn1 = un−1/2
t −

1
2
(un

t + un−1
t ), rn2 = −(un−1/2

t − ∂tun).
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Taking vh = ∂tξ
n

= (ξ n
− ξ n−1)/1t , we get

∥∂tξ
n
∥
2
+

1
21t

aϵ(ξ
n
+ ξ n−1, ξ n

− ξ n−1) ≤


∥∂tη

n
∥ + ∥rn1∥ + ∥rn2∥


∥∂tξ

n
∥

≤ C

∥∂tη

n
∥
2
+ ∥rn1∥

2
+ ∥rn2∥

2


+
1
2
∥∂tξ

n
∥
2. (4.22)

Due to the symmetry of aϵ(·, ·) (when ϵ = −1) we have

∥∂tξ
n
∥
2
+

1
21t


aϵ(ξ

n, ξ n) − aϵ(ξ
n−1, ξ n−1)


≤


∥∂tη

n
∥ + ∥rn1∥ + ∥rn2∥


∥∂tξ

n
∥

≤ C

∥∂tη

n
∥
2
+ ∥rn1∥

2
+ ∥rn2∥

2

. (4.23)

Multiplying (4.23) by 21t and summing over n, we have

κ|||ξ k
|||
2

≤ aϵ(ξ
k, ξ k) ≤ C

k
n=1

1t

∥∂tη

n
∥
2
+ ∥rn1∥

2
+ ∥rn2∥

2

. (4.24)

Note that (4.5) provides a bound for ∥∂tη
n
∥
2, hence we only need to estimate ∥rn1∥

2 and ∥rn2∥
2. Applying Taylor formula and

Hölder’s inequality, we obtain

∥rn1∥
2

=


Ω


un−1/2
t −

1
2
(un

t + un−1
t )

2
dx

=


Ω

1
4

 tn−1/2

tn−1
uttt(t − tn−1)dt +

 tn

tn−1/2
uttt(tn − t)dt

2

dx

≤ C(1t)3
 tn

tn−1
∥uttt∥

2dt, (4.25)

and similarly

∥rn2∥
2

≤ C(1t)3
 tn

tn−1
∥uttt∥

2dt. (4.26)

Put (4.5), (4.25) and (4.26) in (4.24) then we have

|||ξ k
|||
2

≤ C

h2

∥ut∥
2
L2(0,T ;H̃3(Ω))

+ (1t)4∥uttt∥
2
L2(0,T ;L2(Ω))


.

Now we summarize the result in the following theorem.

Theorem 4.2. Assume that u ∈ H1(0, T ; H̃3(Ω)) ∩ H3(0, T ; L2(Ω)) is a solution to the interface problem (1.1)–(1.5) and
u0 ∈ H̃3(Ω). Assume


un
h

Nt
n=0 is the solution of Crank–Nicolson scheme (2.9)–(2.10) with ϵ = −1. Then, there exists a positive

constant C independent of h and 1t such that for all 0 ≤ n ≤ Nt

|||un
h − un

||| ≤ C

h(∥u0∥H̃3(Ω) + ∥ut∥L2(0,T ;H̃3(Ω))) + (1t)2∥uttt∥L2(0,T ;L2(Ω))


. (4.27)

5. Numerical examples

In this section, we report some numerical results of DG-IFE methods for parabolic interface problems. Let the solution
domain be Ω × [0, T ], where Ω is the unit square (0, 1) × (0, 1), and T = 1. The interface curve Γ is an ellipse centered at
the point (x0, y0) with semi-radius a and b. The parametric form is given by

x = x0 + a cos(θ),
y = y0 + b sin(θ).

(5.1)

In our computation, we choose x0 = y0 = 0, a = π/4, b = π/6, and we consider the first quadrant of the ellipse as the
interface, i.e., θ ∈ [0, π

2 ]. Note that the interface curve Γ touches the boundary of Ω and separates Ω into two sub-domains
denoted by

Ω−
= {x : r(x) < 1}, and Ω+

= {x : r(x) > 1}
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Table 1
Errors of nonsymmetric DG-IFE solutions with β−

= 1, β+
= 10.

Ns Backward Euler Crank–Nicolson
∥ · ∥L∞ Rate ∥ · ∥L2 Rate | · |H1 Rate ∥ · ∥L∞ Rate ∥ · ∥L2 Rate | · |H1 Rate

10 1.85E−1 1.37E−1 2.16E−0 2.43E−1 1.59E−1 2.21E−0
20 5.06E−2 1.87 3.52E−2 1.96 1.08E−0 1.01 5.00E−2 2.28 3.65E−2 2.13 1.07E−0 1.04
40 1.38E−2 1.87 9.16E−3 1.94 5.41E−1 0.99 1.34E−2 1.90 9.43E−3 1.95 5.40E−1 0.99
80 3.77E−3 1.87 2.41E−3 1.93 2.71E−1 1.00 3.43E−3 1.96 2.36E−3 2.00 2.70E−1 1.00

160 1.05E−3 1.84 6.65E−4 1.86 1.36E−1 1.00 8.59E−4 2.00 5.92E−4 2.00 1.36E−1 1.00
320 3.21E−4 1.71 1.97E−4 1.75 6.80E−2 1.00 2.18E−4 1.98 1.48E−4 2.00 6.80E−2 1.00

Table 2
Errors of symmetric DG-IFE solutions with β−

= 1, β+
= 10.

Ns Backward Euler Crank–Nicolson
∥ · ∥L∞ Rate ∥ · ∥L2 Rate | · |H1 Rate ∥ · ∥L∞ Rate ∥ · ∥L2 Rate | · |H1 Rate

10 8.91E−2 6.19E−2 2.11E−0 1.11E−1 6.63E−2 2.12E−0
20 2.56E−2 1.80 1.523−2 2.02 1.07E−0 0.98 1.63E−2 2.77 1.70E−2 1.96 1.07E−0 0.99
40 6.91E−3 1.89 3.85E−3 1.98 5.40E−1 0.99 4.65E−3 1.81 4.13E−3 2.05 5.39E−1 0.98
80 1.91E−3 1.86 1.04E−3 1.89 2.71E−1 0.99 1.33E−3 1.80 1.07E−3 2.02 2.71E−1 0.99

160 5.15E−4 1.89 3.06E−4 1.76 1.36E−1 1.00 3.97E−4 1.75 2.52E−4 2.01 1.36E−1 1.00
320 1.35E−4 1.92 1.04E−4 1.57 6.79E−1 1.00 1.17E−4 1.76 6.27E−5 2.01 6.79E−1 1.00

where

r(x) = r(x, y) =


(x − x0)2

a2
+

(y − y0)2

b2
.

The source function f and the boundary function g in the parabolic interface problem are chosen such that the exact solution
u is as follows

u(x, t) =


1

β−
r(x)pet , if x ∈ Ω−,
1

β+
r(x)p −

1
β+

+
1

β−


et , if x ∈ Ω+,

(5.2)

where p = 5 and the coefficients β± vary in different examples.
We use Cartesian rectangular meshes Th, h > 0 formed by partitioning Ω into Ns × Ns congruent rectangles of size

h = 1/Ns for a set of integersNs. For the fully discretization, we divide the time interval [0, T ] uniformly intoNt subintervals
with tn = n1t , n = 0, 1, . . . ,Nt , and 1t = T/Nt .

Example 1: moderate jump (β−, β+) = (1, 10)

First we choose diffusion coefficient (β−, β+) = (1, 10)which represents a moderate discontinuity across the interface.
Both the nonsymmetric and symmetric DG-IFE schemes are employed to solve the elliptic interface problem at each time
level. We choose the penalty parameters σe = 100 for symmetric DG-IFE scheme and σe = 1 for nonsymmetric DG-IFE
scheme. Backward Euler and Crank–Nicolson schemes are used for fully discretization. Errors of IFE solutions in L∞, L2, and
semi-H1 norms are computed at the final time level, i.e., t = 1. Data listed in Tables 1 and 2 are generated with time step
size 1t = 2h.

In Tables 1 and 2, errors in semi-H1 norm, which is equivalent to energy norm, have optimal convergence rate O(h) for
both nonsymmetric and symmetric DG-IFE schemes. These results confirm our theoretical error analysis (4.19) and (4.20)
for backward Euler error estimation and (4.27) for Crank–Nicolson error estimation. We also note that convergence rate
of errors of Crank–Nicolson solutions in L2 norm is O(h2), although we do not have the corresponding theoretical analysis
yet. For backward Euler, the L2 convergence rate is decreasing from O(h2) to O(h) as we perform uniformmesh refinement.
Because for small h, error in time discretization dominates, which has only the first order.

Example 2: flipped coefficient (β−, β+) = (10, 1)

In this examplewe test the robustness of the algorithm by flipping the diffusion coefficient such that (β−, β+) = (10, 1).
This represents a change of the material property. Again, we use both nonsymmetric and symmetric DG-IFE schemes. The
penalty parameters are chosen as σe = 100 for symmetric DG-IFE scheme and σe = 1 for nonsymmetric DG-IFE scheme.
Errors of IFE solutions are computed at the final time level, i.e., t = 1, and are reported in Tables 3 and 4. We can see that
the pattern of error decay is similar to the first example.
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Table 3
Errors of nonsymmetric DG-IFE solutions with β−

= 10, β+
= 1.

Ns Backward Euler Crank–Nicolson
∥ · ∥L∞ Rate ∥ · ∥L2 Rate | · |H1 Rate ∥ · ∥L∞ Rate ∥ · ∥L2 Rate | · |H1 Rate

10 9.37E−1 8.37E−1 1.82E+1 1.19E−0 8.66E−1 1.83E+1
20 2.64E−1 1.83 2.29E−1 1.87 9.08E−0 1.00 1.87E−1 2.67 2.23E−1 1.96 9.06E−0 1.01
40 7.50E−2 1.81 6.37E−2 1.85 4.53E−0 1.00 5.21E−2 1.84 5.72E−2 1.96 4.53E−0 1.00
80 2.22E−2 1.76 1.87E−2 1.77 2.27E−0 1.00 1.40E−2 1.90 1.45E−2 1.98 2.26E−0 1.00

160 9.12E−3 1.28 6.06E−3 1.63 1.13E−0 1.00 3.62E−3 1.95 3.64E−3 1.99 1.13E−0 1.00
320 4.07E−3 1.16 2.22E−3 1.45 5.66E−1 1.00 9.24E−4 1.97 9.14E−4 2.00 5.66E−1 1.00

Table 4
Errors of symmetric DG-IFE solutions with β−

= 10, β+
= 1.

Ns Backward Euler Crank–Nicolson
∥ · ∥L∞ Rate ∥ · ∥L2 Rate | · |H1 Rate ∥ · ∥L∞ Rate ∥ · ∥L2 Rate | · |H1 Rate

10 7.23E−1 5.56E−1 1.81E+1 9.04E−1 5.61E−1 1.81E+1
20 2.18E−1 1.73 1.41E−1 1.98 9.07E−0 1.00 1.79E−1 2.34 1.38E−1 2.02 9.06E−0 1.00
40 6.21E−2 1.82 3.88E−2 1.86 4.53E−0 1.00 5.54E−2 1.69 3.35E−2 2.04 4.53E−0 1.00
80 1.75E−2 1.83 1.20E−2 1.69 2.26E−0 1.00 1.60E−2 1.80 8.24E−3 2.02 2.26E−0 1.00

160 5.93E−3 1.56 4.33E−3 1.48 1.13E−0 1.00 4.54E−3 1.82 2.04E−3 2.01 1.13E−0 1.00
320 3.26E−3 0.86 1.78E−3 1.28 5.66E−1 1.00 1.24E−3 1.88 5.08E−4 2.01 5.66E−1 1.00

Table 5
Errors of nonsymmetric DG-IFE solutions with β−

= 1, β+
= 10 000.

Ns Backward Euler Crank–Nicolson
∥ · ∥L∞ Rate ∥ · ∥L2 Rate | · |H1 Rate ∥ · ∥L∞ Rate ∥ · ∥L2 Rate | · |H1 Rate

10 1.39E−1 3.06E−2 1.08E−0 1.80E−1 3.22E−2 1.10E−0
20 5.07E−2 1.46 8.67E−3 1.82 5.68E−1 0.93 3.67E−2 2.29 8.89E−3 1.86 5.64E−1 0.97
40 1.36E−2 1.89 2.33E−3 1.89 2.94E−1 0.95 1.08E−2 1.76 2.35E−3 1.92 2.93E−1 0.95
80 3.64E−3 1.90 6.16E−3 1.92 1.49E−1 0.98 3.24E−3 1.74 6.04E−3 1.96 1.49E−1 0.98

160 1.03E−3 1.82 1.63E−4 1.92 7.50E−2 0.99 9.52E−4 1.77 1.50E−4 2.01 7.49E−2 0.99
320 2.78E−4 1.89 4.68E−5 1.80 3.76E−2 0.99 2.59E−4 1.88 3.86E−5 1.96 3.76E−2 0.99

Table 6
Errors of nonsymmetric DG-IFE solutions with β−

= 10 000, β+
= 1.

Ns Backward Euler Crank–Nicolson
∥ · ∥L∞ Rate ∥ · ∥L2 Rate | · |H1 Rate ∥ · ∥L∞ Rate ∥ · ∥L2 Rate | · |H1 Rate

10 9.36E−1 8.33E−1 1.82E+1 1.19E−0 8.61E−1 1.83E+1
20 2.64E−1 1.83 2.26E−1 1.88 9.08E−0 1.00 1.87E−1 2.67 2.20E−1 1.97 9.06E−0 1.01
40 7.50E−2 1.81 6.27E−2 1.85 4.53E−0 1.00 5.21E−2 1.84 5.64E−2 1.96 4.53E−0 1.00
80 2.17E−2 1.79 1.83E−2 1.78 2.27E−0 1.00 1.40E−2 1.90 1.43E−2 1.98 2.26E−0 1.00

160 8.92E−3 1.28 5.89E−3 1.64 1.13E−0 1.00 3.62E−3 1.95 3.59E−3 1.99 1.13E−0 1.00
320 3.99E−3 1.16 2.14E−3 1.46 5.66E−1 1.00 9.24E−4 1.97 8.99E−5 2.00 5.66E−1 1.00

Example 3: large jump (β−, β+) = (1, 10 000) and (β−, β+) = (10 000, 1)

In this example we enlarge the contrast of the diffusion coefficient such that (β−, β+) = (1, 10 000), and (β−, β+) =

(10 000, 1). Hereweuse nonsymmetric DG-IFE scheme and the penalty parameter is chosen asσe = 1. Data listed in Tables 5
and 6 are generated with time step size 1t = 2h.

For all examples above, we also experimented linear IFE functions on structured triangular meshes, which is formed by
cutting each rectangle of Th into two triangles. The numerical results are very similar to the rectangular meshes; hence, we
omit the data in this article.

6. Conclusion

In this article, we developed a class of discontinuous Galerkin scheme for solving parabolic interface problem. Taking
advantages of immersed finite element functions, the proposed methods can be used on Cartesian mesh regardless of the
location of interface. A priori error estimation shows that these DG-IFE methods converge to exact solution with an optimal
order in the energy norm.
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