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Abstract In this paper, we derive a priori error estimates for a class of interior penalty
discontinuous Galerkin (DG) methods using immersed finite element (IFE) functions for a
classic second-order elliptic interface problem. The error estimation shows that these methods
can converge optimally in a mesh-dependent energy norm. The combination of IFEs and DG
formulation in these methods allows local mesh refinement in the Cartesian mesh structure
for interface problems. Numerical results are provided to demonstrate the convergence and
local mesh refinement features of these DG-IFE methods.

Keywords Immersed finite element · Discontinuous Galerkin · Cartesian mesh · Interface
problems · Local mesh refinement

1 Introduction

Let � be a rectangular domain in R
2, and let � ⊂ � be a smooth curve separating � into

two sub-domains �− and �+ with �− ∩�+ = ∅ (see the first plot in Fig. 1). We consider
the following typical elliptic interface problem

− ∇ · (β∇u) = f, in �+ ∪�−, (1.1)

u = 0, on ∂�, (1.2)
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where the diffusion coefficient β is a positive piecewise constant function:

β(X) =
{
β−, X ∈ �−,
β+, X ∈ �+. (1.3)

According to the conservation laws, the following jump conditions are required on the
interface:

[[u]]� = 0, (1.4)[[
β
∂u

∂n

]]
�

= 0. (1.5)

Interface problems arise in many applications where mathematical simulations are carried
out in a domain containing multiple materials. The elliptic interface problem (1.1–1.5) con-
sidered in this article appears frequently because the involved differential equation captures
many basic physical phenomenons. A wide variety of numerical methods have been devel-
oped for interface problems, among which the finite element methods are advantageous for
their capability to handle simulation domains with complicated geometry. It is well-known
that conventional finite element methods generally require the mesh to fit the interface geome-
try (see the second plot in Fig. 1); otherwise, the convergence cannot be guaranteed [3,6,10].
However, for a problem with a complicated material interface, constructing a satisfactory
body-fitting mesh is often costly, and this burden becomes more severe if the simulation
involves a moving interface [21,31,35] because the mesh has to be generated repeatedly
according to each interface location to be considered. In addition, some simulations, such
as the particle-in-cell (PIC) method [5,24,40], can be carried out more efficiently on struc-
tured/Cartesian meshes. Due to these reasons, a wide variety of numerical methods based
on Cartesian meshes have been developed. For an overview of these methods, we refer to
[14,15,23,27,33,34] and the references therein.

Immersed finite element (IFE) methods were recently introduced for solving interface
problems. The main feature of IFE methods is that they can use meshes independent of the
interface location, i.e., they allow interface to cut through the interior of elements in a mesh
(see the last two plots in Fig. 1). Hence, Cartesian (triangular or rectangular) meshes can
be preferably employed in IFE methods to solve interface problems. We refer the readers
to [11,25,26,28,29] for more features about IFE methods based on triangular meshes, and
[17,19,30,39] for IFE methods based on rectangular meshes. We note that IFE methods in
these literatures are applied in the continuous Galerkin formulation.

The discontinuous Galerkin (DG) methods for elliptic boundary value problems can be
traced back to 1970s (see [4,36]) and they become increasingly popular recently as indicated
by these survey articles and books [2,12,22,37]. Because there is no continuity imposed on
the approximating function across the element boundary, DG methods can locally perform
h-, p-, and hp- refinement flexibly and efficiently. For elliptic and parabolic equations, the

Γ

Ω−

Ω+

∂Ω

−→

−→

Fig. 1 From left a simulation domain, a body-fitting triangular mesh, a non-body-fitting Cartesian mesh, and
a non-body-fitting triangular mesh
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interior penalty DG (IPDG) methods [1,13,38,41] are well understood and widely used. The
main feature of IPDG methods is that penalty terms are added on interior edges to stabilize
the bilinear form of the scheme, so that the linear system is positive definite. In [16,18], the
IFE and IPDG ideas were combined together for solving interface problems on Cartesian
meshes with local refinement capability. To alleviate the issue of higher degrees of freedom
in usual DG formulation, authors in [20] considered the so-called selective DG-IFE methods
that employ DG formulation in selected elements while using the usual Galerkin formulation
in the rest of the solution domain. Numerical examples have demonstrated that these DG-IFE
methods can converge optimally, and our goal in this article is to theoretically establish the
optimal a priori error estimates for DG-IFE methods that were discussed in [16,18,20].

The rest of the paper is organized as follows. In Sect. 2, we recall the DG-IFE meth-
ods originally proposed in [16,18]. In Sect. 3, we present a priori error estimates for these
DG-IFE methods. An error estimate in a mesh-dependent energy norm is derived, and this
error estimate is optimal according to the polynomials used in the IFE spaces. In Sect. 4,
numerical experiments are provided to demonstrate features of DG-IFE methods. Brief con-
clusions are given in Sect. 5.

2 Discontinuous Galerkin Immersed Finite Element Methods

In this paper, we adopt notations and norms of usual Sobolev spaces. For r > 1 and any
subset G ⊆ � that is cut through by �, we use the following function spaces:

H̃r (G) = {v ∈ H1(G) : v|G∩�s ∈ Hr (G∩�s), s = + or −}, H̃r
0 (G) = H̃r (G)∩H1

0 (G),

equipped with the norm

‖v‖2
H̃r (G)

= ‖v‖2
Hr (G∩�−) + ‖v‖2

Hr (G∩�+), ∀v ∈ H̃r (G).

From now on, we use C with or without subscripts to denote generic positive constants,
possibly different at different occurrences, but they are independent of the mesh size and
interface.

Let {Th} with 0 < h < 1 be a family of triangular or rectangular Cartesian meshes of �.
An element cut through by the interface is called an interface element; otherwise, it is called
a non-interface element. For each mesh Th , we let T i

h be the set of interface elements of Th

and T n
h be the set of non-interface elements. We denote by Eh the set of edges of Th . Also,

let E̊h and Eb
h be the set of interior edges and boundary edges of Th , respectively. Similarly,

if an edge is cut through by the interface, it is called an interface edge; otherwise, it is called
a non-interface edge. Let E i

h and En
h be the set of interface edges and non-interface edges,

respectively. Moreover, we use E̊ i
h and E̊n

h to denote the set of interior interface edges and
interior non-interface edges, respectively. Without loss of generality, we assume that elements
in Th satisfy the following conditions:

(H1) If one edge of an element meets � at more than one point, then this edge is part of �.
(H2) If � meets the boundary of an element at two points, then these two points must be on

different edges of this element.

For every interface element K ∈ T i
h , we assume its boundary intersects with the interface

� at points D and E . Then, the line segment DE divides K into two sub-elements K + and
K − with K = K + ∪ K − ∪ DE . With a given mesh Th on�, we define the following broken
Sobolev spaces:
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H̃2(Th) = {v ∈ L2(�) : ∀K ∈ T n
h , v|K ∈ H2(K );

∀K ∈ T i
h , v|K ∈ H1(K ), v|K s ∈ H2(K s), s = +,−}.

and
H̃2

0 (Th) = {v ∈ H̃2(Th) : v|∂� = 0}.
We now recall some standard notations for describing IPDG methods [9,22,37]. For each

edge B, we associate a unit normal vector nB . If B ∈ E̊h , we let K B,1 and K B,2 be two
elements that share B as the common edge and let nB be the outward normal with respect to
K B,1. If B ∈ Eb

h , nB is taken to be the unit outward vector normal to ∂�. For a function u
defined on K B,1 ∪ K B,2, we denote its average and jump over B ∈ E̊h by

{{u}}B = 1

2
((u|K B,1)|B + (u|K B,2)|B), [[u]]B = (u|K B,1)|B − (u|K B,2)|B .

If B is a boundary edge, we set

{{u}}B = [[u]]B = u|B .

For simplicity, we usually drop the subscript B from these notations if there is no danger to
cause any confusion.

To obtain a variational form for the interface problem (1.1–1.5), we multiply (1.1) by a test
function v ∈ H̃2

0 (Th), integrate both sides on each element K ∈ Th , and apply the Green’s
formula to have ∫

K
β∇u · ∇vd X −

∫
∂K
β∇u · nK vds =

∫
K

f vd X. (2.1)

Note that (2.1) holds regardless whether K is a non-interface element or an interface element.
For K ∈ T n

h , the derivation follows from the standard procedure. When K is an interface
element, (2.1) follows from applying the Green’s formula piecewisely over sub-elements of
K determined according to the smoothness of u and v, then summing up over K and applying
the flux continuity (1.5). Summarizing (2.1) over all elements we obtain

∑
K∈Th

∫
K
β∇u · ∇vd X −

∑
B∈E̊h

∫
B

{{β∇u · nB}} [[v]] ds =
∫
�

f vd X. (2.2)

Since the solution u is continuous almost everywhere in �, we can assume

ε
∑
B∈E̊h

∫
B

{{β∇v · nB}} [[u]] ds = 0,
∑
B∈E̊h

σ 0
B

|B|α
∫

B
[[u]] [[v]] ds = 0, (2.3)

for any constants ε, α > 0, and σ 0
B ≥ 0. Here |B| denotes the length of B. Adding the

two terms in (2.3) to (2.2), we obtain the weak form of interface problem (1.1–1.5): Find
u ∈ H̃2

0 (�) such that
aε(u, v) = ( f, v), ∀v ∈ H̃2

0 (Th), (2.4)

where the bilinear form aε(·, ·): Hh(�)× Hh(�) → R is

aε(w, v) =
∑

K∈Th

∫
K
β∇w · ∇vd X −

∑
B∈E̊h

∫
B

{{β∇w · nB}} [[v]] ds

+ε
∑
B∈E̊h

∫
B

{{β∇v · nB}} [[w]] ds +
∑
B∈E̊h

σ 0
B

|B|α
∫

B
[[w]] [[v]] ds, (2.5)
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and Hh(�) = H̃2
0 (�) + H̃2

0 (Th). The weak form derived here for the interface problem
(1.1–1.5) is in the same format as the standard weak form used in DG finite element methods
for the usual elliptic boundary value problems [9,22,37]. As suggested by DG finite element
methods, the parameter ε is usually chosen as −1, 0, or 1. Note that the bilinear form aε(·, ·)
is symmetric if ε = −1 and is nonsymmetric otherwise.

We now introduce the IFE approximation of the broken space H̃2
0 (Th). For every element

K ∈ Th , denote by Ai , i = 1, · · · , dK , the vertices of K . Here dK = 3 or dK = 4
depending on whether K is a triangular or rectangular element. On each non-interface element
K ∈ T n

h , we let ψi , i = 1, · · · , dK be the standard linear or bilinear finite element nodal
basis associated with the vertex Ai of K . The local FE space on K ∈ T n

h is the defined as

Sh(K ) = span{ψi : 1 ≤ i ≤ dK }.

On an interface element K ∈ T i
h , we let φi , i = 1, · · · , dK be the linear [28,29] or bilinear

[17,30] IFE nodal basis associated with vertex Ai . We let local IFE space on K ∈ T i
h be

Sh(K ) = span{φi : 1 ≤ i ≤ dK }.

Then, we define the discontinuous IFE space over the mesh Th as follows:

Sh(Th) = {v ∈ L2(�) : v|K ∈ Sh(K )}, S̊h(Th) = {v ∈ Sh(Th) : v|∂� = 0}.

One can easily see that S̊h(Th) is a subspace of Hh(�).
Finally, we state the DG-IFE methods for the interface problem (1.1–1.5) as: Find uh ∈

S̊h(Th) such that
aε(uh, vh) = ( f, vh), ∀vh ∈ S̊h(Th). (2.6)

3 A Priori Error Estimation

In this section, we derive the a priori error estimates for the DG-IFE methods (2.6) in an
energy norm ‖ · ‖h : Hh(�) → R defined as follows

‖v‖h =
⎛
⎝ ∑

K∈Th

∫
K
β∇v · ∇vd X +

∑
B∈E̊h

σ 0
B

|B|α
∫

B
[[v]] [[v]] ds

⎞
⎠

1/2

. (3.1)

We first present a few lemmas required in the error analysis. By the standard scaling argument,
one can show the following trace inequalities [37]:

Lemma 3.1 (Standard trace inequalities) Let K be a triangle or rectangle with diameter
hK , and B be an edge of K . There exists a constant C such that

‖v‖L2(B) ≤ C |B|1/2|K |−1/2(‖v‖L2(K ) + hK ‖∇v‖L2(K )), ∀v ∈ H1(K ), (3.2)

‖∇v‖L2(B) ≤ C |B|1/2|K |−1/2(‖∇v‖L2(K ) + hK ‖∇2v‖L2(K )), ∀v ∈ H2(K ), (3.3)

where ∇2v is the Hessian of v.
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On an interface element K ∈ T i
h , we recall from [29,30] that the local IFE space Sh(K )

⊂ H1(K ). This implies that the trace inequality (3.2) is valid for v ∈ Sh(K ). However, since
Sh(K ) �⊂ H2(K ) for K ∈ T i

h in general, the second inequality (3.3) cannot be applied to
functions in Sh(K ). Nevertheless, in [32,42], this trace inequality has been extended to IFE
functions. We recall this result in the following lemma.

Lemma 3.2 (Trace inequalities for IFE functions) Let Th be a Cartesian triangular or
rectangular mesh and let K ∈ Th be an interface triangle or rectangle with diameter hK

and let B be an edge of K . There exists a constant C, independent of interface location but
depending on the jump of the coefficient β, such that for every linear or bilinear IFE function
v defined on K , the following inequality hold

‖β∇v · nB‖L2(B) ≤ Ch−1/2
K ‖√β∇v‖L2(K ). (3.4)

We now describe the interpolation with IFE functions. For K ∈ T n
h , the local interpolation

operator is defined as I n
h,K : C(K ) → Sh(K ):

I n
h,K u(X) =

dK∑
i=1

u(Ai )ψi (X), K ∈ T n
h .

For K ∈ T i
h , the local interpolation operator is defined as I i

h,K : C(K ) → Sh(K ):

I i
h,K u(X) =

dK∑
i=1

u(Ai )φi (X), K ∈ T i
h .

On each non-interface element, we have the standard approximation theory for the finite
element interpolation:

‖u − I n
h,K u‖L2(K ) + hK |u − I n

h,K u|H1(K ) ≤ Ch2
K |u|H2(K ), ∀K ∈ T n

h . (3.5)

On each interface element, the approximation property of the IFE interpolation proved in
[17,29] provides similar error bounds as follows:

‖u − I i
h,K u‖L2(K ) + hK |u − I i

h,K u|H1(K ) ≤ Ch2
K ‖u‖H̃2(K ), ∀K ∈ T i

h , (3.6)

where the constant C is independent of interface location. For u ∈ H̃2(�), let Ih : H̃2(�) →
Sh(Th) be the interpolation defined by

(Ihu)|K =
{

I n
h,K u, K ∈ T n

h ,

I i
h,K u, K ∈ T i

h .
(3.7)

Multiplying h−1
K on both sides of (3.5) and (3.6), then summing up for all non-interface and

interface elements, we can obtain an interpolation error bound on the domain � as stated in
the next lemma.

Lemma 3.3 For u ∈ H̃2(�), satisfying the interface jump conditions (1.4) and (1.5), there
exists a constant C such that( ∑

K∈Th

h−2
K ‖u − Ihu‖2

L2(K )

)1/2 +
( ∑

K∈Th

|u − Ihu|2H1(K )

)1/2 ≤ Ch‖u‖H̃2(�)
, (3.8)

where h = max
K∈Th

hK .
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The following lemma provides the approximation property of Ihu in the energy norm ‖ · ‖h .

Lemma 3.4 Assume α ≤ 1 in the energy norm (3.1). For every u ∈ H̃2(�), satisfying the
interface jump conditions (1.4) and (1.5), there exists a constant C such that

‖u − Ihu‖h ≤ Ch‖u‖H̃2(�)
. (3.9)

Proof By the definition of ‖ · ‖h , we have

‖u − Ihu‖2
h =

∑
K∈Th

∫
K
β|∇(u − Ihu)|2d X +

∑
B∈E̊h

σ 0
B

|B|α ‖ [[u − Ihu]] ‖2
L2(B). (3.10)

For the first term on the right hand side, we use the estimate (3.8) to have
∑

K∈Th

∫
K
β|∇(u − Ihu)|2d X ≤ βmax

∑
K∈Th

‖∇(u − Ihu)‖2
L2(K ) ≤ βmax h2‖u‖2

H̃2(�)

(3.11)
where βmax = max{β−, β+}. Now we bound the second term in (3.10). Using the standard
trace equality (3.2) and the approximation properties (3.5) or (3.6), we have

σ 0
B

|B|α ‖ [[u − Ihu]] ‖2
L2(B) ≤ σ 0

B

|B|α
(
‖(u − Ihu)|K B,1‖2

L2(B) + ‖(u − Ihu)|K B,2‖2
L2(B)

)

≤ Ch−1−α
K B,1

(
‖u − Ihu‖2

L2(K B,1)
+ h2

K B,1
‖∇(u − Ihu)‖2

L2(K B,1)

)

+Ch−1−α
K B,2

(
‖u − Ihu‖2

L2(K B,2)
+ h2

K B,2
‖∇(u − Ihu)‖2

L2(K B,2)

)

≤ Ch3−α
K B,1

‖u‖2
V (K B,1)

+ Ch3−α
K B,2

‖u‖2
V (K B,2)

≤ Ch3−α (
‖u‖2

V (K B,1)
+ ‖u‖2

V (K B,2)

)
,

where V (K ) = H2(K ) for K ∈ T n
h and V (K ) = H̃2(K ) for K ∈ T i

h , and h = max
K∈Th

hK .

Also, the second inequality is due to the shape-regular property of Cartesian triangular or
rectangular meshes hK B,i ≤ C |B|, i = 1, 2. Thus, for α ≤ 1, we get

∑
B∈E̊h

σ 0
B

|B|α ‖ [[u − Ihu]] ‖2
L2(B) ≤ Ch2‖u‖2

H̃2(�)
. (3.12)

Finally, combining (3.11) and (3.12), we get (3.9).

The coercivity of the bilinear form aε(·, ·) is analyzed in the following lemma.

Lemma 3.5 There exists a constant κ > 0 such that

aε(vh, vh) ≥ κ‖vh‖2
h, ∀vh ∈ S̊h(Th) (3.13)

holds for ε = 1 unconditionally and holds for ε = 0 or − 1 under the conditions that the
penalty parameter σ 0

B is large enough and α ≥ 1.

Proof From the definition of aε(·, ·), we have

aε(vh, vh) =
∑

K∈Th

∫
K
β|∇vh |2d X + (ε − 1)

∑
B∈E̊h

∫
B

{{β∇vh · nB}} [[vh]] ds

+
∑
B∈E̊h

σ 0
B

|B|α
∫

B
[[vh]]2 ds. (3.14)
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We first note that, when ε = 1, the coercivity follows directly from (3.14) and the definition
of ‖ · ‖h . If ε = 0 or − 1, we need to bound the second term on the right hand side of (3.14).
For each B ∈ E̊h , recall that K B,i ∈ Th , i = 1, 2 are two elements sharing B as their common
edge. If K B,i , i = 1 or 2 is a non-interface element, by the trace inequality (3.3) and inverse
inequalities, we have

‖(β∇vh · nB)|K B,i ‖L2(B) ≤ βmax‖(∇vh)|K B,i ‖L2(B)

≤ Cβmaxh
− 1

2
K B,i

‖∇vh‖L2(K B,i )

≤ C
βmax√
βmin

h
− 1

2
K B,i

‖√β∇vh‖L2(K B,i )
, (3.15)

where βmin = min{β−, β+}, and βmax = max{β−, β+}. Then, using the assumption that
α ≥ 1 and by either the estimate (3.15) or IFE trace inequality (3.4) depending on whether
the element is a non-interface element or an interface element, we have∫

B
{{β∇vh · nB}} [[vh]] ds ≤ ‖ {{β∇vh · nB}} ‖L2(B)‖ [[vh]] ‖L2(B)

≤ 1

2

(‖(β∇vh · nB)|K B,1‖L2(B) + ‖(β∇vh · nB)|K B,2‖L2(B)

) ‖ [[vh]] ‖L2(B)

≤ C

2

(
h

− 1
2

K B,1
‖√β∇vh‖L2(K B,1)

+ h
− 1

2
K B,2

‖√β∇vh‖L2(K B,2)

)
‖ [[vh]] ‖L2(B)

≤ C
(
‖√β∇vh‖2

L2(K B,1)
+ ‖√β∇vh‖2

L2(K B,2)

) 1
2 1

|B|α/2 ‖ [[vh]] ‖L2(B).

Summing over all interior edges and using the Young’s inequality, we have

∑
B∈E̊h

∫
B

{{β∇vh · nB}} [[vh]] ds

≤ C
∑
B∈E̊h

(
‖√β∇vh‖2

L2(K B,1)
+ ‖√β∇vh‖2

L2(K B,2)

)1/2 1

|B|α/2 ‖ [[vh]] ‖L2(B)

≤ C

⎛
⎝ ∑

B∈E̊h

1

|B|α ‖ [[vh]] ‖2
L2(B)

⎞
⎠

1/2 ⎛
⎝ ∑

B∈E̊h

(
‖√β∇vh‖2

L2(K B,1)
+ ‖√β∇vh‖2

L2(K B,2)

)⎞
⎠

1/2

≤ δ

2

∑
K∈Th

‖√β∇vh‖2
L2(K ) + C

2δ

∑
B∈E̊h

1

|B|α ‖ [[vh]] ‖2
L2(B). (3.16)

Then, for ε = 0, we can choose

δ = 1 and σ 0
B >

C

2
,

and for ε = −1, we can choose

δ = 1

2
and σ 0

B > 2C.

Substituting these parameters in (3.16) and then putting it in (3.14), we obtain (3.13). ��
We also need an error bound for the IFE interpolation Ihu on interface edges which has

been proved in [32]. We present the result in the following lemma.
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Lemma 3.6 For every u ∈ H̃3(�), satisfying the interface jump conditions (1.4) and (1.5),
there exists a constant C independent of interface location such that

‖β(∇(u − Ihu))|K · nB‖2
L2(B) ≤ C

(
h2

K ‖u‖2
H̃3(�)

+ hK ‖u‖2
H̃2(K )

)
, (3.17)

where K is an interface element and B is one of its interface edge.

The assumptions of α in Lemma 3.4 and Lemma 3.5 suggest that we should choose α = 1
in our DG formulation (2.6). Now we are ready to prove the a priori error estimate for
DG-IFE method (2.6).

Theorem 3.1 Let u ∈ H̃3(�) be the exact solution to the interface problem (1.1) to (1.5)
and uh ∈ Sh(Th) be the solution to (2.6) with α = 1, ε = −1, 0, or 1. Then there exists a
constant C such that

‖u − uh‖h ≤ Ch‖u‖H̃3(�)
. (3.18)

Proof Subtracting the weak form (2.4) from the DG-IFE scheme (2.6), we get

aε(u − uh, vh) = 0, ∀vh ∈ S̊h(Th). (3.19)

For every wh ∈ S̊h(Th), using (3.19) and the coercivity (3.13), we have

κ‖uh − wh‖2
h ≤ aε(uh − wh, uh − wh) = aε(u − wh, uh − wh)

≤
∣∣∣∣∣∣
∑

K∈Th

∫
K
β∇(u − wh) · ∇(uh − wh)d X

∣∣∣∣∣∣

+
∣∣∣∣∣∣
∑
B∈E̊h

∫
B

{{β∇(u − wh) · nB}} [[uh − wh]] ds

∣∣∣∣∣∣

+
∣∣∣∣∣∣
∑
B∈E̊h

∫
B

{{β∇(uh − wh) · nB}} [[u − wh]] ds

∣∣∣∣∣∣

+
∣∣∣∣∣∣
∑
B∈E̊h

σ 0
B

|B|α
∫

B
[[u − wh]] [[uh − wh]] ds

∣∣∣∣∣∣
� T1 + T2 + T3 + T4. (3.20)

We proceed to bound the terms Ti , i = 1, 2, 3, 4 in (3.20). By the Cauchy-Schwarz inequality
and Young’s inequality with parameter δ > 0, we can easily bound T1 and T2:

T1 ≤
⎛
⎝ ∑

K∈Th

‖√β∇(u − wh)‖2
L2(K )

⎞
⎠

1/2 ⎛
⎝ ∑

K∈Th

‖√β∇(uh − wh)‖2
L2(K )

⎞
⎠

1/2

≤ 1

4δ
βmax‖∇(u − wh)‖2

L2(�)
+ δ

∑
K∈Th

‖√β∇(uh − wh)‖2
L2(K )

≤ C(δ)‖∇(u − wh)‖2
L2(�)

+ δ‖uh − wh‖2
h, (3.21)
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and

T2 ≤ C(δ)
∑
B∈E̊h

|B|α
σ 0

B

‖ {{β∇(u − wh) · nB}} ‖2
L2(B) + δ

∑
B∈E̊h

σ 0
B

|B|α ‖ [[uh − wh]] ‖2
L2(B)

≤ C(δ)
∑
B∈E̊h

|B|α
σ 0

B

‖ {{β∇(u − wh) · nB}} ‖2
L2(B) + δ‖uh − wh‖2

h, (3.22)

where C(δ) emphasizes that this is a constant depending on δ. For T3, by the Cauchy-Schwarz
inequality we have

T3 ≤
∑
B∈E̊h

‖ {{β∇(uh − wh) · nB}} ‖L2(B)‖ [[u − wh]] ‖L2(B). (3.23)

First, using the standard trace equality (3.2), we have

‖ [[u − wh]] ‖L2(B) ≤ ‖(u − wh)|K B,1‖L2(B) + ‖(u − wh)|K B,2‖L2(B)

≤ Ch−1/2
K B,1

(
‖u − wh‖L2(K B,1)

+ hK B,1‖∇(u − wh)‖L2(K B,1)

)

+Ch−1/2
K B,2

(
‖u − wh‖L2(K B,2)

+ hK B,2‖∇(u − wh)‖L2(K B,2)

)
.

Then, by the trace inequalities (3.3) or (3.4), we have

‖ {{β∇(uh − wh) · nB}} ‖L2(B) ≤ C
(

h−1/2
K B,1

‖√β∇(uh − wh)‖L2(K B,1)

+h−1/2
K B,2

‖√β∇(uh − wh)‖L2(K B,2)

)
.

Substituting the above two bounds into (3.23) and applying Young’s inequality, we obtain

T3 ≤ C(δ)

⎛
⎝ ∑

K∈Th

h−2
K ‖u − wh‖2

L2(K ) +
∑

K∈Th

‖∇(u − wh)‖2
L2(K )

⎞
⎠ + δ‖uh − wh‖2

h .

(3.24)
For T4, we use the assumptionα = 1, the Cauchy-Schwarz inequality, and Young’s inequality
to have

T4 ≤
∑
B∈E̊h

(
1

4δ

σ 0
B

|B|
∫

B
[[u − wh]] [[u − wh]] ds + δ

σ 0
B

|B|
∫

B
[[uh − wh]] [[uh − wh]] ds

)
.

(3.25)

Again, by trace inequality (3.2), we have

σ 0
B

|B|
∫

B
[[u − wh]]2 ds ≤ C

σ 0
B

|B|
(
‖(u − wh)|K B,1‖2

L2(B) + ‖(u − wh)|K B,2‖2
L2(B)

)

≤ Ch−2
K B,1

(
‖u − wh‖L2(K B,1)

+ hK B,1‖∇(u − wh)‖L2(K B,1)

)2

+Ch−2
K B,2

(
‖u − wh‖L2(K B,2)

+ hK B,2‖∇(u − wh)‖L2(K B,2)

)2
.

(3.26)
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Using (3.26) in (3.25), we have

T4 ≤ C(δ)

⎛
⎝ ∑

K∈Th

h−2
K ‖u − wh‖2

L2(K ) +
∑

K∈Th

‖∇(u − wh)‖2
L2(K )

⎞
⎠ + δ‖uh − wh‖2

h .

(3.27)

Substituting (3.21), (3.22), (3.24) and (3.27) into (3.20) and choosing δ = κ/8, we obtain

‖uh − wh‖2
h ≤ C

∑
K∈Th

‖∇(u − wh)‖2
L2(K ) + C

∑
B∈E̊h

|B|
σ 0

B

‖ {{β∇(u − wh) · nB}} ‖2
L2(B)

+C
∑

K∈Th

h−2
K ‖u − wh‖2

L2(K ) (3.28)

Now, we let wh be the IFE interpolation Ihu in (3.28) and use the optimal approximation
capability of linear or bilinear DG-IFE spaces (3.8) to have

‖uh − Ihu‖2
h ≤ Ch2‖u‖2

H̃2(�)
+ Ch

∑
B∈E̊h

∑
i=1,2

‖(β∇(u − Ihu) · nB)|K B,i ‖2
L2(B). (3.29)

We now bound the second term on the right hand side of (3.29). If K B,i , i = 1 or 2 is a
non-interface element, we use the trace inequality (3.3) to obtain

‖(β∇(u − Ihu) · nB)|K B,i ‖2
L2(B) ≤ C(h−1

K B,i
‖∇(u − Ihu)‖2

L2(K B,i )
+ hK B,i ‖∇2u‖2

L2(K B,i )
)

≤ ChK B,i ‖u‖2
H2(K B,i )

. (3.30)

If K B,i is an interface element, we use (3.17) to get

‖(β∇(u − Ihu) · nB)|K B,i ‖2
L2(B) ≤ C

(
h2

K B,i
‖u‖2

H̃3(�)
+ hK B,i ‖u‖2

H̃2(K B,i )

)
. (3.31)

Due to the shape regularity of mesh Th , we have the following bound on the union of interface
elements ∑

K∈T i
h

h2
K ‖u‖2

H̃3(�)
≤ h‖u‖2

H̃3(�)

∑
K∈T i

h

hK ≤ Ch‖u‖2
H̃3(�)

. (3.32)

Summing up the estimates (3.30) and (3.31) over all interior edges, and using the bound in
(3.32), we obtain∑
B∈E̊h

∑
i=1,2

‖(β∇(u − Ihu) · nB)|K B,i ‖2
L2(B) ≤ Ch‖u‖2

H̃3(�)
+ Ch‖u‖2

H̃2(�)
≤ Ch‖u‖2

H̃3(�)
.

(3.33)
Then, substituting (3.33) to (3.29) we obtain

‖uh − Ihu‖h ≤ Ch‖u‖H̃3(�)
. (3.34)

Finally, the error estimate (3.18) follows from triangle inequality, (3.34) and (3.9).

Remark 3.1 The DG-IFE methods proposed in this article and their related error estimation
can be extended to arbitrary shape-regular unstructured interface independent meshes.

Remark 3.2 The proof of Theorem 3.1 requires that the solution is piecewise H3, which is
higher than the usual piecewise H2 assumption imposed on methods using a finite element
space based on linear polynomials. Consequently, our error estimate here is optimal according
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to the rate of convergence expected from linear polynomials but not with respect to the
regularity of solution space.

4 Numerical Examples

In this section, we present numerical examples to demonstrate features of interior penalty DG-
IFE methods for elliptic interface problems. Let the solution domain� be the open rectangle
(−1, 1) × (−1, 1) and let the interface � be the ellipse centered at (x0, y0) = (−0.2, 0.1)
with semi-axes a = π

6.28 , b = 3
2 a. The interface separates � into two sub-domains, denoted

by �− and �+, i.e.,

�− = {(x, y) : r(x, y) < 1}, and �+ = {(x, y) : r(x, y) > 1},
where

r(x, y) =
√
(x − x0)2

a2 + (y − y0)2

b2 .

The exact solution u to the interface problem is chosen as follows

u(x, y) =
⎧⎨
⎩

a2b2 r p

β− , if (x, y) ∈ �−,

a2b2
(

r p

β+ + 1
β− − 1

β+
)
, if (x, y) ∈ �+.

(4.1)

Here p is a parameter and we choose p = 5 in Examples 1–3 representing a solution with
enough regularity, and p = 0.5 in Example 4 representing a solution with low regularity. Note
that this solution does not satisfy the homogeneous boundary condition (1.2). We use this
function for numerical verification because both the algorithm and the analysis in Sects. 2 and
3 can be extended to the nonhomogeneous boundary condition case via a standard treatment.

Example 1 In this example, we present a group of numerical results for demonstrating the
convergence of the DG-IFE methods on Cartesian triangular meshes. Additional numerical
results on rectangular meshes are provided in [16,18,20]. Specifically, the Cartesian triangular
meshes {Th, h > 0} are formed by first partitioning � into N × N congruent squares of size
h = 2/N and then dividing each rectangle into two congruent triangles with one of its
diagonal lines.

First, we consider the case in which (β−, β+) = (1, 10) representing a moderate dis-
continuity in the diffusion coefficient across the interface. The symmetric DG-IFE scheme
is employed to solve the interface problem with parameters α = 1 and σ 0

B = 1, 000 for all
interior edges. Errors of numerical solutions in the L∞, L2, and semi-H1 norms are reported
in Table 1. For comparison, we also solve the same interface problem using the continuous
Galerkin linear IFE method [28,29] on the same meshes, and the corresponding numerical
results are listed in Table 2.

The data in Table 1 clearly demonstrate that the convergence rate of the DG-IFE method
in the semi-H1 norm is optimal which corroborates the a priori error estimates (3.18) for
DG-IFE methods since the semi-H1 norm is part of the energy norm. In addition, the data
in this table indicate that the convergence rate of the DG-IFE method in the L2 norm is also
optimal. However, from Table 2, we can see that the convergence rates of the Galerkin IFE
solution in the L2 and H1 norms start to deteriorate when the mesh size becomes smaller
than h = 2/320. This comparison indicates that the DG-IFE methods are more stable than
the continuous Galerkin IFE method.
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Table 1 Errors of linear DG-IFE solutions with β− = 1, β+ = 10, σ 0
B = 1, 000

N ‖ · ‖L∞ rate ‖ · ‖L2 rate | · |H1 rate

10 2.8333E−2 3.7991E−2 6.7917E−1

20 8.4503E−3 1.7454 9.3605E−3 2.0210 3.4653E−1 0.9708

40 2.5075E−3 1.7527 2.3062E−3 2.0210 1.7456E−1 0.9893

80 7.2318E−4 1.7938 5.6970E−4 2.0173 8.7630E−2 0.9942

160 2.0134E−4 1.8447 1.4140E−4 2.0105 4.3903E−2 0.9971

320 5.4720E−5 1.8795 3.5178E−5 2.0070 2.1972E−2 0.9986

640 1.4450E−5 1.9210 8.7729E−6 2.0035 1.0991E−2 0.9994

1, 280 3.7496E−6 1.9463 2.1903E−6 2.0019 5.4965E−3 0.9997

Table 2 Errors of the classic Galerkin IFE solutions with β− = 1, β+ = 10

N ‖ · ‖L∞ rate ‖ · ‖L2 rate | · |H1 rate

10 2.8619E−2 4.4051E−2 6.7876E−1

20 1.1416E−2 1.3259 1.1333E−2 1.9587 3.4808E−1 0.9635

40 5.3027E−3 1.1062 2.8882E−3 1.9722 1.7641E−1 0.9805

80 1.9396E−3 1.4510 7.3078E−4 1.9827 8.9155E−2 0.9845

160 1.0689E−3 0.8596 1.8726E−4 1.9644 4.5387E−2 0.9740

320 5.4774E−4 0.9646 5.1220E−5 1.8702 2.3305E−2 0.9617

640 2.7498E−4 0.9942 1.6771E−5 1.6107 1.2277E−2 0.9247

1, 280 1.4113E−4 0.9623 7.1759E−6 1.2248 6.7321E−3 0.8668

Table 3 Errors of linear DG-IFE solutions with β− = 1, β+ = 1, 000, σ 0
B = 1, 000

N ‖ · ‖L∞ rate ‖ · ‖L2 rate | · |H1 rate

10 1.9381E−2 1.5338E−2 2.1012E−1

20 1.2420E−2 0.6420 6.0704E−3 1.3373 1.3141E−1 0.6772

40 4.0332E−3 1.6227 1.4957E−3 2.0210 6.9522E−2 0.9185

80 9.9934E−4 2.0129 3.6124E−4 2.0498 3.5490E−2 0.9701

160 2.7965E−4 1.8374 8.9863E−5 2.0072 1.7949E−2 0.9835

320 8.0700E−5 1.7930 2.1864E−5 2.0392 9.0223E−3 0.9924

640 2.2017E−5 1.8740 5.3914E−6 2.0198 4.5229E−3 0.9963

1, 280 5.9615E−6 1.8848 1.3343E−6 2.0146 2.2641E−3 0.9983

Next we consider the case involving a larger discontinuity in the diffusion coefficient,
i.e., β− = 1, and β+ = 1, 000. We use nonsymmetric DG-IFE scheme for this experiment
and choose σ 0

B = 1, 000 for all interior edges. As demonstrated by the data in Table 3, the
DG-IFE solutions converge optimally in the L2 and semi-H1 norms.

Example 2 From Tables 1 and 2, it is interesting to note that errors in the DG-IFE solutions
gauged in L∞ norm are much smaller than those in the classic Galerkin IFE solutions when
the mesh size is small enough. It has been observed that the classic IFE solution has a so
called “crown” shortcoming as demonstrated by the plot on the left side of Fig. 2, meaning
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Fig. 2 Point-wise error of Galerkin IFE solution and DG-IFE solution

its point-wise accuracy is much worse in the vicinity of the interface than the rest of the
solution domain. We think this severity of inaccuracy is caused by the discontinuity in the
IFE functions across the interface edges. Nevertheless, the DG-IFE methods contain penalty
terms that can alleviate the adverse impacts from the discontinuity across element edges,
especially those from interface edges. Therefore, DG-IFE methods can usually outperform
the classic Galerkin IFE method around the interface as demonstrated by the plot on the right
side of Fig. 2. IFE solutions in these plots are generated on a mesh formed by partitioning�
into 160×160 congruent rectangles first, then generating triangular elements by the diagonal
line of these rectangles.

Example 3 One desirable feature of the DG formulation is the local adaptivity in mesh
or polynomials because this formulation does not require the inter-element continuity of
finite element functions. The combination of IFE spaces and the DG formulation leads to
a new class of finite element methods that allow local mesh refinement while maintaining
the possibility of using the desirable structured Cartesian meshes for solving problems with
nontrivial interface geometry. This example is for demonstrating this feature of the DG-IFE
methods.

The discontinuity in the coefficient of the interface problem limits the smoothness of the
exact solution around interface. The low regularity of the solution around interface usually
has an adverse impact on the accuracy of the numerical solution around the interface. To
overcome this challenge, one can employ more finite element functions around the interface
and a way to achieve this is to refine interface elements. To demonstrate this idea, we consider
the same example described above for a larger coefficient jump (β− = 1, β+ = 1, 000). We
start with a uniform Cartesian mesh T (0)

h consisting of 10 × 10 rectangles. For k ≥ 1, the

mesh T (k)
h is generated by refining the previous mesh T (k−1)

h via cutting each of its interface
elements into four congruent rectangles by connecting midpoints on opposite edges. We
then solve the interface problem (1.1)–(1.5) on a sequence of 6 such meshes generated by
the refinement procedure described above using the nonsymmetric DG-IFE method with
σ 0

B = 1, 000 on all internal edges. Errors in the L∞, L2, and semi-H1 norms generated on

each mesh are presented in Table 4. In the second column, |T (k)
h | denotes the number of

elements in the mesh T (k)
h . The numbers of degrees of freedom are listed in the third column.

The initial mesh T (0)
h and the refined meshes T (2)

h and T (4)
h are illustrated in Fig. 3.
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Table 4 Errors of NIPDG-IFE solutions on meshes with local refinement

Mesh |T (i)
h | DoF ‖ · ‖L∞ ‖ · ‖L2 | · |H1

T (0)
h 100 400 1.5064E-2 1.5667E-2 1.9393E-1

T (1)
h 178 712 1.9242E-2 8.7358E-3 1.5041E-1

T (2)
h 334 1, 336 1.2799E-2 5.9608E-3 1.2761E-1

T (3)
h 646 2, 584 1.2789E-2 5.7452E-3 1.2321E-1

T (4)
h 1, 258 5, 032 1.2484E-2 5.6245E-3 1.2233E-1

T (5)
h 2, 470 9, 880 1.2431E-2 5.5988E-3 1.2213E-1

T (6)
h 4, 882 19, 528 1.2424E-2 5.5940E-3 1.2209E-1

Number of Element =  100 Number of Element =  334 Number of Element =  1258

Fig. 3 Solution meshes T (0)
h , T (2)

h , and T (4)
h

The data in Table 4 show that the global error in the L2 and semi-H1 norms are significantly
reduced in the first two steps of local mesh refinements. But further refinements performed
on interface elements do not reduce the global error as much as the first two steps. We
believe this is because, after the first two refinements, errors of the DG-IFE solutions over
non-interface elements become more significant. To further increase the accuracy of DG-IFE
solutions, refinement on non-interface elements is also necessary. To demonstrate this idea,
we simulate an adaptive local mesh refinement over the whole solution domain. Since a
posteriori error estimators for IFE methods are not available yet, we use the actual error as
the “ideal” error indicator to guide the local refinement just for a proof of concept.

We start from a uniform Cartesian mesh T (0)
h consisting of 10 × 10 rectangles. For k ≥ 0,

we produce a DG-IFE solution uh for the interface problem on the mesh T (k)
h and compute

the local semi-H1 norm error |u − uh |H1(T ) on each element of T (k)
h . We sort these local

errors from the largest to the smallest and use this order to form the smallest collection T̃ (k)
h

of the first few elements such that∑
T ∈T̃ (k)

h

|u − uh |2H1(T ) ≥ θ |u − uh |2H1(�)
. (4.2)

Then, we generate a new mesh T (k+1)
h by refining T (k)

h via cutting each of the elements

in T̃ (k)
h into four congruent rectangles by connecting midpoints on its opposite edges. The

computation repeats over the new mesh T (k+1)
h .

We choose θ = 0.2 and conduct adaptive DG-IFE scheme on each locally refined mesh.
In Fig. 4, we show the initial mesh T (0)

h , the refined meshes T (7)
h ,T (12)

h , and T (17)
h , and errors
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Fig. 4 Point-wise error of DG-IFE solutions on meshes: T (0)
h , T (7)

h ,T (12)
h , and T (17)
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Fig. 5 Left the exact solution u in Example 3. Right a log-log scale plot of errors of in numerical solutions
generated by the adaptive and uniform mesh refinement. The red line with a −0.5 slope is for the reference of
optimal convergence

of the DG-IFE solutions generated on those meshes. From these plots, we can easily see that
the global error in the DG-IFE solution is reduced as the local mesh refinement automatically
deploys smaller elements at locations needed according to the “ideal” error indicator while
maintaining the Cartesian structure of the meshes.

To see the effectiveness of the adaptive DG-IFE methods, we compare the errors in DG-IFE
solutions generated via adaptive mesh refinement to errors of DG-IFE solutions generated
on uniform meshes with comparable degrees of freedom in Fig. 5. The semi-H1 norm errors
presented in the right plot in Fig. 5 shows that the magnitude of errors in adaptive DG-IFE
method are smaller than in the method with a uniform mesh when their degrees of freedom are
comparable. However, the order of convergence for both schemes are optimal by comparing
their errors with the reference line of slope −1/2 (the same criteria is used in [7]). We note that
the exact solution u defined in (4.1) with p = 5 is piecewisely smooth, i.e. u ∈ H̃3(�) (see
the left plot in Fig. 5), although the global regularity is impacted by the discontinuity of the
coefficients. The optimal convergence of the numerical solution in uniform mesh refinement
confirms our theoretical error estimate (3.18) in Sect. 3.

Example 4 In many applications, because of the insufficient regularity in the data, solutions
to the involved boundary value problems may not be piecewisely smooth enough for a certain
convergence theorem to hold. In such cases, finite element or DG methods based on uniform
mesh refinement usually fail to converge optimally, but adaptive FE or DG methods with
suitably designed mesh refinement strategies can still generate optimally convergent numer-
ical solutions [7,8]. For interface problems with discontinuous coefficients, the phenomenon
is similar. In this example, we demonstrate behaviors of DG-IFE method in adaptive and
uniform mesh refinements for solving interface problems whose exact solution has singular-
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Fig. 6 Left the exact solution u in Example 4. Right a log-log scale plot of errors of in numerical solutions
generated by the adaptive and uniform mesh refinement. The red line with a −0.5 slope is for the reference of
optimal convergence

Table 5 Errors of bilinear nonsymmetric DG-IFE solutions with p = 0.5

N ‖ · ‖L∞ rate ‖ · ‖L2 rate | · |H1 rate

10 4.2599E−2 1.8474E−2 1.0415E−1

20 5.7301E−2 −0.4278 8.0329E−3 1.2015 5.6787E−2 0.8751

40 4.5270E−2 0.3400 5.5008E−3 0.5463 4.2830E−2 0.4069

80 3.5386E−2 0.3554 3.8353E−3 0.5203 3.2011E−2 0.4201

160 2.7412E−2 0.3684 2.6964E−3 0.5083 2.3774E−2 0.4292

320 2.1075E−2 0.3793 1.9024E−3 0.5032 1.7573E−2 0.4361

640 1.6098E−2 0.3886 1.3441E−3 0.5012 1.2940E−2 0.4415

1, 280 1.2237E−2 0.3967 9.5014E−4 0.5005 9.5021E−3 0.4461

ity. In particular, this example indicates that the DG-IFE method with adaptive refinement
on interface independent meshes can satisfactorily handle interface problems whose exact
solutions are less smooth.

We choose the exact solution u in the form of (4.1) with p = 0.5 such that it does not
satisfy the regularity condition required by Theorem 3.1 on the convergence of the DG-IFE
method. This lack of regularity is caused by the singularity of the exact solution at the center
of the ellipse as depicted in the left plot of Fig. 6. The coefficients are set to be β− = 1,
β+ = 10. First, we present the data generated by the DG-IFE method with uniform mesh
refinement in Table 5. Specifically, these data are produced by the nonsymmetric DG-IFE
method with the penalty σ 0

B = 100 on every edge. Errors in L∞, L2, and semi-H1 norms
are reported, and the convergence rates of the DG-IFE method are obviously not optimal in
all three corresponding norms.

Next, we report the performance of the adaptive DG-IFE method for solving the same
interface problem with this less smooth exact solution. As in Example 3, we use the exact
error as an “ideal” error indicator for mesh refinement just for a proof of concept. Starting
with a uniform mesh T (0)

h consisting of 10 × 10 rectangles, we perform the local mesh
refinement based on the same rule as the one in (4.2) with the threshold θ = 0.2. Errors
in semi-H1 norm are depicted in Fig. 6, in which, as a comparison, errors from uniform
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mesh of level 10  with 250 elements mesh of level 15  with 718 elements mesh of level 20  with 2335 elements mesh of level 25  with 8497 elements

Fig. 7 Solution meshes: T (10)
h , T (15)

h ,T (20)
h , and T (25)

h

mesh refinement are also plotted. It is obvious that the adaptive DG-IFE method is far more
accurate than the DG-IFE method based uniform meshes when their numbers of degrees of
freedom are comparable. Moreover, comparing the errors with the reference line of slope
−1/2, it is obvious that the rate of convergence of the adaptive DG-IFE method is close
to optimal from the point view of the degrees of freedom while the rate of convergence of
DG-IFE method based on uniform mesh is not optimal. Some meshes in the process of the
local refinement are presented in Fig. 7 from which one can observe that the refinement is
around the center of the ellipse where the exact solution is singular.

5 Conclusion

In this article, we establish the a priori error estimates for interior penalty DG methods with
IFE functions for elliptic interface problem. The method can be used on Cartesian meshes
that are independent of the interface. The analysis here shows that the order of convergence of
these DG-IFE methods is optimal in the energy norm from the point of the polynomial degree
in the finite element spaces. With the enhanced stability, these DG-IFE methods outperform
the the classic Galerkin IFE methods, especially in vicinity of the interface across which
the exact solution is usually less smooth. The proposed DG-IFE schemes allow efficient
local mesh refinement while preserving the Cartesian structure of meshes provided that
a posteriori error estimators are available.
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