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I. INTRODUCTION

In this article, we consider the following parabolic equation with the Dirichlet boundary condition

∂u

∂t
− ∇ · (β∇u) = f (X, t), X = (x, y) ∈ �+ ∪ �−, t ∈ (0, T ], (1.1)

u|∂� = g(X, t), t ∈ (0, T ], (1.2)

u|t=0 = u0(X), X ∈ �. (1.3)

Here, � is a rectangular domain or a union of several rectangular domains in R
2. The

interface � ⊂ � is a smooth curve separating � into two subdomains �− and �+ such that
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FIG. 1. The simulation domain � (left), body-fitting mesh (middle), and non-body-fitting mesh (right).
[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

� = �− ∪ �+ ∪ �, see the left plot in Fig. 1. The diffusion coefficient β is discontinuous across
the interface, and it is assumed to be a piecewise constant function such that

β(X) =
{

β−, X ∈ �−,

β+, X ∈ �+,

and min{β−, β+} > 0. We assume that the exact solution u to the above initial boundary value
problem satisfies the following jump conditions across the interface �:

[[u]]� = 0, (1.4)[[
β

∂u

∂n

]]
�

= 0. (1.5)

Interface problems appear in many applications of engineering and science; therefore, it is of
great importance to solve interface problems efficiently. When conventional finite element (FE)
methods are used to solve interface problems, body-fitting meshes (see the mid plot in Fig. 1)
have to be used to guarantee their optimal convergence [1–4]. Such a restriction hinders their
applications in some situations because it prevents the use of Cartesian mesh unless the inter-
face has a very simple geometry such as an axis-parallel straight line. Recently, immersed finite
element (IFE) methods have been developed to overcome such a limitation of traditional finite
element methods for solving interface problems, see [5–15]. The main feature of IFE methods is
that they can use interface independent meshes; hence, structured or even Cartesian meshes can
be used to solve problems with nontrivial interface geometry (see the right plot in Fig. 1). Most of
IFE methods are developed for stationary interface problems. There are a few literatures of IFEs
on time-dependent interface problems. For instance, an immersed Eulerian–Lagrangian localized
adjoint method was developed to treat transient advection–diffusion equations with interfaces in
[16]. In [17], IFE methods were applied to parabolic interface problem together with the Lapla-
cian transform. Parabolic problems with moving interfaces were considered in [18–20] where
Crank–Nicolson-type fully discrete IFE methods and IFE method of lines were derived through
the Galerkin formulation.

For elliptic interface problems, classic IFE methods in Galerkin formulation [10–12] can usu-
ally converge to the exact solution with optimal order in H1 and L2 norm. Recently, the authors
in [13, 15] observed that their orders of convergence in both H1 and L2 norms can sometimes
deteriorate when the mesh size becomes very small, and this order degeneration might be the
consequence of the discontinuity of IFE functions across interface edges (edges intersected with
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PPIFE METHODS FOR PARABOLIC INTERFACE PROBLEMS 3

the interface). Note that IFE functions in [10–12] are constructed so that they are continuous
within each interface element. On the boundary of an interface element, the continuity of these
IFE functions is only imposed on two endpoints of each edge. This guarantees the continuity of
IFE functions on noninterface edges. However, an IFE function is a piecewise polynomial on each
interface edge; hence it is usually discontinuous on interface edges. This discontinuity depends
on the interface location and the jump of coefficients, and could be large for certain configuration
of interface element and diffusion coefficient. When the mesh is refined, the number of interface
elements becomes larger, and such discontinuity over interface edges might be a factor negatively
impacting on the global convergence.

To overcome the order degeneration of convergence, a partially penalized immersed finite
element (PPIFE) formulation was introduced in [13, 15]. In the new formulation, additional sta-
bilization terms generated on interface edges are added to the finite element equations that can
penalize the discontinuity of IFE functions across interface edges. Since the number of interface
edges is much smaller than the total number of elements of a Cartesian mesh, the computa-
tional cost for generating those partial penalty terms is negligible. For elliptic interface problems,
the PPIFE methods can effectively reduce errors around interfaces; hence, maintain the optimal
convergence rates under mesh refinement without degeneration.

Our goal here is to develop PPIFE methods for the parabolic interface problem (1.1)–(1.5) and
to derive the a priori error estimates for these methods. We present the semidiscrete method and
two prototypical fully discrete methods, that is, the backward Euler method and Crank–Nicolson
method in Section II. In Section III, the a priori error estimates are derived for these methods,
which indicate the optimal convergence from the point of view of polynomials used in the involved
IFE subspaces. Finally, numerical examples are provided in Section IV to validate the theoretical
estimates.

In the discussion below, we will use a few general assumptions and notations. First, from now
on, we will tacitly assume that the interface problem has a homogeneous boundary condition,
that is, g = 0 for the simplicity of presentation. The methods and related analysis can be easily
extended to problems with a nonhomogeneous boundary condition through a standard procedure.
Second, we will adopt standard notations and norms of Sobolev spaces. For r ≥ 1, we define the
following function spaces:

H̃ r(�) = {v : v|�s ∈ Hr(�s), s = + or −}

equipped with the norm

||v||2
H̃ r (�)

= ||v||2
Hr (�−)

+ ||v||2
Hr (�+)

, ∀v ∈ H̃ r(�).

For a function z(X, t) with space variable X = (x, y) and time variable t, we consider it as a
mapping from the time interval [0, T ] to a normed space V equipped with the norm || · ||V . In
particular, for an integer k ≥ 1, we define

Lk(0, T ; V ) =
{
z : [0, T ] → V measurable, such that

∫ T

0
||z(·, t)||kV dt < ∞

}

with

||z||Lk(0,T ;V ) =
(∫ T

0
||z(·, t)||kV dt

)1/k

.
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Also, for V = H̃ r(�), we will use the standard function space Hp(0, T ; H̃ r(�)) for
p ≥ 0, r ≥ 1.

In addition, we will use C with or without subscript to denote a generic positive constant which
may have different values according to its occurrence. For simplicity, we will use ut , ut t , and so
forth, to denote the partial derivatives of a function u with respect to the time variable t.

II. PPIFE METHODS

In this section, we first derive a weak formulation of the parabolic interface problem (1.1)–(1.5)
based on Cartesian meshes. Then we recall bilinear IFE functions and spaces defined on rectangu-
lar meshes from [7, 12]. The construction of linear IFE functions on triangular meshes is similar,
so we refer to [10, 11] for more details. Finally, we introduce the PPIFE methods for the parabolic
interface problem.

A. Weak Form on Continuous Level

Let Th be a Cartesian (either triangular or rectangular) mesh consisting of elements whose diam-
eters are not larger than h. We denote by Nh and Eh the set of all vertices and edges in Th,
respectively. The set of all interior edges are denoted by E̊h. If an element is cut by the interface
�, we call it an interface element; otherwise, it is called a noninterface element. Let T i

h be the set
of interface elements and T n

h be the set of noninterface elements. Similarly, we define the set of
interface edges and the set of noninterface edges which are denoted by E i

h and En
h , respectively.

Also, we use E̊ i
h and E̊n

h to denote the set of interior interface edges and interior noninterface edges,
respectively. With the assumption that � ⊂ � we have E̊ i

h = E i
h.

We assign a unit normal vector nB to every edge B ∈ Eh. If B is an interior edge, we let KB,1

and KB,2 be the two elements that share the common edge B and we assume that the normal vector
nB is oriented from KB,1 to KB,2. For a function u defined on KB,1 ∪ KB,2, we set its average and
jump on B as follows

{{u}}B = 1

2

(
(u|KB,1)|B + (u|KB,2)|B

)
, [[u]]B = (u|KB,1)|B − (u|KB,2)|B .

If B is on the boundary ∂�, nB is taken to be the unit outward vector normal to ∂�, and we let

{{u}}B = [[u]]B = u|B .

For simplicity, we often drop the subscript B from these notations if there is no danger to cause
any confusions.

Without loss of generality, we assume that the interface � intersects with the edge of each
interface element K ∈ T i

h at two points. We then partition K into two subelements K− and K+

by the line segment connecting these two interface points, see the illustration given in Fig. 2.
To describe a weak form for the parabolic interface problem, we introduce the following space

Vh = {v ∈ L2(�) : v satisfies conditions (HV1) − (HV4)} (2.1)

(HV1) v|K ∈ H 1(K), v|Ks ∈ H 2(Ks), s = ±, ∀K ∈ Th.
(HV2) v is continuous at every X ∈ Nh.
(HV3) v is continuous across each B ∈ E̊n

h .

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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FIG. 2. An interface element. [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

(HV4) v|∂� = 0.
Note that functions in Vh are allowed to be discontinuous on interface edges. We now derive a

weak form with the space Vh for the parabolic interface problem (1.1)–(1.5). First, we assume that
its exact solution u is in H̃ 2(�). Then, we multiply equation (1.1) by a test function v ∈ Vh and
integrate both sides on each element K ∈ Th. If K is a noninterface element, a direct application
of Green’s formula leads to∫

K

utvdX +
∫

K

β∇u · ∇vdX −
∫

∂K

β∇u · nKvds =
∫

K

f vdX. (2.2)

If K is an interface element, we assume that the interface � intersects ∂K at points D and
E. Then, without loss of generality, we assume that � and the line DE divide K into up to four
subelements, see the illustration in Fig. 2 for a rectangle interface element, such that

K = (�+ ∩ K+) ∪ (�− ∩ K−) ∪ (�+ ∩ K−) ∪ (�− ∩ K+).

Now, applying Green’s formula separately on these four subelements, we get

−
∫

K

∇ · (β∇u)vdX

= −
∫

�+∩K+
∇ · (β+∇u)vdX −

∫
�−∩K−

∇ · (β−∇u)vdX

−
∫

�+∩K−
∇ · (β+∇u)vdX −

∫
�−∩K+

∇ · (β−∇u)vdX

=
∫

�+∩K+
β+∇u · ∇vdX −

∫
∂(�+∩K+)

β+∇u · nvds +
∫

�−∩K−
β−∇u · ∇vdX

−
∫

∂(�−∩K−)

β−∇u · nvds

+
∫

�+∩K−
β+∇u · ∇vdX −

∫
∂(�+∩K−)

β+∇u · nvds +
∫

�−∩K+
β−∇u · ∇vdX

−
∫

∂(�−∩K+)

β−∇u · nvds

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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=
∫

K

β∇u · ∇vdX −
∫

∂K

β∇u · nvds −
∫

K∩�

[[β∇u · n]]K∩�vds

=
∫

K

β∇u · ∇vdX −
∫

∂K

β∇u · nvds. (2.3)

The last equality is due to the interface jump condition (1.5). The derivation of (2.3) implies
that (2.2) also holds on interface elements.

Remark 2.1. Fig. 2 is a typical configuration of an interface element. If the interface is smooth
enough and the mesh size is sufficiently small, an interface element is usually divided into three
subelements, that is, one of the two terms �+ ∩ K− and �− ∩ K+ is an empty set. In this case,
the related discussion is similar but slightly simpler.

Summarizing (2.2) over all elements indicates

∫
�

utvdX +
∑
K∈Th

∫
K

β∇u · ∇vdX −
∑
B∈E̊i

h

∫
B

{{β∇u · nB}} [[v]]ds =
∫

�

f vdX. (2.4)

Let Hh = H̃ 2(�) + Vh on which we introduce a bilinear form aε: Hh × Hh → R:

aε(w, v) =
∑
K∈Th

∫
K

β∇v · ∇wdX −
∑
B∈E̊i

h

∫
B

{{β∇w · nB}} [[v]]ds

+ ε
∑
B∈E̊i

h

∫
B

{{β∇v · nB}} [[w]]ds +
∑
B∈E̊i

h

∫
B

σ 0
B

|B|α [[v]][[w]]ds, (2.5)

where α > 0, σ 0
B ≥ 0, and |B| means the length of B. Note that the regularity of u leads to

ε
∑
B∈E̊i

h

∫
B

{{β∇v · nB}} [[u]]ds = 0,
∑
B∈E̊i

h

∫
B

σ 0
B

|B|α [[v]][[u]]ds = 0.

We also define the following linear form

L(v) =
∫

�

f vdX.

Finally, we have the following weak form of the parabolic interface problem (1.1)–(1.5): find
u : [0, T ] → H̃ 2(�) that satisfies (1.4), (1.5), and

(ut , v) + aε(u, v) = L(v), ∀v ∈ Vh, (2.6)

u(X, 0) = u0(X), ∀X ∈ �. (2.7)

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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FIG. 3. Types I and II interface rectangles. [Color figure can be viewed in the online issue, which is available
at wileyonlinelibrary.com.]

B. IFE Functions

In this subsection, to be self-contained, we recall IFE spaces that approximate Vh. We describe
the bilinear IFE space with a little more details, and refer readers to [10, 11] for corresponding
descriptions of the linear IFE space on a triangular Cartesian mesh. Since an IFE space uses
standard finite element functions on each noninterface element, we will focus on the presentation
of IFE functions on interface elements.

The bilinear (Q1) IFE functions were introduced in [7, 12]. On each interface element, a local
IFE space uses IFE functions in the form of piecewise bilinear polynomials constructed according
to interface jump conditions. Specifically, we partition each interface element K = �A1A2A3A4

into two subelements K− and K+ by the line connecting points D and E where the interface �

intersects with ∂K , see Fig. 3 for illustrations. Then we construct four bilinear IFE shape functions
φi , i = 1, 2, 3, 4 associated with the vertices of K such that

φi(x, y) =
{

φ+
i (x, y) = a+

i + b+
i x + c+

i y + d+
i xy, if (x, y) ∈ K+,

φ−
i (x, y) = a−

i + b−
i x + c−

i y + d−
i xy, if (x, y) ∈ K−,

(2.8)

according to the following constraints:

• nodal value condition:

φi(Aj ) = δij , i, j = 1, 2, 3, 4. (2.9)

• continuity on DE

[[φi(D)]] = 0, [[φi(E)]] = 0,

[[
∂2φi

∂x∂y

]]
= 0. (2.10)

• continuity of normal component of flux∫
DE

[[
β

∂φi

∂n

]]
ds = 0. (2.11)

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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FIG. 4. Bilinear FE/IFE local basis functions. From left: FE, IFE (Type I), IFE (Type II). [Color figure can
be viewed in the online issue, which is available at wileyonlinelibrary.com.]

It has been shown [6, 7] that conditions specified in (2.9)–(2.11) can uniquely determine these
shape functions. Fig. 4 provides a comparison of FE and IFE shape functions.

Similarly, see more details in [10, 11], on a triangular interface element K = �A1A2A3, we
can construct three linear IFE shape functions φi , i = 1, 2, 3 that satisfy the first two equations in
(2.10), (2.11), and

φi(Aj ) = δij , i, j = 1, 2, 3.

These IFE shape functions possess a few notable properties such as their consistence with
the corresponding standard Lagrange type FE shape functions and their formation of partition of
unity. We refer readers to [6, 7, 10, 15] for more details.

Then, on each element K ∈ Th, we define the local IFE space as follows:

Sh(K) = span{φi , 1 ≤ i ≤ dK}, dK =
{

3, if K is a triangular element,

4, if K is a rectangular element,

where φi , 1 ≤ i ≤ dK are the standard linear or bilinear Lagrange type FE shape functions for
K ∈ T n

h ; otherwise, they are the IFE shape functions described above. Finally, the IFE spaces on
the whole solution domain � are defined as follows:

Sh(�) = {v ∈ Vh : v|K ∈ Sh(K), ∀K ∈ Th}.

Remark 2.2. We note that an IFE function may not be continuous across the element boundary
that intersects with the interface. An IFE shape function is usually not zero on an interface edge,
see the values on the edge between the points (0, 0) and (0, 1) for the two IFE shape functions
plotted in Fig. 4. On this interface edge, the shape functions vanish at two endpoints, but not on
the entire edge. The maximum of the absolute values of the shape on that edge is determined by
the geometrical and material configuration on an interface element. When the local IFE shape
functions are put together to form a Lagrange type global IFE basis function associated with a
node in a mesh, it is inevitably to be discontinuous on interface edges in elements around that
node, as illustrated by the cracks in a global IFE basis function plotted in Fig. 5. As observed
in [13, 15], this discontinuity on interface edges might be a factor causing the deterioration of
the convergence of classic IFE solution around the interface, and this motivates us to add partial
penalty on interface edges for alleviating this adversary.

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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FIG. 5. Bilinear FE (left) and IFE (right) global basis functions. [Color figure can be viewed in the online
issue, which is available at wileyonlinelibrary.com.]

C. PPIFE Methods

In this subsection, we use the global IFE space Sh(�) to discretize the weak form (2.6) and
(2.7) for the parabolic interface problem. While the standard semidiscrete or many fully discrete
frameworks can be applied, we will focus on the following prototypical schemes because of their
popularity.

A Semidiscrete PPIFE Method Find uh : [0, T ] → Sh(�) such that

(
uh,t , vh

) + aε(uh, vh) = L(vh), ∀vh ∈ Sh(�), (2.12)

uh(X, 0) = ũh0(X), ∀X ∈ �, (2.13)

where ũh0 is an approximation of u0 in the space Sh(�). According to the analysis to be carried
out in the next section, ũh0 can be chosen as the interpolation of u0 or the elliptic projection of u0

in the IFE space Sh(�).

A Fully Discrete PPIFE Method For a positive integer Nt , we let �t = T /Nt which is the
time step and let tn = n�t for integer n ≥ 0. Also, for a sequence ϕn, n ≥ 1, we let

∂tϕ
n = ϕn − ϕn−1

�t
.

Then, the fully discrete PPIFE method is to find a sequence {un
h}Nt

n=1 of functions in Sh(�) such
that

(
∂tu

n
h, vh

) + aε(θun
h + (1 − θ)un−1

h , vh) = θLn(vh) + (1 − θ)Ln−1(vh), ∀vh ∈ Sh(�), (2.14)

u0
h(X) = ũh0(X), ∀X ∈ �. (2.15)

Numerical Methods for Partial Differential Equations DOI 10.1002/num



10 LIN, YANG, AND ZHANG

Here, Ln(vh) = ∫
�

f (X, tn)vh(X)dX, n ≥ 0 and θ is a parameter chosen from [0, 1]. Popular
choices for θ are θ = 0, θ = 1 and θ = 1/2 representing the forward Euler method, the backward
Euler method, and the Crank–Nicolson method, respectively.

Remark 2.3. The bilinear form aε(·, ·) in (2.6) is almost the same as that used in the interior
penalty discontinuous Galerkin (DG) methods for the standard elliptic boundary value problem
[21–23] except that it contains integrals over interface edges instead of all the edges. This is why
we call IFE methods based on this bilinear form PPIFE methods. As suggested by DG finite
element methods, the parameter ε in this bilinear form is usually chosen as −1, 0, or 1. Note that
aε(·, ·) is symmetric if ε = −1 and is nonsymmetric otherwise.

III. ERROR ESTIMATIONS FOR PPIFE METHODS

The goal of this section is to derive the a priori error estimates for the PPIFE methods developed
in the previous section. As usual, without loss of generality for error estimation, we assume that
g(X, t) = 0 in the boundary condition (1.2) and assume � ∩ ∂� = ∅. The error bounds will
be given in an energy norm that is equivalent to the standard semi-H1 norm. These error bounds
show that these PPIFE methods converge optimally with respect to the polynomials used.

A. Some Preliminary Estimates

First, for every v ∈ Vh, we define its energy norm as follows:

||v||h =
⎛
⎜⎝ ∑

K∈Th

∫
K

β∇v · ∇vdX +
∑
B∈E̊i

h

∫
B

σ 0
B

|B|α [[v]][[v]] ds

⎞
⎟⎠

1/2

.

For an element K ∈ Th, let |K| denote the area of K. It is well known that the following trace
inequalities [23] hold:

Lemma 3.1. There exists a constant C independent of h such that for every K ∈ Th,

||v||L2(B) ≤ C|B|1/2|K|−1/2(||v||L2(K) + h||∇v||L2(K)), ∀v ∈ H 1(K), B ⊂ ∂K , (3.1)

||∇v||L2(B) ≤ C|B|1/2|K|−1/2(||∇v||L2(K) + h||∇2v||L2(K)), ∀v ∈ H 2(K), B ⊂ ∂K . (3.2)

Since the local IFE space Sh(K) ⊂ H 1(K) for all K ∈ Th (e.g. [6, 7, 10]), the trace inequality
(3.1) is valid for all v ∈ Sh(K). However, for K ∈ T i

h , a function v ∈ Sh(K) does not belong to
H 2(K) in general. So the second trace inequality (3.2) cannot be directly applied to IFE functions.
Nevertheless, for linear and bilinear IFE functions, the corresponding trace inequalities have been
established in [13]. The related results are summarized in the following lemma.

Lemma 3.2. There exists a constant C independent of interface location and h but depending
on the ratio of coefficients β+ and β− such that for every linear or bilinear IFE function v on
K ∈ T i

h ,

||βvd ||L2(B) ≤ Ch1/2|K|−1/2||√β∇v||L2(K), ∀v ∈ Sh(K), B ⊂ ∂K , d = x or y, (3.3)

||β∇v · nB ||L2(B) ≤ Ch1/2|K|−1/2||√β∇v||L2(K), ∀v ∈ Sh(K), B ⊂ ∂K . (3.4)

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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As in [13], using Young’s inequality, trace inequalities and the definition of || · ||h, we can
prove the coercivity of the bilinear form aε(·, ·) on the IFE space Sh(�) with respect to the energy
norm || · ||h. The result is stated in the lemma below.

Lemma 3.3. There exists a constant κ > 0 such that

aε(vh, vh) ≥ κ||vh||2h, ∀vh ∈ Sh(�) (3.5)

holds for ε = 1 unconditionally and holds for ε = 0 or ε = −1 when the penalty parameter σ 0
B in

aε(·, ·) is large enough and α ≥ 1.

For any t ∈ [0, T ], we define the elliptic projection of the exact solution u(·, t) as the IFE
function ũh(·, t) ∈ Sh(�) by

aε(u − ũh, vh) = 0, ∀vh ∈ Sh(�). (3.6)

Lemma 3.4. Assume the exact solution u is in H 2(0, T ; H̃ 3(�)) and α = 1. Then there exists a
constant C such that for every t ∈ [0, T ] the following error estimates hold

||u − ũh||h ≤ Ch||u||H̃3(�), (3.7)

||(u − ũh)t ||h ≤ Ch||ut ||H̃3(�), (3.8)

||(u − ũh)tt ||h ≤ Ch||utt ||H̃3(�). (3.9)

Proof. First, the estimate (3.7) follows directly from the estimate derived for the PPIFE
methods for elliptic problems in [13]. Because of the linearity of the bilinear form, we have that

aε ((u − ũh)t , vh) = d

dt
aε(u − ũh, vh) = 0, ∀vh ∈ Sh(�).

This indicates that the time derivative of the elliptic projection is the elliptic projection of the
time derivative. Thus, for any given t ∈ [0, T ], ut ∈ H̃ 3(�), the estimate (3.8) follows from the
estimate derived for the PPIFE methods for elliptic problems in [13] again. Similarly, we can
obtain (3.9).

B. Error Estimation for the Semidiscrete Method

The a priori error estimates for semidiscrete PPIFE method (2.12)–(2.13) for parabolic interface
problem is given in the following theorem.

Theorem 3.1. Assume that the exact solution u to the parabolic interface problem (1.1)– (1.5)
is in H 1(0, T ; H̃ 3(�)) for ε = −1 and in H 2(0, T ; H̃ 3(�)) when ε = 0, 1, and u0 ∈ H̃ 3(�).
Let uh be the PPIFE solution defined by semidiscrete method (2.12)– (2.13) with α = 1 and
uh(·, 0) = ũh0(·) being the elliptic projection of u0. Then there exists a constant C such that

||u(·, t) − uh(·, t)||h ≤ Ch(||u0||H̃3(�) + ||ut ||L2(0,T ;H̃3(�))), ∀t ≥ 0, (3.10)
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for ε = −1, and

||u(·, t) − uh(·, t)||h
≤ Ch(||u0||H̃3(�) + ||ut(·, 0)||H̃3(�) + ||ut ||L2(0,T ;H̃3(�)) + ||utt ||L2(0,T ;H̃3(�))), ∀t ≥ 0,

(3.11)

for ε = 0 or 1.

Proof. Let ũh be the elliptic projection of u defined by (3.6) and we use it to split the error
u − uh into two terms: u − uh = η − ξ with η = u − ũh and ξ = uh − ũh. For the first term, by
(3.7), we have the following estimate:

||η(·, t)||h ≤ Ch||u(·, t)||H̃3(�) ≤ Ch(||u0||H̃3(�) +
∫ t

0
||ut ||H̃3(�)dτ )

≤ Ch(||u0||H̃3(�) + ||ut ||L2(0,T ;H̃3(�))). (3.12)

Then, we proceed to bound ||ξ ||h. From (2.6), (2.12), and (3.6), we can see that ξ satisfies the
following equation:

(ξt , vh) + aε(ξ , vh) = (ηt , vh) , ∀vh ∈ Sh(�). (3.13)

Choosing vh = ξt in (3.13), we have

||ξt ||2 + aε(ξ , ξt ) = (ηt , ξt ) . (3.14)

If ε = −1, using the symmetry property of aε(·, ·), Cauchy–Schwarz inequality and Young’s
inequality in (3.14), we get

‖ξt‖2 + 1

2

d

dt
aε(ξ , ξ) ≤ ||ηt ||‖ξt‖ ≤ C‖ηt‖2 + 1

2
‖ξt‖2. (3.15)

For any t ∈ (0, T ], integrating both sides of (3.15) from 0 to t, using the fact ξ(·, 0) = 0 and
(3.8), we obtain

1

2

∫ t

0
‖ξt‖2 + 1

2
aε(ξ(·, t), ξ(·, t)) ≤ C

∫ t

0
‖ηt‖2dt ≤ Ch2

∫ T

0
‖ut‖2

H̃3(�)
. (3.16)

Using coercivity of aε(·, ·) in (3.16), we have

||ξt ||L2(0,t ;L2(�)) + ||ξ ||h ≤ Ch||ut ||L2(0,T ;H̃3(�)). (3.17)

Finally, applying the triangle inequality, (3.12) and (3.17) to u − uh = η − ξ leads to (3.10).

When ε = 1 or 0, aε(·, ·) is not symmetric. However, we have

aε (ξ , ξt ) = 1

2

d

dt
aε(ξ , ξ) + 1

2
(aε (ξ , ξt ) − aε (ξt , ξ))

≥ 1

2

d

dt
aε(ξ , ξ) − C||ξt ||h||ξ ||h

≥ 1

2

d

dt
aε(ξ , ξ) − C

2
‖ξt‖2

h − C

2
||ξ ||2h. (3.18)
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Substituting (3.18) into (3.14) and then integrating it from 0 to t, we can get

1

2

∫ t

0
||ξt ||2dτ + 1

2
κ||ξ ||2h ≤ C

∫ t

0
(||ηt ||2 + ||ξt ||2h + ||ξ ||2h)dτ . (3.19)

Now we need the bound of ‖ξt‖h. From (3.13), we can easily get

(ξtt , vh) + aε(ξt , vh) = (ηtt , vh) , ∀vh ∈ Sh(�), t ≥ 0. (3.20)

Choose vh = ξt in (3.20) and use the coercivity of aε(·, ·) to get

1

2

d

dt
||ξt ||2 + κ||ξt ||2h ≤ 1

2
(||ηtt ||2 + ||ξt ||2).

Integrating the above inequality from 0 to t and using the Gronwall inequality, we obtain

∫ t

0
||ξt ||2hdτ ≤ C

∫ t

0
||ηtt ||2dτ + C||ξt (·, 0)||2. (3.21)

Let t = 0 and then choose vh = ξt (·, 0) in (3.13) to get

||ξt (·, 0)|| ≤ ||ηt(·, 0)||. (3.22)

Substituting (3.21) and (3.22) into (3.19) and then using the Gronwall inequality again, we
obtain ∫ t

0
||ξt ||2dτ + ||ξ ||2h ≤ C

∫ t

0
(||ηt ||2 + ||ηtt ||2)dτ + C||ηt(·, 0)||2.

Applying (3.8) and (3.9) to the above yields

‖ξt‖L2(0,t ;L2(�)) + ||ξ ||h ≤ Ch(||ut(·, 0)||H̃3(�)) + ||ut ||L2(0,T ;H̃3(�)) + ||utt ||L2(0,T ;H̃3(�))). (3.23)

Finally, applying the triangle inequality, (3.12) and (3.23) to u − uh = η − ξ yields (3.11).

Remark 3.1. By slightly modifying the proof for Theorem 3.1, we can show that estimates
(3.10) and (3.11) still hold when ũh0 is chosen to be the IFE interpolation of u0.

C. Error Estimation for Fully Discrete Methods

In all the discussion from now on, we assume that u0
h = ũh0 is the elliptic projection of u0

in the initial condition for the parabolic interface problem. Also, for a function φ(t), we let
φn = φ(tn), n ≥ 0.

Backward Euler Method The backward Euler method corresponds to the method described
by (2.14) with θ = 1. From (2.6), (2.14), and (3.6), we get

(∂tξ
n, vh) + aε(ξ

n, vh) = (∂tη
n, vh) + (rn, vh), ∀vh ∈ Sh(�), (3.24)
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where rn = −(un
t − ∂tu

n). We choose the test function vh = ∂tξ
n in (3.24) and use the

Cauchy–Schwarz inequality on the right-hand side to obtain

||∂tξ
n||2 + aε(ξ

n, ∂tξ
n) ≤ (||∂tη

n|| + ||rn||)||∂tξ
n|| ≤ (||∂tη

n||2 + ||rn||2) + 1

2
||∂tξ

n||2. (3.25)

There are three cases depending on the parameter ε. We start from the case in which ε = −1.
By the symmetry and the coercivity of the bilinear form aε(·, ·), we have

aε(ξ
n, ∂tξ

n) = 1

�t
aε(ξ

n, ξn − ξn−1)

= 1

2�t
(aε(ξ

n, ξn) − aε(ξ
n−1, ξn−1)) + 1

2�t
aε(ξ

n − ξn−1, ξn − ξn−1)

≥ 1

2�t
(aε(ξ

n, ξn) − aε(ξ
n−1, ξn−1)).

Thus, we have

1

2
||∂tξ

n||2 + 1

2�t
(aε(ξ

n, ξn) − aε(ξ
n−1, ξn−1)) ≤ ||∂tη

n||2 + ||rn||2. (3.26)

Multiply (3.26) by 2�t and then sum over n to get

�t

k∑
n=1

||∂tξ
n||2 + aε(ξ

k , ξ k) ≤ 2�t

k∑
n=1

(||∂tη
n||2 + ||rn||2). (3.27)

By Hölder’s inequality and (3.8), we have

||∂tη
n||2 =

∫
�

(
ηn − ηn−1

�t

)2

dX =
∫

�

(
1

�t

∫ tn

tn−1
ηtdτ

)2

dX

≤ 1

�t

∫ tn

tn−1
||ηt ||2dτ ≤ C

h2

�t

∫ tn

tn−1
||ut ||2H̃3(�)

dτ . (3.28)

Applying Taylor formula and Hölder’s inequality, we have

||rn||2 =
∫

�

|un
t − ∂tu

n|2dX =
∫

�

∣∣∣∣ 1

�t

∫ tn

tn−1
(t − tn−1)uttdt

∣∣∣∣
2

dX ≤ �t

3

∫ tn

tn−1
||utt ||2dτ . (3.29)

Substituting (3.28) and (3.29) into (3.27) and then using the coercivity of aε(·, ·), we obtain

�t

k∑
n=1

||∂tξ
n||2 + ||ξ k||2h ≤ C

(
h2||ut ||2L2(0,T ;H̃3(�))

+ (�t)2||utt ||2L2(0,T ;L2(�))

)
. (3.30)

Finally, applying the triangle inequality, (3.13) and (3.30) to uk − uk
h = ηk − ξ k yields

||uk − uk
h||h ≤ C

(
h(||u0||H̃3(�) + ||ut ||L2(0,T ;H̃3(�))) + �t ||utt ||L2(0,T ;L2(�))

)
(3.31)

for any integer k ≥ 0.
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Now we turn to the cases where ε = 0 or ε = 1 that make the bilinear form in the PPIFE methods
nonsymmetric. We start from

aε(ξ
n, ∂tξ

n) = 1

�t
aε(ξ

n, ξn − ξn−1)

= 1

2�t
(aε(ξ

n, ξn) − aε(ξ
n−1, ξn−1)) + 1

2�t
aε(ξ

n, ξn − ξn−1)

− 1

2�t
aε(ξ

n − ξn−1, ξn−1)

= 1

2�t
(aε(ξ

n, ξn) − aε(ξ
n−1, ξn−1)) + 1

2
(aε(ξ

n, ∂tξ
n) − aε(∂tξ

n, ξn−1))

≥ 1

2�t
(aε(ξ

n, ξn) − aε(ξ
n−1, ξn−1)) − C(||∂tξ

n||2h + ||ξn−1||2h + ||ξn||2h).

Substituting it into (3.25) leads to

1

2
||∂tξ

n||2 + 1

2�t
(aε(ξ

n, ξn) − aε(ξ
n−1, ξn−1))

≤ ||∂tη
n||2 + ||rn||2 + C(||∂tξ

n||2h + ||ξn−1||2h + ||ξn||2h). (3.32)

Multiply (3.32) by 2�t and sum over n to obtain

k∑
n=1

�t ||∂tξ
n||2 + κ||ξ k||2h ≤

k∑
n=1

�t(||∂tη
n||2 + ||rn||2) + C

k∑
n=1

�t ||∂tξ
n||2h + C

k∑
n=1

�t ||ξn||2h.

(3.33)

To bound
∑k

n=1 �t ||∂tξ
n||2h, we first derive from (3.24) that

1

�t

(
∂tξ

n − ∂tξ
n−1, vh

) + aε(∂tξ
n, vh) = (∂ttη

n, vh) + (∂t r
n, vh), ∀vh ∈ Sh(�). (3.34)

Let vh = ∂tξ
n in (3.34) to get

1

2�t

(||∂tξ
n||2 − ||∂tξ

n−1||2) + κ||∂tξ
n||2h ≤ (||∂ttη

n|| + ||∂t r
n||)||∂tξ

n||.

Then we can easily obtain

||∂tξ
k||2 +

k∑
n=2

�t ||∂tξ
n||2h ≤ C

k∑
n=2

�t(||∂ttη
n||2 + ||∂t r

n||2) + C||∂tξ
1||2. (3.35)

Let n = 1 and vh = ∂tξ
1 = ξ 1/�t in (3.24), then we have

||∂tξ
1||2 + 1

�t
aε(ξ

1, ξ 1) ≤ (||∂tη
1|| + ||r1||)||∂tξ

1||.

Thus

||∂tξ
1||2 + 1

�t
||ξ 1||2h ≤ C(||∂tη

1||2 + ||r1||2).
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Applying this to (3.35) yields

k∑
n=1

�t ||∂tξ
n||2h ≤ C

k∑
n=2

�t(||∂ttη
n||2 + ||∂t r

n||2) + C(||∂tη
1||2 + ||r1||2). (3.36)

Inserting (3.36) into (3.33), then applying the Gronwall inequality, we obtain

||ξ k||2h ≤ C

k∑
n=1

�t(||∂tη
n||2 + ||rn||2) + C

k∑
n=2

�t(||∂ttη
n||2 + ||∂t r

n||2) + C(||∂tη
1||2 + ||r1||2).

(3.37)

We now estimate the last four terms in (3.37). It is easily to see that

||∂ttη
n||2 =

∫
�

(
ηn − 2ηn−1 + ηn−2

(�t)2

)2

dX

=
∫

�

(
1

(�t)2

∫ tn

tn−1
ηtt (t

n − t)dt − 1

(�t)2

∫ tn−1

tn−2
ηtt (t

n−1 − t)dt

)2

dX

≤ 1

3�t

∫ tn

tn−2
||ηtt ||2dt .

This inequality and (3.9) lead to

k∑
n=2

�t ||∂ttη
n||2 ≤ Ch2||utt ||2L2(0,T ;H̃3(�))

. (3.38)

Also, we have

∂t r
n = un

t − un−1
t

�t
− un − 2un−1 + un−2

(�t)2

=
∫ tn

tn−1
utttdt − 1

(�t)2

∫ tn

tn−1
uttt (t

n−1 − t)
2
dt + 1

(�t)2

∫ tn−1

tn−2
uttt (t − tn−2)

2
dt .

Then, the application of Hölder’s inequality leads to

k∑
n=2

�t ||∂t r
n||2 ≤ (�t)2

k∑
n=2

(∫ tn

tn−1
||uttt ||2dt + 1

5

∫ tn

tn−1
||uttt ||2dt + 1

5

∫ tn−1

tn−2
||uttt ||2dt

)

≤ C(�t)2||uttt ||2L2(0,T ;L2(�))
. (3.39)

As for the last two terms on the right-hand side of (3.37), we have

||∂tη
1||2 ≤ 1

�t

∫ �t

0
||ηt ||2dt ≤ h2

(
1

�t

∫ �t

0
||ut ||2H̃3(�)

dt

)
(3.40)
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and, by (3.29),

||r1||2 =
∫

�

|u1
t − ∂tu

1|2dX ≤ (�t)2

3

(
1

�t

∫ �t

0
||utt ||2dt

)
. (3.41)

Now, substituting (3.28), (3.29), and (3.38)–(3.41) into (3.37), we obtain

||ξ k||2h ≤ C

(
||ut ||2L2(0,T ;H̃3(�))

+ ||utt ||2L2(0,T ;H̃3(�))
+ 1

�t

∫ �t

0
||ut ||2H̃3(�)

dt

)
h2

+ C

(
||utt ||2L2(0,T ;L2(�))

+ ||uttt ||2L2(0,T ;L2(�))
+ 1

�t

∫ �t

0
||utt ||2dt

)
(�t)2.

Again, applying the estimate for ξ k , the triangle inequality and (3.12) to uk − uk
h = ηk − ξ k ,

we obtain

||uk − uk
h||h

≤ C

(
||u0||H̃3(�) + ||ut ||L2(0,T ;H̃3(�)) + ||utt ||L2(0,T ;H̃3(�)) +

(
1

�t

∫ �t

0
||ut ||2H̃3(�)

dt

)1/2
)

h

+ C

(
||utt ||L2(0,T ;L2(�)) + ||uttt ||L2(0,T ;L2(�)) +

(
1

�t

∫ �t

0
||utt ||2dt

)1/2
)

�t .

Now let us summarize the analysis above for the backward Euler PPIFE method in the following
theorem.

Theorem 3.2. Assume that the exact solution u to the parabolic interface problem (1.1)–(1.5) is
in H 2(0, T ; H̃ 3(�))∩H 3(0, T ; L2(�)) and u0 ∈ H̃ 3(�). Let the sequence {un

h}Nt
n=0 be the solution

to the backward Euler PPIFE method (2.14)– (2.15). Then, we have the following estimates:

1. If ε = −1, then there exists a positive constant C independent of h and �t such that

max
0≤n≤Nt

||un − un
h||h ≤ C(h(||u0||H̃3(�) + ||ut ||L2(0,T ;H̃3(�))) + �t ||utt ||L2(0,T ;L2(�))). (3.42)

2. If ε = 0 or 1, then there exists a positive constant C independent of h and �t such that

max
0≤n≤Nt

||un − un
h||h

≤ C

(
||u0||H̃3(�) + ||ut ||L2(0,T ;H̃3(�)) + ||utt ||L2(0,T ;H̃3(�)) +

(
1

�t

∫ �t

0
||ut ||2H̃3(�)

dt

)1/2
)

h

+ C

(
||utt ||L2(0,T ;L2(�)) + ||uttt ||L2(0,T ;L2(�)) +

(
1

�t

∫ �t

0
||utt ||2dt

)1/2
)

�t . (3.43)
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Crank–Nicolson Method Now we conduct the error analysis for the Crank–Nicolson method
which corresponds to θ = 1/2 in (2.14). From (2.6), (2.14), and (3.6), we have

(∂tξ
n, vh) + 1

2
aε(ξ

n + ξn−1, vh) = (∂tη
n, vh) + (rn

1 , vh) + (rn
2 , vh), ∀vh ∈ Sh(�), (3.44)

where

rn
1 = un−1/2

t − 1

2
(un

t + un−1
t ), rn

2 = −(un−1/2
t − ∂tu

n).

Taking vh = ∂tξ
n = (ξn − ξn−1)/�t in (3.44) and applying the Cauchy–Schwarz inequality,

we get

||∂tξ
n||2 + 1

2�t
aε(ξ

n + ξn−1, ξn − ξn−1) ≤ (||∂tη
n|| + ||rn

1 || + ||rn
2 ||)||∂tξ

n||

≤ C(||∂tη
n||2 + ||rn

1 ||2 + ||rn
2 ||2) + 1

2
||∂tξ

n||2. (3.45)

If ε = −1, due to the symmetry of aε(·, ·), we can rewrite (3.45) as

||∂tξ
n||2 + 1

2�t
(aε(ξ

n, ξn) − aε(ξ
n−1, ξn−1)) ≤ C(||∂tη

n||2 + ||rn
1 ||2 + ||rn

2 ||2). (3.46)

Multiplying (3.46) by 2�t and summing over n, we have

κ||ξ k||2h ≤ aε(ξ
k , ξ k) ≤ C

k∑
n=1

�t(||∂tη
n||2 + ||rn

1 ||2 + ||rn
2 ||2). (3.47)

We note that (3.28) is still a valid estimation for ||∂tη
n||2; hence, we proceed to estimate ||rn

1 ||2
and ||rn

2 ||2. From the Taylor formula and Hölder’s inequality, we obtain

||rn
1 ||2 =

∫
�

(un−1/2
t − 1

2
(un

t + un−1
t ))2dX

=
∫

�

1

4

(∫ tn−1/2

tn−1
uttt (t − tn−1)dt +

∫ tn

tn−1/2
uttt (t

n − t)dt

)2

dX

≤ C(�t)3

∫ tn

tn−1
||uttt ||2dt , (3.48)

and

||rn
2 ||2 =

∫
�

(un−1/2
t − ∂tu

n))2dX

=
∫

�

1

(�t)2

(∫ tn−1/2

tn−1
uttt (t − tn−1)

2
dt +

∫ tn

tn−1/2
uttt (t

n − t)
2
dt

)2

dX

≤ C(�t)3

∫ tn

tn−1
||uttt ||2dt . (3.49)
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Using (3.28), (3.48), and (3.49) in (3.47) yields

||ξ k||2h ≤ C(h2||ut ||2L2(0,T ;H̃3(�))
+ (�t)4||uttt ||2L2(0,T ;L2(�))

).

Finally, we obtain an estimate for uk − uk
h by applying the above estimate for ξ k , the triangle

inequality and (3.12) to the splitting uk − uk
h = ηk − ξ k , and we summarize the result in the

following theorem.

Theorem 3.3. Assume that the exact solution u to the parabolic interface problem (1.1)–(1.5)
is in H 1(0, T ; H̃ 3(�)) ∩ H 3(0, T ; L2(�)) and u0 ∈ H̃ 3(�). Assume the sequence {un

h}Nt
n=0 is the

solution to the PPIFE Crank–Nicolson method (2.14)–(2.15) with ε = −1. Then, there exists a
positive constant C independent of h and �t such that

max
0≤n≤Nt

||un − un
h||h ≤ C(h(||u0||H̃3(�) + ||ut ||L2(0,T ;H̃3(�))) + (�t)2||uttt ||L2(0,T ;L2(�))). (3.50)

Remark 3.2. The choice of ε = −1 for the PPIFE Crank–Nicolson method is very natural
because the method inherits the symmetry from the interface problem and its algebraic system
is easier to solve. Conversely, even though the nonsymmetric PPIFE Crank–Nicolson methods
based on the other two choices of ε = 0 and ε = 1 also seem to work well as demonstrated by the
numerical results in the next section, the asymmetry in their bilinear forms hinders the estimation
of several key terms in the error analysis so that the related convergence still remains elusive.

Remark 3.3. We can replace the bilinear form aε(·, ·) with the one used in the standard interior
penalty DG finite element methods to obtain corresponding DGIFE methods for the parabolic
interface problems. Furthermore, the error estimation for PPIFE methods can also be readily
extended to the corresponding DGIFE methods. However, as usual, these DGIFE methods have
much more unknowns than the PPIFE counterparts; hence they are less favorable unless features
in DG formulation are desired.

IV. NUMERICAL EXAMPLES

In this section, we present some numerical results to demonstrate features of PPIFE methods
for parabolic interface problems. Let the solution domain be � = (0, 1) × (0, 1) and the time
interval be [0,1]. The interface curve � is chosen to be an ellipse centered at the point (x0, y0)
with semiradius a and b, whose parametric form can be written as

{
x = x0 + a cos(θ),

y = y0 + b sin(θ).
(4.1)

In our numerical experiments, we choose x0 = y0 = 0, a = π/4, b = π/6, and θ ∈ [0, π/2].
The interface � separates � into two subdomains �− = {(x, y) : r(x, y) < 1} and �+ = {(x, y) :
r(x, y) > 1} where

r(x, y) =
√

(x − x0)
2

a2
+ (y − y0)

2

b2
.
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TABLE I. Errors of nonsymmetric PPIFE backward Euler solutions with β− = 1, β+ = 10 at time t = 1.

h || · ||L∞ Rate || · ||L2 Rate | · |H1 Rate

1/10 2.7866 E–2 8.2619 E–2 2.1079 E–0
1/20 7.9371 E–3 1.8118 2.0935 E–2 1.9805 1.0659 E–0 0.9838
1/40 2.6530 E–3 1.5810 5.3984 E–3 1.9553 5.3875 E–1 0.9844
1/80 8.9636 E–4 1.5655 1.4473 E–3 1.8991 2.7065 E–1 0.9932
1/160 3.3405 E–4 1.4240 4.1586 E–4 1.7992 1.3567 E–1 0.9963
1/320 1.3871 E–4 1.2680 1.3204 E–4 1.6551 6.7927 E–2 0.9980
1/640 6.2344 E–5 1.1538 4.7909 E–5 1.4626 3.3986 E–2 0.9990
1/1280 2.9411 E–5 1.0839 1.9763 E–5 1.2775 1.6998 E–2 0.9996

TABLE II. Errors of symmetric PPIFE backward Euler solutions with β− = 1, β+ = 10 at time t = 1.

h || · ||L∞ Rate || · ||L2 Rate | · |H1 Rate

1/10 6.6821 E–2 8.1952 E–2 2.1051 E–0
1/20 1.5332 E–2 2.1237 2.1070 E–2 1.9596 1.0654 E–0 0.9826
1/40 5.1586 E–3 1.5715 5.4326 E–3 1.9554 5.3876 E–1 0.9836
1/80 1.5387 E–3 1.7453 1.4582 E–3 1.8974 2.7067 E–1 0.9931
1/160 4.9034 E–4 1.6498 4.1727 E–4 1.8052 1.3567 E–1 0.9964
1/320 1.7632 E–4 1.4755 1.3212 E–4 1.6591 6.7927 E–2 0.9980
1/640 7.1949 E–5 1.2932 4.7927 E–5 1.4630 3.3986 E–2 0.9990
1/1280 3.1775 E–5 1.1791 1.9763 E–5 1.2780 1.6998 E–2 0.9996

The exact solution for the parabolic interface problem is chosen to be

u(t , x, y) =
{

1
β− rpet , if (x, y) ∈ �−,(

1
β+ rp − 1

β+ + 1
β−

)
et , if (x, y) ∈ �+,

(4.2)

where p = 5 and the diffusion coefficients β± vary in different numerical experiments.
We use a family of Cartesian meshes {Th, h > 0}, and each mesh is formed by partition-

ing � into Ns × Ns congruent squares of size h = 1/Ns for a set of values of integer Ns . For
fully discretized methods, we divide the time interval [0,1] into Nt subintervals uniformly with
tn = n�t , n = 0, 1, · · · , Nt , and �t = 1/Nt . Also, we have observed that the condition numbers
of the matrices associated with the bilinear forms in these IFE methods is proportional to h−2,
similar to that of the standard finite element method; therefore, usual solvers can be applied to
efficiently solve the sparse linear system in these IFE methods.

First, we consider the case in which the diffusion coefficient (β−, β+) = (1, 10) representing a
moderate discontinuity across the interface. Both nonsymmetric (ε = 1) and symmetric (ε = −1)
PPIFE methods are used to solve the parabolic interface problem. For penalty parameters, we
choose σ 0

B = 1 for the nonsymmetric method and σ 0
B = 100 for the symmetric method, while

α = 1 for both methods. Both backward Euler and Crank–Nicolson methods are used and the time
step is chosen as �t = 2h. Errors of nonsymmetric and symmetric PPIFE backward Euler meth-
ods in L∞, L2 and semi-H1 norms are listed in Tables I and II, respectively. Errors of nonsymmetric
and symmetric PPIFE Crank–Nicolon methods are listed in Tables III and IV, respectively. All
errors are computed at the final time level, that is, t = 1.

In Tables I and II, we note that errors in semi-H1 norms for both nonsymmetric and symmetric
PPIFE backward Euler methods demonstrate an optimal convergence rate O(h) + O(�t), which
confirms our error estimates (3.42) and (3.43). Also note that the order of convergence in L2 norm
approaches 1 as we perform uniform mesh refinement. This is consistent with our expectation of
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TABLE III. Errors of nonsymmetric PPIFE Crank–Nicolson solutions with β− = 1, β+ = 10 at time t = 1.

h || · ||L∞ Rate || · ||L2 Rate | · |H1 Rate

1/10 5.1829 E–2 9.3610 E–2 2.1106 E–0
1/20 1.0369 E–2 2.3215 2.2475 E–2 2.0583 1.0658 E–0 0.9857
1/40 2.8024 E–3 1.8875 5.6292 E–3 1.9973 5.3870 E–1 0.9843
1/80 7.1649 E–4 1.9676 1.4091 E–3 1.9982 2.7063 E–1 0.9931
1/160 1.7881 E–4 2.0026 3.5445 E–4 1.9911 1.3566 E–1 0.9963
1/320 4.5518 E–5 1.9739 8.8742 E–5 1.9979 6.7926 E–2 0.9980
1/640 1.1447 E–5 1.9914 2.2156 E–5 2.0019 3.3986 E–2 0.9990
1/1280 2.8833 E–6 1.9892 5.5375 E–6 2.0004 1.6998 E–2 0.9996

TABLE IV. Errors of symmetric PPIFE Crank–Nicolson solutions with β− = 1, β+ = 10 at time t = 1.

h || · ||L∞ Rate || · ||L2 Rate | · |H1 Rate

1/10 1.0310 E–1 9.2384 E–2 2.1112 E–0
1/20 1.4252 E–2 2.8447 2.2543 E–2 2.0350 1.0650 E–0 0.9872
1/40 4.2963 E–3 1.7401 5.6546 E–3 1.9952 5.3862 E–1 0.9836
1/80 1.0893 E–4 1.9796 1.4190 E–3 1.9946 2.7062 E–1 0.9930
1/160 2.8178 E–4 1.9508 3.5605 E–4 1.9947 1.3566 E–1 0.9963
1/320 6.6903 E–5 2.0744 8.9021 E–5 1.9999 6.7924 E–2 0.9980
1/640 1.6838 E–5 1.9903 2.2251 E–5 2.0003 3.3985 E–2 0.9990
1/1280 4.1878 E–6 2.0075 5.5633 E–6 1.9999 1.6998 E–2 0.9996

TABLE V. Errors of nonsymmetric PPIFE backward Euler solutions with β− = 1, β+ = 10, 000 at time
t = 1.

h || · ||L∞ Rate || · ||L2 Rate | · |H1 Rate

1/10 1.4637 E–1 4.7718 E–2 1.1268 E–0
1/20 6.4974 E–2 1.1717 1.6100 E–2 1.5675 5.9288 E–1 0.9265
1/40 2.2137 E–2 1.5534 4.3284 E–3 1.8951 3.0548 E–1 0.9567
1/80 7.2728 E–3 1.6059 8.4067 E–4 2.3642 1.5187 E–1 1.0083
1/160 2.3746 E–3 1.6148 2.0844 E–4 2.0119 7.5576 E–2 1.0068
1/320 1.0006 E–3 1.2468 5.2912 E–5 1.9779 3.7807 E–2 0.9993
1/640 1.7030 E–4 2.5547 1.4993 E–5 1.8193 1.8900 E–2 1.0002
1/1280 6.3452 E–5 1.4244 4.9410 E–6 1.6014 9.4461 E–3 1.0006

the order of convergence O(h2) + O(�t) in L2 norm although such an error bound has not been
established yet. Errors gauged in L∞ norm indicate a first-order convergence for backward Euler
method.

In Tables III and IV, the convergence rate in semi-H1 norm confirms our error estimate (3.50)
for Crank–Nicolson method. Moreover, errors in L2 norm is of second-order convergence which
agrees with our anticipated convergence rate O(h2) + O(�t2). Errors in L∞ norm also seem to
maintain an optimal second-order convergence.

Next, we consider a larger discontinuity in the diffusion coefficient by choosing (β−, β+) =
(1, 10000). The nonsymmetric PPIFE method is used for spatial discretization in the experiment.
We choose the penalty parameter σ 0

B = 1 again for this large discontinuity case, since the coer-
civity bound is valid for any positive σ 0

B . Tables V and VI contain errors in backward Euler and
Crank–Nicolson methods, respectively. Again, we observe that errors in semi-H1 norm have an
optimal convergence rate through mesh refinement for both methods. The convergence rate in
L2 norm is second order for Crank–Nicolson and first order for backward Euler. For symmetric
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TABLE VI. Errors of nonsymmetric PPIFE Crank-Nicolson solutions with β− = 1, β+ = 10000 at time
t = 1.

h || · ||L∞ Rate || · ||L2 Rate | · |H1 Rate

1/10 1.9919 E–1 5.2179 E–2 1.1724 E–0
1/20 4.8082 E–2 2.0506 1.5609 E–2 1.7411 5.7800 E–1 1.0204
1/40 1.4716 E–2 1.7081 4.2141 E–3 1.8890 2.9879 E–1 0.9519
1/80 5.0467 E–3 1.5439 8.1261 E–4 2.3746 1.4997 E–1 0.9945
1/160 1.6228 E–3 1.6368 1.9588 E–4 2.0526 7.5188 E–2 0.9961
1/320 6.8515 E–3 1.2440 4.5716 E–5 2.0992 3.7698 E–2 0.9960
1/640 1.2256 E–4 2.4830 1.0915 E–5 2.0664 1.8871 E–2 0.9983
1/1280 4.4326 E–5 1.4672 2.6715 E–6 2.0306 9.4387 E–3 0.9995

PPIFE methods, we have observed similar behavior to the nonsymmetric methods provided that
the penalty parameter σ 0

B is large enough.
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