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a b s t r a c t

This article is to discuss the linear (which was proposed in [18,19]) and bilinear
immersed finite element (IFE)methods for solving planar elasticity interface problemswith
structured Cartesian meshes. Basic features of linear and bilinear IFE functions, including
the unisolvent property, will be discussed.While bothmethods have comparable accuracy,
the bilinear IFE method requires less time for assembling its algebraic system. Our analysis
further indicates that the bilinear IFE functions are guaranteed to be applicable to a
larger class of elasticity interface problems than linear IFE functions. Numerical examples
are provided to demonstrate that both linear and bilinear IFE spaces have the optimal
approximation capability, and that numerical solutions produced by a Galerkin method
with these IFE functions for elasticity interface problem also converge optimally in both L2
and semi-H1 norms.
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1. Introduction

In this paper, we consider the following planar linear elasticity boundary problem with discontinuous Lamé parameters
across a smooth material interface Γ :

−div σ(u) = f inΩ, (1.1)
u = g on ∂Ω, (1.2)

whose solution u is required to satisfy the following jump conditions across the interface Γ :
[u]Γ = 0, (1.3)
σ(u) n


Γ

= 0. (1.4)

Here we use letters in bold font to denote vector-valued functions and their associated spaces. The notation u = (u1, u2)
t

represents the displacement, f = (f1, f2)t and g = (g1, g2)t represent the given body force and the given displacement
on the boundary ∂Ω , respectively, and n denotes the normal of the interface Γ . As usual, the strain tensor is denoted by
ϵ(u) =


ϵij(u)


1≤i,j≤2 with

ϵij(u) =
1
2


∂ui

∂xj
+
∂uj

∂xi


,
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Fig. 1. The plot in the middle shows how elements are placed along an interface in the standard finite element method. The Cartesian mesh on the right
are used in the bilinear IFE method, with interface cutting through some rectangles.

and the stress tensor σ(u) =

σij(u)


1≤i,j≤2 is defined as

σij(u) = λ (∇ · u)δij + 2µϵij(u),

where λ,µ are Lamé parameters. Without loss of generality, we assume that Ω ⊂ R2 is a rectangular domain (or a union
of several rectangular domains) formed with two elastic materials. The interface Γ is a smooth curve that separates these
materials into two sub-domainsΩ+,Ω−, such thatΩ = Ω+

∪Ω−
∪ Γ ; see the plot on the left in Fig. 1. Hence, the Lamé

parameters λ and µ are discontinuous across the interface Γ such that:

λ =


λ−, (x, y)t ∈ Ω−,

λ+, (x, y)t ∈ Ω+,
µ =


µ−, (x, y)t ∈ Ω−,

µ+, (x, y)t ∈ Ω+.
(1.5)

Many applications in science and engineering require solving the elasticity interface problem (1.1)–(1.4), for instance,
problems in the crystalline materials [1], the simulation in the microstructural evolution [2,3], and the atomic
interactions [4], to name just a few.

Numerous methods have been developed for solving elasticity problems efficiently and accurately, for instance, finite
element methods have been discussed in [5–7] and discontinuous Galerkin methods have been presented in [8–11]. In
general, in order to solve an elasticity interface problem, these methods have to use meshes tailored to fit the interface
[12,13] ; otherwise, the convergence of numerical solutions produced by these methods cannot be predicted. Such meshes
are often called body-fitting as illustrated in the plot in the middle of Fig. 1.

On the other hand, it is usually time consuming to generate a satisfactory body-fitting mesh for an interface problem in
which the interface separating the materials is geometrically complicated. Such a difficulty becomes even more severe if
the interface evolves in a simulation because a new mesh has to be generated for each of the material configurations to be
considered. It is therefore desirable to develop numericalmethods that can solve interface problemswith a non-body-fitting
mesh, such as the Cartesian mesh in the plot on the right in Fig. 1. There have been a few attempts in this direction for the
planar elasticity interface problems. Following a Nitsche’s idea, the authors in [14,15] have proposed unfitted finite element
methods for elasticity interface problems. Using finite difference discretization, the authors in [16,17] have utilized the local
coordinate transformation to develop the immersed interface method that allows the material interface to be embedded in
the interior of elements.

The recently developed immersed finite element (IFE) methods [17–37] employ an alternative idea to handle interface
problems. Amain feature of an IFEmethod is that its mesh can be independent of the interface; hence, if desired, a Cartesian
mesh can be used even if the interface geometry is nontrivial. Standard finite element functions are used in non-interface
elements, but IFE functions constructed according to the interface jump conditions are employed in interface elements.
We note that most of the IFE methods are developed for interface problems involving the popular second order elliptic
operator. For elasticity interface problems, the authors in [18,37] present a conforming linear IFE method whose global IFE
basis functions have a rather complicated and large support around the interface. A nonconforming linear IFE method on
the triangular Cartesian mesh for elasticity interface problem was proposed in [17,19,37] whose authors conclude that this
method has at least the first order convergence in a discrete L∞ norm.

In our article here, we will first recall the linear IFE functions developed in [19] and present a simpler alternative
description. Our main focus is to develop a bilinear IFE space based on a rectangular mesh. We note that the bilinear IFE
method is more efficient because a Cartesian mesh is simpler than its related Cartesian triangular mesh. Also, our analysis
indicates that bilinear IFE functions are guaranteed to be applicable for elasticity interface problems with a larger class of
elasticity material configurations than linear IFE functions.

The rest of this paper is organized as follows. In Section 2, we recall the linear IFE functions introduced in [19] andwewill
provide an alternative formulation that can help our analysis in many situations. In Section 3, we introduce a bilinear IFE
space based on a rectangularmesh. In Section 4, wewill discuss properties of these IFE spaces including their approximation
capability. In Section 5, we will apply these IFE functions in a Galerkin formulation to solve the planar elasticity interface
problems. Brief conclusions will be given in Section 6.
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2. The linear immersed finite element space

In this section, we first recall the linear IFE functions for the planar elasticity interface problem introduced in [19], and
then give a simpler alternative formulation for these IFE functions.

2.1. Linear IFE functions

Let Th = {T } be a Cartesian triangular mesh of a rectangular domainΩ which is formed by partitioningΩ into uniform
rectangles and further cutting each rectangle into two congruent triangles along one of the diagonal line. We call a triangle
T ∈ Th an interface triangle if the interface Γ passes through the interior of T ; otherwise we call it a non-interface triangle.
We will use T i

h and T n
h to denote the collections of interface triangles and non-interface triangles, respectively. The usual

linear finite element functions are used on each T ∈ T n
h . For each T = 1A1A2A3 ∈ T i

h with vertices

A1 = (x1, y1)t , A2 = (x2, y2)t , A3 = (x3, y3)t ,

we assumeΓ intersects ∂T atD = (xD, yD)t , and E = (xE, yE)t on two different edges of T , andwe call them interface points.
The line segment DE, which is used to approximate the actual interface Γ ∩ T , separates T into two polygonal domains T+

and T−, among which T+ is the one containing a vertex inΩ+. As introduced in [19], piecewise linear polynomials are used
to construct linear IFE functions on an interface element T in the following form:

8(x, y) = 8s(x, y) =


φs
1(x, y)
φs
2(x, y)


, if (x, y)t ∈ T s, s = +,−, (2.1)

where

φs
j (x, y) = asj + bsjx + csj y, j = 1, 2, s = +,−. (2.2)

Note that each linear IFE function described by (2.1) has 12 degrees of freedom (coefficients) asj , b
s
j , c

s
j , j = 1, 2, s = +,−;

hence, we need 12 restrictions to determine all the coefficients. The nodal values at the vertices of T provide 6 restrictions.
The displacement continuity [u] = 0 at interface points D, E provides 4 restrictions. The other 2 restrictions come from the
traction continuity [σ(u) nDE] = 0. More details can be found in [19].

2.2. A reduced formulation for linear IFE functions

Herewe present an alternative approach to construct linear IFE functionswhich has a simpler form but ismathematically
equivalent to the above definition originally introduced in [19]. We follow the idea used in [23,25] to represent an IFE
function in terms of the linear combination of the standard linear finite element nodal basis functions. As usual, we can
develop linear IFE functions 8̂(x̂, ŷ) on the reference interface triangle T̂ = 1Â1Â2Â3 whose vertices are:

Â1 =


0
0


, Â2 =


1
0


, Â3 =


0
1


.

Assume an actual element T is the image of the reference element T̂ by the following affine mapping:

F : T̂ → T , with X = F(X̂) = MX̂ + B, (2.3)

where X = (x, y)t and X̂ = (x̂, ŷ)t . With a proper choice of M and B, we can assume, through this affine mapping, that the
pre-images of the interface points D = (xD, yD)t and E = (xE, yE)t are

D̂ =


0
d̂


, Ê =


ê

1 − ê


, (2.4)

where 0 < d̂, ê ≤ 1. Finally, every IFE function 8(X) on the actual element T is defined by an IFE function 8̂(X̂) on T̂ as
follows

8(X) = 8̂(F−1(X)) = 8̂(X̂). (2.5)

On the reference element T̂ , we recall the standard scalar linear nodal basis functions: ψ̂1 = 1 − x̂ − ŷ, ψ̂2 = x̂, ψ̂3 = ŷ.
We use these scalar functions to form 6 vector nodal basis functions as follows:

9̂i(x̂, ŷ) =


ψ̂i(x̂, ŷ)

0


, for i = 1, 2, 3, and 9̂i(x̂, ŷ) =


0

ψ̂i−3(x̂, ŷ)


, for i = 4, 5, 6. (2.6)

The linear vector finite element nodal basis functions on the actual element T corresponding to (2.6) are denoted as
9i,T (x, y), 1 ≤ i ≤ 6.
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Fig. 2. A reference triangle of interface elements.

Then, for the representative interface configuration in Fig. 2, we can write the vector linear IFE functions in the following
form:

8̂(x̂, ŷ) = 8̂
s
(x̂, ŷ), if (x̂, ŷ) ∈ T̂ s, s = +,−, (2.7)

where

8̂
−

(x̂, ŷ) = v19̂1(x̂, ŷ)+ v29̂2(x̂, ŷ)+ c39̂3(x̂, ŷ)+ v49̂4(x̂, ŷ)+ v59̂5(x̂, ŷ)+ c69̂6(x̂, ŷ), (2.8)

8̂
+

(x̂, ŷ) = c19̂1(x̂, ŷ)+ c29̂2(x̂, ŷ)+ v39̂3(x̂, ŷ)+ c49̂4(x̂, ŷ)+ c59̂5(x̂, ŷ)+ v69̂6(x̂, ŷ). (2.9)

We note that coefficients vi, 1 ≤ i ≤ 6 are determined by the nodal values of 8̂(x̂, ŷ) because we can easily verify that

8̂(Â1) =


v1
v4


, 8̂(Â2) =


v2
v5


, 8̂(Â3) =


v3
v6


.

The coefficients ci, 1 ≤ i ≤ 6 are to be determined according to vi, 1 ≤ i ≤ 6 by imposing the following jump conditions to
8̂:

8̂
+

(D̂) = 8̂
−

(D̂), 8̂
+

(Ê) = 8̂
−

(Ê),

σ̂ (8̂

+

)− σ̂ (8̂
−

)


n̂
D̂Ê

= 0, (2.10)

where σ̂ is the stress tensor on the reference element and n̂
D̂Ê

is the image of nDE through the affine mapping. Specifically,
(2.10) leads to the following algebraic system for determining ci, 1 ≤ i ≤ 6:

MCC = MVV, C = (c1, c2, . . . , c6)t , V = (v1, v2, . . . , v6)
t , (2.11)

where

MC =


1 − d̂ 0 −d̂ 0 0 0
0 0 0 1 − d̂ 0 −d̂
0 ê −1 + ê 0 0 0
0 0 0 0 ê −1 + ê

êµ+
− r̂ω+ r̂ω+ êµ− êµ+

− r̂λ+
−êµ+

−r̂λ−

êλ+
− r̂µ+

−êλ+
−r̂µ− êω+

− r̂µ+ r̂µ+ êω−

 , (2.12)

and

MV =


1 − d̂ 0 −d̂ 0 0 0
0 0 0 1 − d̂ 0 −d̂
0 ê −1 + ê 0 0 0
0 0 0 0 ê −1 + ê

êµ−
− r̂ω− r̂ω− êµ+ êµ−

− r̂λ−
−êµ−

−r̂λ+

êλ−
− r̂µ−

−êλ−
−r̂µ+ êω−

− r̂µ− r̂µ− êω+

 , (2.13)

with ωs
= λs + 2µs, s = +,−, and r̂ = 1 − d̂ − ê. Using V = Vi = ei ∈ R6, 1 ≤ i ≤ 6 as the usual i-th basis vector, we can

solve (2.11) for Ci and use them in (2.7) to obtain the i-th IFE nodal basis function 8̂i(x̂, ŷ), 1 ≤ i ≤ 6. Furthermore, using the
affine mapping between the reference element T̂ and the actual element T , we obtain the i-th linear IFE nodal basis function
on T as follows:

8i,T (X) = 8̂i(F−1(X)) = 8̂i(X̂), 1 ≤ i ≤ 6.
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Fig. 3. Interface rectangles: Type I on the left and Type II on the right.

Finally, on each element T ∈ Th, we define the local linear IFE space Sh(T ) as

Sh(T ) =


span{8i,T , 1 ≤ i ≤ 6}, if T is an interface triangle,
span{9i,T , 1 ≤ i ≤ 6}, otherwise. (2.14)

We call (2.7) a reduced formulation for linear IFE nodal basis functions because it has 6 undetermined coefficients instead
of 12 in the original formulation (2.1).

3. The bilinear immersed finite element spaces

In this section, we first introduce the bilinear IFE functions defined on a Cartesian (rectangular) mesh. Again, a reduced
formulationwill be employed. Corresponding bilinear IFE spaces for planar elasticity interface problemswill be then formed
accordingly.

3.1. Bilinear IFE functions

It is more natural and often desirable to use a Cartesianmesh on a rectangular domain (or a union ofmultiple rectangular
domains). Correspondingly, bilinear polynomials will be used to form basis functions on each rectangular element. Let
Th = {T } be a Cartesian mesh of Ω . The interface rectangles are those whose interiors are cut through by the interface
Γ , and non-interface rectangles are the rest. Without loss of generality, we assume that elements in a rectangular mesh
have the following properties when the mesh size h is small enough:

(H1): The interface Γ will not intersect an edge of any rectangular element at more than two points unless this edge is part
of Γ .

(H2): If Γ intersects the boundary of a rectangular element at two points, then these two points must be on different edges
of this element.

We note that these assumptions are introduced in [26] for discussing scalar elliptic interface problems. As before, we use
T i
h and T n

h to denote the sets of interface rectangles and non-interface rectangles, respectively. Our major concern is to
construct basis functions for interface elements. For each T ∈ T i

h , we assume T = �A1A2A3A4 with vertices:

A1 = (x1, y1)t , A2 = (x2, y2)t , A3 = (x3, y3)t , A4 = (x4, x4)t .

Assume the interface Γ intersects ∂T at D = (xD, yD)t , and E = (xE, yE)t . We use the line segment DE to approximate the
actual interface Γ ∩ T . Note that DE separates T into two subelements T+ and T−, among which T+ is the one containing
a vertex in Ω+. Also note that there are two types of rectangular interface element. A Type I interface rectangle is that for
which the interface intersects two of its adjacent edges; a Type II interface rectangle is that for which the interface intersects
two of its opposite edges. See Fig. 3 for an illustration.

On an interface element T , we define bilinear IFE functions as vector piecewise bilinear polynomials8 defined according
to the sub-elements T+ and T− as follows:

8(x, y) = 8s(x, y) =


φs
1(x, y)
φs
2(x, y)


, if (x, y)t ∈ T s, s = +,−, (3.1)

where

φs
j (x, y) = asj + bsjx + csj y + dsjxy, j = 1, 2, s = +,−. (3.2)

Note that there are 16 undetermined coefficients for each vector-valued bilinear IFE function8. The nodal values provide
8 restrictions.We then incorporate interface jump conditions (1.3) and (1.4) to obtain another 8 restrictions in the following
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way. Since8(x, y) is piecewise bilinear, the stress defined through8(x, y)will not be a constant tensor, thereforeweweakly
impose the traction continuity in the following integration form:

DE


σ(8+)− σ(8−)


nDE ds = 0,

which generates 2 restrictions. We can impose another 6 restrictions by requiring the continuity of 8 at three points D, E,
and D+E

2 . However, following the idea used for scalar bilinear IFE functions [25,26], we replace the continuity of 8 at the
midpoint D+E

2 by

∂28+

∂x∂y
=
∂28−

∂x∂y
. (3.3)

In summary, each bilinear IFE function 8(x, y) defined by (3.1) will be determined by the following conditions:

• the nodal values restrictions:

8(Aj) = Vj, j = 1, 2, 3, 4,

• the displacement interface continuity restrictions:

8+(D) = 8−(D), 8+(E) = 8−(E),
∂28+

∂x∂y
=
∂28−

∂x∂y
,

• the weak traction interface continuity restrictions:
DE


σ(8+)− σ(8−)


nDE ds = 0.

3.2. A reduced formulation for bilinear IFE functions

Wenowpresent a reduced formulation for vector bilinear IFE functions.We first consider local bilinear IFE basis functions
8̂ on the reference interface rectangle T̂ = �Â1Â2Â3Â4 with vertices:

Â1 =


0
0


, Â2 =


1
0


, Â3 =


0
1


, Â4 =


1
1


.

We assume that an actual element T is associated with the reference element T̂ via an affine mapping in the form of (2.3)
such that the pre-images of the interface points D = (xD, yD)t and E = (xE, yE)t are

D̂ =


0
d̂


, Ê =


ê
0


, (3.4)

with 0 < d̂, ê ≤ 1 for Type I reference interface rectangle and

D̂ =


d̂
1


, Ê =


ê
0


, (3.5)

for Type II reference interface rectangle with 0 < d̂, ê < 1, as illustrated in Fig. 4. IFE functions in the actual element T are
defined by

8(X) = 8̂(F−1(X)) = 8̂(X̂).

On the reference rectangle T̂ , we recall the standard scalar bilinear nodal basis:

ψ̂1(X) = 1 − x̂ − ŷ + x̂ŷ, ψ̂2(X) = x̂ − x̂ŷ, ψ̂3(X) = ŷ − x̂ŷ, ψ̂4(X) = x̂ŷ,

which are used to form 8 vector-valued nodal basis functions in the following forms:

9̂i(x̂, ŷ) =


ψ̂i(x̂, ŷ)

0


, for i = 1, 2, 3, 4, and 9̂i(x̂, ŷ) =


0

ψ̂i−4(x̂, ŷ)


, for i = 5, 6, 7, 8. (3.6)

The vector bilinear finite element nodal basis functions on an actual element T corresponding to (3.6) are denoted as
9i,T (x, y), 1 ≤ i ≤ 8.

On the reference interface rectangle T̂ , we write the vector bilinear IFE functions as follows:

8̂(x̂, ŷ) = 8̂
s
(x̂, ŷ), if (x̂, ŷ)t ∈ T̂ s, s = +,−, (3.7)
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Fig. 4. Reference interface rectangles: Type I on the left and Type II on the right.

where

8̂
−

(x̂, ŷ) = v19̂1(x̂, ŷ)+ c29̂2(x̂, ŷ)+ c39̂3(x̂, ŷ)+ c49̂4(x̂, ŷ)
+ v59̂5(x̂, ŷ)+ c69̂6(x̂, ŷ)+ c79̂7(x̂, ŷ)+ c89̂8(x̂, ŷ), (3.8)

8̂
+

(x̂, ŷ) = c19̂1(x̂, ŷ)+ v29̂2(x̂, ŷ)+ v39̂3(x̂, ŷ)+ v49̂4(x̂, ŷ)
+ c59̂5(x̂, ŷ)+ v69̂6(x̂, ŷ)+ v79̂7(x̂, ŷ)+ v89̂8(x̂, ŷ), (3.9)

for the Type I reference interface rectangle, and

8̂
−

(x̂, ŷ) = v19̂1(x̂, ŷ)+ c29̂2(x̂, ŷ)+ v39̂3(x̂, ŷ)+ c49̂4(x̂, ŷ)
+ v59̂5(x̂, ŷ)+ c69̂6(x̂, ŷ)+ v79̂7(x̂, ŷ)+ c89̂8(x̂, ŷ), (3.10)

8̂
+

(x̂, ŷ) = c19̂1(x̂, ŷ)+ v29̂2(x̂, ŷ)+ c39̂3(x̂, ŷ)+ v49̂4(x̂, ŷ)
+ c59̂5(x̂, ŷ)+ v69̂6(x̂, ŷ)+ c79̂7(x̂, ŷ)+ v89̂8(x̂, ŷ), (3.11)

for the Type II reference interface rectangle. Here the coefficients vi, i = 1, . . . , 8 are determined by nodal values of 8̂(x̂, ŷ)
since we have:

8̂(Â1) =


v1
v5


, 8̂(Â2) =


v2
v6


, 8̂(Â3) =


v3
v7


, 8̂(Â4) =


v4
v8


.

The coefficients ci, i = 1, . . . , 8 can be determined according to vi, i = 1, . . . , 8 by imposing the jump conditions to 8̂:

8̂
+

(D̂) = 8̂
−

(D̂), 8̂
+

(Ê) = 8̂
−

(Ê),
∂28̂

+

∂ x̂∂ ŷ
=
∂28̂

−

∂ x̂∂ ŷ
, (3.12)

D̂Ê


σ̂ (8̂

+

)− σ̂ (8̂
−

)


n̂
D̂Ê

ds = 0, (3.13)

where σ̂ is the stress tensor on the reference rectangle, and n̂
D̂Ê

is the image of nDE through the above affine mapping. To
be more specific, (3.12) and (3.13) yield the following algebraic systems for unknowns ci, i = 1, . . . , 8:

MCC = MVV, C = (c1, c2, . . . , c8)t , V = (v1, v2, . . . , v8)
t . (3.14)

To simplify the notations, we let p̂ = 2 − d̂, and q̂ = 2 − ê. For Type I reference rectangle, we have

MC = M I
C =



1 − d̂ 0 −d̂ 0 0 0 0 0
0 0 0 0 1 − d̂ 0 −d̂ 0

1 − ê −ê 0 0 0 0 0 0
0 0 0 0 1 − ê −ê 0 0
1 1 1 −1 0 0 0 0
0 0 0 0 1 1 1 −1

mI
C71 mI

C72 mI
C73 mI

C74 mI
C75 mI

C76 mI
C77 mI

C78
mI

C81 mI
C82 mI

C83 mI
C84 mI

C85 mI
C86 mI

C87 mI
C88


, (3.15)

where
mI

C71 = d̂p̂ω+
+ êq̂µ+, mI

C72 = d̂p̂ω−
− ê2µ−, mI

C73 = êq̂µ−
− d̂2ω−, mI

C74 = d̂2ω−
+ ê2µ−,

mI
C75 = d̂q̂λ+

+ êp̂µ+, mI
C76 = êp̂µ−

− d̂êλ−, mI
C77 = d̂q̂λ−

− d̂êµ−, mI
C78 = d̂êλ−

+ d̂êµ−,

mI
C81 = êp̂λ+

+ d̂q̂µ+, mI
C82 = êp̂λ−

− d̂êµ−, mI
C83 = d̂q̂µ−

− d̂êλ−, mI
C84 = d̂êλ−

+ d̂êµ−,

mI
C85 = êq̂ω+

+ d̂p̂µ+, mI
C86 = d̂p̂µ−

− ê2ω−, mI
C87 = êq̂ω−

− d̂2µ−, mI
C88 = ê2ω−

+ d̂2µ−,
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and

MV = M I
V =



1 − d̂ 0 −d̂ 0 0 0 0 0
0 0 0 0 1 − d̂ 0 −d̂ 0

1 − ê −ê 0 0 0 0 0 0
0 0 0 0 1 − ê −ê 0 0
1 1 1 −1 0 0 0 0
0 0 0 0 1 1 1 −1

mI
V71 mI

V72 mI
V73 mI

V74 mI
V75 mI

V76 mI
V77 mI

V78
mI

V81 mI
V82 mI

V83 mI
V84 mI

V85 mI
V86 mI

V87 mI
V88


, (3.16)

where

mI
V71 = d̂p̂ω−

+ êq̂µ−, mI
V72 = d̂p̂ω+

− ê2µ+, mI
V73 = êq̂µ+

− d̂2ω+, mI
V74 = d̂2ω+

+ ê2µ+,

mI
V75 = d̂q̂λ−

+ êp̂µ−, mI
V76 = êp̂µ+

− d̂êλ+, mI
V77 = d̂q̂λ+

− d̂êµ+, mI
V78 = d̂êλ+

+ d̂êµ+,

mI
V81 = êp̂λ−

+ d̂q̂µ−, mI
V82 = êp̂λ+

− d̂êµ+, mI
V83 = d̂q̂µ+

− d̂êλ+, mI
V84 = d̂êλ+

+ d̂êµ+,

mI
V85 = êq̂ω−

+ d̂p̂µ−, mI
V86 = d̂p̂µ+

− ê2ω+, mI
V87 = êq̂ω+

− d̂2µ+, mI
V88 = ê2ω+

+ d̂2µ+.

For Type II reference rectangle, we have

MC = M II
C =



0 0 1 − d̂ −d̂ 0 0 0 0
0 0 0 0 0 0 1 − d̂ −d̂

1 − ê −ê 0 0 0 0 0 0
0 0 0 0 1 − ê −ê 0 0
1 1 −1 −1 0 0 0 0
0 0 0 0 1 1 −1 −1

mII
C71 mII

C72 mII
C73 mII

C74 mII
C75 mII

C76 mII
C77 mII

C78
mII

C81 mII
C82 mII

C83 mII
C84 mII

C85 mII
C86 mII

C87 mI
C88


, (3.17)

where

mII
C71 = ω+

− (d̂p̂ − êq̂)µ+, mII
C81 = −(d̂ − ê)λ+

+ (2 − d̂ − ê)µ+,

mII
C72 = ω−

+ (d̂2 − ê2)µ−, mII
C82 = −(d̂ − ê)λ−

− (d̂ + ê)µ−,

mII
C73 = ω+

+ (d̂p̂ − êq̂)µ+, mII
C83 = −(d̂ − ê)λ+

− (2 − d̂ − ê)µ+,

mII
C74 = ω−

− (d̂2 − ê2)µ−, mII
C84 = −(d̂ − ê)λ−

+ (d̂ + ê)µ−,

mII
C75 = (2 − d̂ − ê)λ+

− (d̂ − ê)µ+, mII
C85 = −(d̂p̂ − êq̂)ω+,

mII
C76 = −(d̂ + ê)λ−

− (d̂ − ê)µ−, mII
C86 = (d̂2 − ê2)ω−

+ µ−,

mII
C77 = −(2 − d̂ − ê)λ+

− (d̂ − ê)µ+, mII
C87 = (d̂p̂ − êq̂)ω+,

mII
C78 = (d̂ + ê)λ−

− (d̂ − ê)µ−, mII
C88 = −(d̂2 − ê2)ω−

+ µ−,

and

MV = M II
V =



0 0 1 − d̂ −d̂ 0 0 0 0
0 0 0 0 0 0 1 − d̂ −d̂

1 − ê −ê 0 0 0 0 0 0
0 0 0 0 1 − ê −ê 0 0
1 1 −1 −1 0 0 0 0
0 0 0 0 1 1 −1 −1

mII
V71 mII

V72 mII
V73 mII

V74 mII
V75 mII

V76 mII
V77 mII

V78
mII

V81 mII
V82 mII

V83 mII
V84 mII

V85 mII
V86 mII

V87 mI
V88


, (3.18)

where

mII
V71 = ω−

− (d̂p̂ − êq̂)µ−, mII
V81 = −(d̂ − ê)λ−

+ (2 − d̂ − ê)µ−,

mII
V72 = ω+

+ (d̂2 − ê2)µ+, mII
V82 = −(d̂ − ê)λ+

− (d̂ + ê)µ+,

mII
V73 = ω−

+ (d̂p̂ − êq̂)µ−, mII
V83 = −(d̂ − ê)λ−

− (2 − d̂ − ê)µ−,

mII
V74 = ω+

− (d̂2 − ê2)µ+, mII
V84 = −(d̂ − ê)λ+

+ (d̂ + ê)µ+,

mII
V75 = (2 − d̂ − ê)λ−

− (d̂ − ê)µ−, mII
V85 = −(d̂p̂ − êq̂)ω−,
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Fig. 5. The standard elasticity bilinear basis function 8̂3: the left plot is for the first component ψ̂3 , and the right one is for the second component 0.

Fig. 6. The bilinear IFE basis functions 8̂3 on the Type I reference element for planar elasticity interface problem: the left plot is for the first component
of 8̂3 , and the right plot is for its second component with λ+

= 50, λ−
= 1, µ+

= 5, µ−
= 2, D̂ = (0, 0.6)t , Ê = (0.5, 0)t .

mII
V76 = −(d̂ + ê)λ+

− (d̂ − ê)µ+, mII
V86 = (d̂2 − ê2)ω+

+ µ+,

mII
V77 = −(2 − d̂ − ê)λ−

− (d̂ − ê)µ−, mII
V87 = (d̂p̂ − êq̂)ω−,

mII
V78 = (d̂ + ê)λ+

− (d̂ − ê)µ+, mII
V88 = −(d̂2 − ê2)ω+

+ µ+.

Using V = Vi = ei ∈ R8, 1 ≤ i ≤ 8 as the usual i-th basis vector, we can solve (3.14) for the vector C = Ci and use them in
(3.8), (3.9) or (3.10), (3.11) to form the i-th vector bilinear IFE nodal basis function 8̂i on either the Type I or Type II reference
rectangle. Moreover, applying the affine mapping F between the reference element T̂ and the actual element T , we obtain
the bilinear IFE nodal basis functions on T as follows:

8i,T (X) = 8̂i(F−1(X)) = 8̂i(X̂), 1 ≤ i ≤ 8.

Finally, for each element T ∈ Th, we define the local linear IFE space Sh(T ) as

Sh(T ) =


span{8i,T , 1 ≤ i ≤ 8}, if T is an interface rectangle,
span{9i,T , 1 ≤ i ≤ 8}, otherwise. (3.19)

Fig. 5 illustrates a standard vector bilinear nodal basis function on a non-interface element. Aswe can see, one component
of this basis function is the same as the standard scalar bilinear nodal basis function, and the other one is simply the
zero function. Figs. 6 and 7 provide illustrations for a vector-valued bilinear IFE basis function on the Type I and Type II
interface rectangle, respectively. Note that one component of a vector bilinear IFE basis is similar to a scalar bilinear IFE
nodal basis [33], but the other component cannot be completely zero in general due to interface jump conditions.

4. Properties of the linear and bilinear IFE functions

In this section, we show that linear and bilinear IFE functions for planar elasticity interface problems have some desirable
properties usually expected for finite element functions.

4.1. Basic properties of the linear and bilinear IFE space

Assume Th is a Cartesian triangular (resp. rectangular) mesh ofΩ , and (xj, yj)t , j = 1, . . . ,N are the nodes of Th, where
N denotes the total number of nodes. We define two linear (resp. bilinear) global nodal IFE basis functions 82j−1 and 82j
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Fig. 7. The bilinear IFE basis functions 8̂3 on the Type II reference element for planar elasticity interface problem: the left plot is for the first component
of 8̂3 , and the right plot is for its second component with λ+

= 50, λ−
= 1, µ+

= 5, µ−
= 2, D̂ = (0, 0.6)t , Ê = (0.5, 0)t .

associated to each node (xj, yj)t of Th, j = 1, . . . ,N , such that

82i−1(xj, yj) =


(1, 0)t , if i = j,
(0, 0)t , if i ≠ j, 82i(xj, yj) =


(0, 1)t , if i = j,
(0, 0)t , if i ≠ j, j = 1, . . . ,N,

and 8k|T ∈ Sh(T ), k = 1, . . . , 2N , for every T ∈ Th. Finally, we define the linear (resp. bilinear) IFE space Sh(Ω) over the
whole domainΩ as the span of these global nodal IFE basis functions.

The following proposition shows that both linear and bilinear vector IFE functions are continuous within each element.

Proposition 4.1. Let Sh(T ) be the linear or bilinear vector-valued local IFE space on an interface element T . Then Sh(T ) ⊂ C(T ).

Proof. It suffices to show IFE functions are continuous across the line segment DE. Assume Sh(T ) is the linear IFE space,
then every8 ∈ Sh(T ) is a vector-valued piece-wise linear function. Hence, the jump function [8]DE is a vector-valued single
variable linear polynomial. Therefore, [8]DE = 0 follows from [8(D)] = [8(E)] = 0which implies that 8 is continuous on
T . Similar arguments can be used for the case in which Sh(T ) is the bilinear IFE space. �

The properties given in the following proposition are easy to verify.

Proposition 4.2. Let Sh(Ω) be the linear (resp. bilinear) IFE space over the partition Th of Ω , then

• Sh(Ω) has the same dimension as the standard FE space formed by the usual vector-valued linear (resp. bilinear) polynomials
on the same partition of Ω .

• Let Ω ′ denote the union of all interface elements, we have

8|Ω/Ω ′ ∈ H1(Ω/Ω ′), ∀ 8 ∈ Sh(Ω). (4.1)

Proposition 4.3. Let Sh(T ) be the linear vector-valued IFE space on T . Then every function 8 ∈ Sh(T ) satisfies the traction jump
condition on the actual interface Γ ∩ T weakly as follows:

Γ∩T


σ(8+)− σ(8−)


nΓ ds = 0. (4.2)

Proof. Let T ∗
⊂ T denote the region enclosed by Γ ∩ T and DE. Note that for s = +,−, we have divσ(8s) = 0, since each

8s is a linear vector-valued function. Applying the divergence theorem leads to the following identity:
∂T∗


σ(8+)− σ(8−)


nT∗ds =


T∗


divσ(8+)− divσ(8−)


dX = 0, (4.3)

where nT∗ is the unit outer normal of T ∗. Then, (4.2) follows from ∂T ∗
= (Γ ∩ T ) ∪ DE and

DE


σ(8+)− σ(8−)


nDE ds = 0. �

Remark 4.1. In general, if Γ ∩ T ≠ DE, the weak traction continuity (4.2) is not true for functions 8 in a bilinear local IFE
space Sh(T ) because div(σ (8)) is generally nonzero unless we assume some extra conditions such as [λ+ µ] = 0.

Similar to the standard vector-valued linear (resp. bilinear) finite element spaces, the local basis functions of the linear
(resp. bilinear) IFE space Sh(T ) preserve the property of partition of unity.
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Proposition 4.4. Let T ∈ Th be an interface element. Then

For bilinear IFE:
4

i=1

8i,T (x, y) =


1
0


,

8
i=5

8i,T (x, y) =


0
1


, ∀ (x, y)t ∈ T . (4.4)

For linear IFE:
3

i=1

8i,T (x, y) =


1
0


,

6
i=4

8i,T (x, y) =


0
1


, ∀ (x, y)t ∈ T . (4.5)

Proof. For vector bilinear IFE local nodal basis functions 8̂i on a reference rectangle T̂ , by direct calculations, we can show

4
i=1

8̂i(x̂, ŷ) =


1
0


,

8
i=5

8̂i(x̂, ŷ) =


0
1


, ∀ (x̂, ŷ)t ∈ T̂ . (4.6)

Then,weuse the affinemapping between the reference element T̂ and the actual element T to obtain (4.4). Similar arguments
can be carried out for linear IFE basis functions. �

The following proposition shows that the vector IFE functions are consistent with the standard finite element functions.

Proposition 4.5. Let T ∈ Th be an interface element, and8i,T ∈ Sh(T ) is one of the vector linear (resp. bilinear) local nodal basis
functions. Then the following results are true:

• If the elasticity parameters have no discontinuity, i.e., λ+
= λ−, µ+

= µ−, then 8i,T becomes the standard vector-valued
linear (resp. bilinear) nodal basis 9i,T .

• If min{|T+
|, |T−

|} shrinks to 0, then 8i,T becomes the standard vector linear (resp. bilinear) nodal basis 9i,T . Here |T s
|, s =

+,− is the area of the polygon T s.

Proof. For the first property, if we let λ+
= λ−, µ+

= µ− in (2.11) or (3.14), then we can easily see MC = MV . This leads
to C = V in these equations, and by the definition of 8̂i, we obtain the first property.

For the second property, let us consider the linear IFE functions, similar arguments work for bilinear IFE functions.
Without loss of generality, let us assume |T̂+

| shrinks to zero. Then, we should have d̂ → 1 or ê → 0. Applying one of
these to the solution C determined by (2.11), we can see c3 = v3 and c6 = v6. Then, the second property follows from the
fact that 8̂i becomes 8̂

−

i defined in (2.8) when |T̂+
| shrinks to zero. �

4.2. Unisolvent property for the linear and bilinear IFE basis

It is important to know whether the IFE functions always (uniquely) exist for any given Lamé parameters configuration
and any possible interface location. This leads to the unisolvent property of the IFE functions: an IFE function is uniquely
determined by its nodal values. We note that IFE functions developed for the interface problem of the second order elliptic
equation have the unisolvent property [20,29,32,33]. However, since the differential operator in the planar linear elasticity
problem is more complicated, whether IFE functions developed for the elasticity interface problem have the unisolvent
property or not is not a trivial matter. In fact, the following counter-example suggests that the linear IFE functions do not
always have this property.

Example 4.1. According to the reduced form (2.7) for the linear vector IFE functions, the unisolvent property is determined
by the matrixMC in (2.11). Suppose λ+

= 20, λ−
= 1, µ+

= 10, µ−
= 1. Let d̂ =

1
100 , and

ê =

99

7097029 + 99

√
23225041 −


6114649667486 + 784726866

√
23225041


626752400

≈ 0.6994773141109332.

In this configuration of the interface points and elasticity parameters, the determinant det(MC ) = 0. Also note that
rank(MC ) = 5, but rank([MC ,MVV1]) = 6. Therefore the linear system (2.11) has no solution and this implies the vector
linear local nodal IFE basis functions 8̂1 cannot be constructed in this case.

Hence, an intriguing question is that under what conditions these IFE functions are guaranteed to exist. To answer this
question, we first investigate the determinant of the coefficient matricesMC (=M I

C orM II
C depends on the interface element

type) for the bilinear IFE functions. For the linear elasticity problem, we recall that Lamé parameters can be represented in
terms of themodulus of elasticity E and the Poisson’s ratio ν in the following way:

λ =
Eν

(1 + ν)(1 − 2ν)
, µ =

E
2(1 + ν)

, λ =
2ν

1 − 2ν
µ. (4.7)
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In many applications these parameters are such that λ > 0, µ > 0, and E > 0, 0 < ν < 1
2 . If ν is very close to 1

2 ,
correspondingmaterials become nearly incompressible. Also note that ν ≈

1
3 for manymaterials [38]. Our goal is to identify

proper ranges of these parameters such that the vector IFE functions can be constructed for solving elasticity interface
problems whose parameters are within these ranges.

We start with bilinear IFE functions. For the Type I interface rectangle, note that the determinant ofM I
C defined in (3.15)

can be written as

det(M I
C ) = P I

1λ
+µ+

+ P I
2λ

−µ+
+ P I

3µ
+µ+

+ P I
4λ

+µ−
+ P I

5λ
−µ−

+ P I
6µ

+µ−
+ P I

7µ
−µ−, (4.8)

where

P I
1 = d̂2ê2(d̂2 + ê2 − 4d̂)(d̂2 + ê2 − 4ê),

P I
2 = 4d̂ê(d̂ + d̂ê2 + ê + d̂2ê − 4d̂ê)+ 2(d̂3 + ê3 − 2d̂2ê2)

+ (2 + d̂ê)(d̂3(1 − d̂)+ ê3(1 − ê))+ d̂ê(3d̂3 − 2d̂2ê2 + 3ê3),

P I
3 = 2d̂2ê2(−2d̂ + d̂2 − 2ê + ê2)2,

P I
4 = P I

2,

P I
5 = (2d̂2 − 4d̂2ê + 2ê2 + d̂3ê + d̂ê3)(2d̂2 − 4d̂ê2 + 2ê2 + d̂3ê + d̂ê3),

P I
6 = 4d̂ê(2d̂ − d̂2 + 2ê − ê2)(2d̂2 − 2d̂2ê + d̂3ê + 2ê2 − 2d̂ê2 + d̂ê3),

P I
7 = 2(2d̂2 − 2d̂2ê + d̂3ê + 2ê2 − 2d̂ê2 + d̂ê3)2.

Simple calculation shows that P I
i > 0, i = 2, . . . , 7 with 0 < d̂, ê ≤ 1. The only term that might be negative is P I

1, which
can make the entire determinant in (4.8) equal zero for some values d̂, ê. On the other hand, the determinant of M I

C can be
bounded below under assumptions in the following lemma.

Lemma 4.1. Assume there exist positives ν0, ν1 ∈ (0, 1/2) andm > 1 such that the Poisson’s ratios νs, and the Lamé parameters
λs, s = +,− of two coupled elastic materials satisfy

ν0 ≤ νs ≤ ν1, s = +,−, and
1
m

≤
λ−

λ+
≤ m. (4.9)

Then the determinant of M I
C is bounded below as follows

det(M I
C ) ≥ F I(d̂, ê, k, l,m)λ+µ+, (4.10)

where k =
2ν0

1−2ν0
, l = 2ν1

1−2ν1
, and

F I(d̂, ê, k, l,m) = P I
1 +

1
m

P I
2 +

1
l
P I
3 +

k
lm

P I
4 +

k
lm2

P I
5 +

1
lm

P I
6 +

k
l2m2

P I
7.

Proof. Combining (4.7) with (4.9), we obtain the following inequalities

λ−
≥

1
m
λ+, µ+

≥
1
l
λ+, µ−

≥
1
lm
λ+, µ−

≥
k
lm
µ+. (4.11)

Note that P I
i ≥ 0, i = 2, . . . , 7, then we can obtain (4.10) from (4.8) and (4.11). �

For Type II reference interface rectangle, the determinant of the coefficient matrixM II
C is given by

det(M II
C ) = P II

1λ
+µ+

+ P II
2λ

−µ+
+ P II

3µ
+µ+

+ P II
4λ

+µ−
+ P II

5λ
−µ−

+ P II
6µ

+µ−
+ P II

7µ
−µ−, (4.12)

where

P II
1 = (d̂ − 4d̂2 + d̂3 − 3ê + 4d̂ê − d̂2ê − d̂ê2 + ê3)(−3d̂ + d̂3 + ê + 4d̂ê − d̂2ê − 4ê2 − d̂ê2 + ê3),

P II
2 = −d̂6 + 2d̂5(1 + ê)+ d̂4(6 − 6ê + ê2)− 4d̂3(3 − ê2 + ê3)+ d̂2(7 + 12ê − 12ê2 + 4ê3 + ê4)

+ ê(2 + 7ê − 12ê2 + 6ê3 + 2ê4 − ê5)+ 2d̂(1 − 9ê + 6ê2 − 3ê4 + ê5),

P II
3 = 2(−d̂ − 2d̂2 + d̂3 − ê + 4d̂ê − d̂2ê − 2ê2 − d̂ê2 + ê3)2,

P II
4 = P II

2 ,

P II
5 = (2 − 3d̂ + 2d̂2 + d̂3 + ê − d̂2ê − 2ê2 − d̂ê2 + ê3)(2 + d̂ − 2d̂2 + d̂3 − 3ê − d̂2ê + 2ê2 − d̂ê2 + ê3),

P II
6 = 4(2 − d̂ + d̂3 − ê − d̂2ê − d̂ê2 + ê3)(d̂ + 2d̂2 − d̂3 + ê − 4d̂ê + d̂2ê + 2ê2 + d̂ê2 − ê3),

P II
7 = 2(2 − d̂ + d̂3 − ê − d̂2ê − d̂ê2 + ê3)2.
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It is not difficult to see P II
i > 0, i = 2, 3, 4, 6, 7, for all 0 < d̂, ê < 1. However, it is possible for P II

1 and P II
5 to have negative

values. The following lemma gives an estimate for the determinant ofM II
C .

Lemma 4.2. Assume there exist positives ν0, ν1 ∈ (0, 1/2) andm > 1 such that the Poisson’s ratios νs, and the Lamé parameters
λs, s = +,− of two coupled elastic materials satisfy

ν0 ≤ νs ≤ ν1, s = +,−, and
1
m

≤
λ−

λ+
≤ m. (4.13)

Then the determinant of M II
C can be bounded below as follows

det(M II
C ) ≥ F II

1 (d̂, ê, k, l,m)λ
+µ+

+ F II
2 (d̂, ê, k, l,m)λ

−µ−, (4.14)

where k =
2ν0

1−2ν0
, l = 2ν1

1−2ν1
, and

F II
1 (d̂, ê, k, l,m) = P II

1 +
1
2m

P II
2 +

1
l
P II
3 +

k
2lm

P II
4 +

1
2lm

P II
6 ,

F II
2 (d̂, ê, k, l,m) =

k
2lm

P II
2 +

1
2m

P II
4 + P II

5 +
1

2lm
P II
6 +

1
l
P II
7 .

Proof. Combining (4.7) with (4.13) leads to

λ+
≥

1
m
λ−, µ−

≥
1
l
λ−, µ+

≥
1
lm
λ−, µ+

≥
k
lm
µ−. (4.15)

We can write (4.12) as follows:

det(M II
C ) =


P II
1λ

+µ+
+

1
2
P II
2λ

−µ+
+ P II

3µ
+µ+

+
1
2
P II
4λ

+µ−
+

1
2
P II
6µ

+µ−


+


1
2
P II
2λ

−µ+
+

1
2
P II
4λ

+µ−
+ P II

5λ
−µ−

+
1
2
P II
6µ

+µ−
+ P II

7µ
−µ−


. (4.16)

Combine (4.11) with the first term on the right hand side of (4.16) and combine (4.15) with the second term on the right
hand side of (4.16), then we obtain (4.14). �

Note that F I, F II
1 , and F II

2 are monotonically increasing with respect to k (hence monotonically decreasing with respect to ν0),
and monotonically decreasing with respect to l (hence monotonically increasing with respect to ν1) and m. Hence, to find
for which parameter configurations the bilinear IFE functions exist, we can use results of Lemmas 4.1 and 4.2 to find the
largest possiblem∗ and ν∗

1 and smallest possible ν∗

0 , such that

F I∗(d̂, ê) = F I(d̂, ê, k∗, l∗,m∗) > 0, ∀ 0 < d̂, ê ≤ 1, (4.17)

F II∗
i (d̂, ê) = F II

i (d̂, ê, k
∗, l∗,m∗) > 0, ∀ 0 < d̂, ê < 1, i = 1, 2, (4.18)

where k∗
=

2ν∗0
1−2ν∗0

, l∗ =
2ν∗1

1−2ν∗1
. A brief procedure in seeking k∗, l∗, and m∗ is described as follows.

1. Set a maximal elasticity jump ratio, for instancem∗
= 10, to determine the Poisson’s ratio range within this jump.

2. Start with the least possible Poisson’s ratio ν∗

0 = 0 and look for the largest possible ν∗

1 .
3. For a given value ν̂∗

1 , we let l̂∗ =
2ν̂∗1

1−2ν̂∗1
. Functions

F I(d̂, ê, k∗, l̂∗,m∗), F II
1 (d̂, ê, k

∗, l̂∗,m∗), and F II
2 (d̂, ê, k

∗, l̂∗,m∗)

become polynomials of d̂ and ê, hence we can use algebraic tools to find their minima over the square domain 0 <

d̂, ê ≤ (or<)1.
4. Adjust the value of ν̂∗

1 according to the minima and repeat Step 3 until we find ν∗

1 associated with ν∗

0 = 0.
5. Enlarge ν∗

1 , and find the corresponding ν∗

0 as another possible Poisson’s ratio range obeys our choice ofm∗.

Table 1 provides several possible configurations of ν∗

0 , ν
∗

1 and m∗ found according to the procedure above that guarantee
(4.17) and (4.18). We summarize the above discussion in the following theorem.

Theorem 4.6. Assume there exist positives ν∗

0 , ν
∗

1 , and m∗ satisfying (4.17) and (4.18). Assume the Poisson’s ratios νs and the
Lamé parameters λs, s = +,− of two coupled elastic materials are such that

ν∗

0 ≤ νs ≤ ν∗

1 , s = +,−, and
1
m∗

≤
λ−

λ+
≤ m∗. (4.19)

Then the bilinear IFE basis functions (3.7) for elasticity interface problem (1.1) uniquely exists.
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Table 1
List of possible ranges that guarantee the unisolvent property of bilinear IFE nodal basis functions.

m∗ Possible (ν∗

0 , ν
∗

1 ) Alternative (ν∗

0 , ν
∗

1 )

10 (0, 0.45) (0.02, 0.47)
20 (0, 0.40) (0.12, 0.41)
40 (0, 0.35) (0.22, 0.36)
60 (0, 0.32) (0.03, 0.33)
80 (0, 0.31) (0.16, 0.32)

100 (0, 0.30) (0.21, 0.31)

Using similar arguments we can derive the unisolvent properties of linear nodal IFE basis on Cartesian triangularmesh. Note
that the determinant of coefficient matrixMC defined in (2.12) is given by

det(MC ) = P1λ+µ+
+ P2λ−µ+

+ P3µ+µ+
+ P4λ+µ−

+ P5λ−µ−
+ P6µ+µ−

+ P7µ−µ−, (4.20)

where

P1 = (1 − 2d̂ + d̂2 − 3ê + 4d̂ê − d̂2ê + 2ê2)(1 − 2d̂ + d̂2 − ê + d̂2ê + 2d̂ê2),

P2 = (1 − d̂)ê2(2 − 5d̂ + 4d̂2 − d̂3 − 4ê + 6d̂ê − 2d̂2ê + 2ê2),

P3 = 2(1 − 2d̂ + d̂2 − 2ê + 2d̂ê + ê2 + d̂ê2)2,
P4 = P2,

P5 = (1 − d̂)3ê2(−1 + d̂ + 2ê),

P6 = 4(1 − d̂)ê2(1 − 2d̂ + d̂2 − 2ê + 2d̂ê + ê2 + d̂ê2),

P7 = 2(1 − d̂)2ê4.

In this case, only P1 and P5 might be negative. The following lemma provides an estimate for the determinant of MC whose
proof is similar as Lemma 4.2.

Lemma 4.3. Assume there exist positives ν0, ν1 ∈ (0, 1/2) andm > 1 such that the Poisson’s ratios νs, and the Lamé parameters
λs, s = +,− of two coupled elastic materials satisfy

ν0 ≤ νs ≤ ν1, s = +,−, and
1
m

≤
λ−

λ+
≤ m. (4.21)

Then the determinant of MC can be bounded below as follows

det(MC ) ≥ F1(d̂, ê, k, l,m)λ+µ+
+ F2(d̂, ê, k, l,m)λ−µ−, (4.22)

where k =
2ν0

1−2ν0
, l = 2ν1

1−2ν1
, and

F1(d̂, ê, k, l,m) = P1 +
1
2m

P2 +
1
l
P3 +

k
2lm

P4 +
1

2lm
P6,

F2(d̂, ê, k, l,m) =
k

2lm
P2 +

1
2m

P4 + P5 +
1

2lm
P6 +

1
l
P7.

Similarly, we have

Theorem 4.7. Assume there exist positives ν̃∗

0 , ν̃
∗

1 , and m̃∗ satisfying the following inequalities,

F∗

i (d̂, ê) = Fi(d̂, ê, k̃∗, l̃∗, m̃∗) > 0, ∀ 0 < d̂, ê ≤ 1, i = 1, 2, (4.23)

where k̃∗
=

2ν̃∗0
1−2ν̃∗0

, l =
2ν̃∗1

1−2ν̃∗1
, and assume the Poisson’s ratios νs and the Lamé parameters λs, s = +,− of two coupled elastic

materials are such that

ν̃∗

0 ≤ νs ≤ ν̃∗

1 , s = +,−, and
1
m̃∗

≤
λ−

λ+
≤ m̃∗.

Then the linear IFE basis functions (2.7) for elasticity interface problem (1.1) uniquely exists.

Some possible configurations for ν̃∗

0 , ν̃
∗

1 , m̃
∗ to guarantee (4.23) are given in Table 2.

Remark 4.2. Tables 1 and 2 indicate that bilinear IFE functions, compared with linear IFE functions, are guaranteed to be
applicable to problems whose elasticity material parameters are chosen from a larger range of values and are allowed to
have a larger discontinuity.
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Table 2
List of possible ranges that guarantee the unisolvent property
of linear IFE nodal basis functions.

m̃∗ Possible (ν̃∗

0 , ν̃
∗

1 )

10 (0, 0.09)
20 (0, 0.04)

Table 3
Error of linear IFE interpolation Ihuwith λ+

= 5, λ−
= 1, µ+

= 10, µ−
= 2.

N ∥Ihu1 − u1∥L2 |Ihu1 − u1|H1 ∥Ihu2 − u2∥L2 |Ihu2 − u2|H1

10 3.1827 × 10−2 4.2808 × 10−1 8.1948 × 10−2 1.1546 × 10−0

20 8.0435 × 10−3 2.1610 × 10−1 2.0934 × 10−2 5.8912 × 10−1

40 2.0167 × 10−3 1.0831 × 10−2 5.2624 × 10−3 2.9607 × 10−1

80 5.0461 × 10−4 5.4195 × 10−2 1.3174 × 10−3 1.4822 × 10−1

160 1.2619 × 10−4 2.7104 × 10−2 3.2947 × 10−4 7.4136 × 10−2

320 3.1550 × 10−5 1.3553 × 10−2 8.2374 × 10−5 3.7071 × 10−2

640 7.8879 × 10−6 6.7767 × 10−3 2.0594 × 10−5 1.8536 × 10−2

4.3. Approximation properties of linear and bilinear IFE spaces

In this section, we numerically investigate the approximation properties of the linear and bilinear IFE spaces Sh(Ω).
Assume Th is a Cartesian mesh, triangular or rectangular. For each continuous vector-valued function u = (u1, u2)

t on
an element T ∈ Th, we define its local IFE interpolation by

Ih,Tu =


NT
i=1

u1(Ai)8i,T +

2NT
i=NT+1

u2(Ai−NT )8i,T , ∀ T ∈ T i
h ,

NT
i=1

u1(Ai)9i,T +

2NT
i=NT+1

u2(Ai−NT )9i,T , ∀ T ∈ T n
h ,

(4.24)

where Ai, 1 ≤ i ≤ NT are the vertices of T and NT = 3 or 4 depending on whether T is triangular or rectangular. Then, for
every u ∈ C(Ω), we piece-wisely define its global IFE interpolation Ihu by

Ihu|T = Ih,Tu. (4.25)

We now use numerical experiments to test the approximation capability of these IFE spaces. LetΩ = (−1, 1)× (−1, 1)
be a rectangular domain. The interface curve Γ is a circle with radius r0 = π/8 that separates Ω into two sub-domains
Ω+

= {(x, y)t : x2 + y2 > r20 } andΩ
−

= {(x, y)t : x2 + y2 < r20 }. Consider the function u defined as

u(x, y) =


u1(x, y)
u2(x, y)


=




u−

1 (x, y)
u−

2 (x, y)


=


1
λ−

rα1

1
λ−

rα2

 , if (x, y)t ∈ Ω−,


u+

1 (x, y)
u+

2 (x, y)


=


1
λ+

rα1 +


1
λ−

−
1
λ+


rα10

1
λ+

rα2 +


1
λ−

−
1
λ+


rα20

 , if (x, y)t ∈ Ω+,

(4.26)

where α1 = 5, α2 = 7, and r =

x2 + y2. The values of Lamé parameters are given as follows

λ =


λ−

= 1, inΩ−,

λ+
= 5, inΩ+,

µ =


µ−

= 2, inΩ−,

µ+
= 10, inΩ+.

To simplify the notation, we let Ihu1 = (Ihu)1, and Ihu2 = (Ihu)2. The errors of Ihu1 and Ihu2 using linear and bilinear IFE
functions in L2 and semi-H1 norms are listed in Tables 3 and 4, respectively, where h = 2/N is the mesh size for a Cartesian
mesh Th. These data indicate

∥Ihui − ui∥L2 ≈
1
4
∥IHui − ui∥L2 , |Ihui − ui|H1 ≈

1
2
|IHui − ui|H1 , i = 1, 2,

with h = H/2. To be more precise, using linear regression the interpolation errors listed in these tables obey:
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Table 4
Error of bilinear IFE interpolation Ihuwith λ+

= 5, λ−
= 1, µ+

= 10, µ−
= 2.

N ∥Ihu1 − u1∥L2 |Ihu1 − u1|H1 ∥Ihu2 − u2∥L2 |Ihu2 − u2|H1

10 2.8715 × 10−2 3.4737 × 10−1 7.0919 × 10−2 8.5496 × 10−1

20 7.2498 × 10−3 1.7538 × 10−1 1.8088 × 10−2 4.3494 × 10−1

40 1.8173 × 10−3 8.7916 × 10−2 4.5452 × 10−3 2.1844 × 10−1

80 4.5468 × 10−4 4.3992 × 10−2 1.1378 × 10−3 1.0934 × 10−1

160 1.1370 × 10−4 2.2002 × 10−2 2.8453 × 10−4 5.4685 × 10−2

320 2.8428 × 10−5 1.1002 × 10−2 7.1138 × 10−5 2.7345 × 10−2

640 7.1072 × 10−6 5.5009 × 10−3 1.7785 × 10−5 1.3673 × 10−2

• Linear IFE Space:

∥Ihu1 − u1∥L2 ≈ 0.7970h1.9972, |Ihu1 − u1|H1 ≈ 2.1437h0.9976,

∥Ihu2 − u2∥L2 ≈ 2.0565h1.9947, |Ihu2 − u2|H1 ≈ 5.7939h0.9950.

• Bilinear IFE Space:

∥Ihu1 − u1∥L2 ≈ 0.7189h1.9974, |Ihu1 − u1|H1 ≈ 1.7394h0.9975,

∥Ihu2 − u2∥L2 ≈ 1.7792h1.9951, |Ihu2 − u2|H1 ≈ 4.2877h0.9957.

Therefore, we observe that interpolant Ihu produced with either linear or bilinear IFE functions converge to u with optimal
rates in both L2 norm and semi-H1 norm.

5. An IFE Galerkin method for elasticity interface problem

In this section, we solve the planar elasticity interface problem (1.1)–(1.4) on Cartesian meshes using IFE functions
developed in Section 3.

Assume that u ∈ H2(Ω s), s = +,−, satisfy (1.1) through (1.4). Multiply Eq. (1.1) by v ∈ H1
0(Ω) and integrate over

Ω s, s = +,−:

−


Ωs

div σ(u) · vdX =


Ωs

f · vdX . (5.1)

Integration by parts using Green’s formula leads to:
Ωs


2µs ϵ(u) : ϵ(v)+ λs div(u) div(v)


dX −


Γ

σ(u)n · vds =


Ωs

f · vdX, (5.2)

where the inner product of two matrices A = (Aij) and B = (Bij) is defined by

A : B ,

2
i=1

2
j=1

AijBij.

Summing (5.2) over s, we obtain the following weak formulation for the linear elasticity interface problem: find u ∈ H1(Ω)
such that u = g on ∂Ω , and

a(u, v) = F(v), ∀ v ∈ H1
0(Ω), (5.3)

where

a(u, v) ,


s=+,−


Ωs


2µs ϵ(u) : ϵ(v)+ λs div(u) div(v)


dX, and F(v) ,


Ω

f · v dX . (5.4)

This weak form leads to the following IFE method for the planar elasticity interface problem: find uh = (u1h, u2h)
t

∈

Sh(Ω) such that uh = Ihg on ∂Ω , and

ah(uh, vh) = F(vh), ∀ vh ∈ Sh,0(Ω), (5.5)

where Sh,0(Ω) = {v ∈ Sh(Ω), v|∂Ω = 0}, and

ah(uh, vh) =


T∈Th


T
(2µϵ(uh) : ϵ(vh)+ λ div(uh) div(vh)) dX . (5.6)

Numerical experiments are carried out using linear and bilinear IFE functions for the planar elasticity interface problem
whose exact solution is given by (4.26). IFE solution errors in L2 and semi-H1 norms are computed by numerical quadratures
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Table 5
Error of linear IFE solution uh under triangular mesh with λ+

= 5, λ−
= 1, µ+

= 10, µ−
= 2.

N ∥u1h − u1∥L∞ ∥u1h − u1∥L2 |u1h − u1|H1 ∥u2h − u2∥L∞ ∥u2h − u2∥L2 |u2h − u2|H1

10 1.3605 × 10−2 3.8648 × 10−2 4.3228 × 10−1 1.7055 × 10−2 7.7923 × 10−2 1.1527 × 10−0

20 3.7928 × 10−3 9.8965 × 10−3 2.1673 × 10−1 4.7862 × 10−3 1.9845 × 10−2 5.8886 × 10−1

40 9.6382 × 10−4 2.4912 × 10−3 1.0841 × 10−1 1.2143 × 10−3 4.9837 × 10−3 2.9604 × 10−1

80 2.4336 × 10−4 6.2445 × 10−4 5.4218 × 10−2 3.3064 × 10−4 1.2474 × 10−3 1.4823 × 10−1

160 7.4912 × 10−5 1.5637 × 10−4 2.7119 × 10−2 1.2428 × 10−4 3.1211 × 10−4 7.4141 × 10−2

320 4.6934 × 10−5 3.9203 × 10−5 1.3569 × 10−2 5.2768 × 10−5 7.8203 × 10−5 3.7076 × 10−2

640 2.2130 × 10−5 9.8916 × 10−6 6.7915 × 10−3 2.5996 × 10−5 1.9716 × 10−5 1.8542 × 10−2

Table 6
Error of bilinear IFE solution uh under rectangular mesh with λ+

= 5, λ−
= 1, µ+

= 10, µ−
= 2.

N ∥u1h − u1∥L∞ ∥u1h − u1∥L2 |u1h − u1|H1 ∥u2h − u2∥L∞ ∥u2h − u2∥L2 |u2h − u2|H1

10 1.3848 × 10−2 3.3762 × 10−2 3.5027 × 10−1 1.8822 × 10−2 8.1391 × 10−2 8.5320 × 10−1

20 3.3817 × 10−3 8.5427 × 10−3 1.7582 × 10−1 4.7767 × 10−3 2.0761 × 10−2 4.3472 × 10−1

40 8.4898 × 10−4 2.1455 × 10−3 8.7983 × 10−2 1.2382 × 10−3 5.2187 × 10−3 2.1841 × 10−1

80 2.1339 × 10−4 5.3702 × 10−4 4.4014 × 10−2 3.2424 × 10−4 1.3064 × 10−3 1.0933 × 10−1

160 8.5854 × 10−5 1.3422 × 10−4 2.2019 × 10−2 9.3132 × 10−5 3.2664 × 10−4 5.5399 × 10−2

320 4.6492 × 10−5 3.3599 × 10−5 1.1016 × 10−2 3.4060 × 10−5 8.1695 × 10−5 2.7347 × 10−2

640 2.2967 × 10−5 8.4670 × 10−6 5.5137 × 10−3 1.4282 × 10−5 2.0436 × 10−5 1.3675 × 10−2

with sufficient quadrature nodes over each element. IFE solution errors in the L∞ norm are computed approximately as
follows:

∥uh − u∥L∞ = max
T∈Th


maxT⊂T


max
(x,y)∈T |uh(x, y)− u(x, y)|


, (5.7)

where T = {Ai : Ai are the vertices of the element T }. Both moderate jump and large jump in Lamé parameters are
experimented, and corresponding data are listed in Tables 5–8, respectively. Applying linear regression to the data in these
tables yields the following estimates:

• Moderate jump: λ+
= 5, λ−

= 1, µ+
= 10, µ−

= 2,
– Linear IFE solutions:

∥u1h − u1∥L∞ ≈ 0.1241h1.5768, ∥u1h − u1∥L2 ≈ 0.9631h1.9910, |u1h − u1|H1 ≈ 2.1601h0.9989,

∥u2h − u2∥L∞ ≈ 0.1647h1.5846, ∥u2h − u2∥L2 ≈ 1.9440h1.9935, |u2h − u2|H1 ≈ 5.7844h0.9947.

– Bilinear IFE solutions:

∥u1h − u1∥L∞ ≈ 0.1092h1.5494, ∥u1h − u1∥L2 ≈ 0.8420h1.9951, |u1h − u1|H1 ≈ 1.7503h0.9985,

∥u2h − u2∥L∞ ≈ 0.2574h1.7532, ∥u2h − u2∥L2 ≈ 2.0411h1.9948, |u2h − u2|H1 ≈ 4.2771h0.9946.

• Large jump: λ+
= 1, λ−

= 100, µ+
= 2, µ−

= 200,
– Linear IFE solutions:

∥u1h − u1∥L∞ ≈ 1.6993h1.9725, ∥u1h − u1∥L2 ≈ 4.8172h1.9940, |u1h − u1|H1 ≈ 10.795h0.9995,

∥u2h − u2∥L∞ ≈ 1.9203h1.9337, ∥u2h − u2∥L2 ≈ 9.7723h1.9957, |u2h − u2|H1 ≈ 5.7844h0.9947.

– Bilinear IFE solutions:

∥u1h − u1∥L∞ ≈ 1.4018h1.9524, ∥u1h − u1∥L2 ≈ 4.1549h1.9968, |u1h − u1|H1 ≈ 8.7436h0.9991,

∥u2h − u2∥L∞ ≈ 1.7514h1.9328, ∥u2h − u2∥L2 ≈ 10.170h1.9949, |u2h − u2|H1 ≈ 28.927h0.9947.

These data demonstrate that both the linear andbilinear IFE solutions for theplanar elasticity interface problemcan converge
at the optimal convergence rates in both L2 and semi-H1 norms. However, these data also indicate that, these IFE methods
do not always converge optimally in the L∞ norm. While these methods seem to converge optimally for the example with
a large jump, they converge to the exact solution with a sub-optimal order in L∞ norm for the example with a moderate
jump. We note that similarly behavior is also observed for the IFE methods for the elliptic interface problems [32,33].

6. Conclusion

In this paper, we have discussed both the linear and bilinear IFE methods for planar elasticity interface problem with
homogeneous jump conditions. These methods can use a Cartesian triangular/rectangular mesh instead of a traditional



4698 T. Lin, X. Zhang / Journal of Computational and Applied Mathematics 236 (2012) 4681–4699

Table 7
Error of linear IFE solution uh under triangular mesh with λ+

= 1, λ−
= 100, µ+

= 2, µ−
= 200.

N ∥u1h − u1∥L∞ ∥u1h − u1∥L2 |u1h − u1|H1 ∥u2h − u2∥L∞ ∥u2h − u2∥L2 |u2h − u2|H1

10 6.7359 × 10−2 1.9191 × 10−1 2.1576 × 10−0 8.3069 × 10−2 3.8959 × 10−1 5.7636 × 10−0

20 1.8644 × 10−2 4.9111 × 10−2 1.0818 × 10−0 2.3699 × 10−2 9.9175 × 10−2 2.9442 × 10−0

40 4.7635 × 10−3 1.2365 × 10−2 5.4108 × 10−1 6.0280 × 10−3 2.4903 × 10−2 1.4801 × 10−0

80 1.1976 × 10−3 3.0970 × 10−3 2.7056 × 10−1 1.5185 × 10−3 6.2325 × 10−3 7.4109 × 10−1

160 3.0049 × 10−4 7.7476 × 10−4 1.3528 × 10−1 3.8005 × 10−4 1.5585 × 10−3 3.7067 × 10−1

320 7.5104 × 10−5 1.9364 × 10−4 6.7642 × 10−2 9.5094 × 10−5 3.8965 × 10−4 1.8535 × 10−1

640 1.9192 × 10−5 4.8369 × 10−5 3.3821 × 10−2 3.0496 × 10−5 9.7408 × 10−5 9.2678 × 10−2

Table 8
Error of bilinear IFE solution uh under rectangular mesh with λ+

= 1, λ−
= 100, µ+

= 2, µ−
= 200.

N ∥u1h − u1∥L∞ ∥u1h − u1∥L2 |u1h − u1|H1 ∥u2h − u2∥L∞ ∥u2h − u2∥L2 |u2h − u2|H1

10 6.3499 × 10−2 1.6581 × 10−1 1.7473 × 10−0 8.2680 × 10−2 4.0535 × 10−1 4.2655 × 10−0

20 1.6043 × 10−2 4.1991 × 10−2 8.7728 × 10−1 2.0796 × 10−2 1.0344 × 10−1 2.1735 × 10−0

40 3.9988 × 10−3 1.0535 × 10−2 4.3900 × 10−1 5.1989 × 10−3 2.6001 × 10−2 1.0920 × 10−0

80 1.0028 × 10−3 2.6363 × 10−3 2.1954 × 10−1 1.3236 × 10−3 6.5093 × 10−3 5.4667 × 10−1

160 2.5086 × 10−4 6.5926 × 10−4 1.0978 × 10−1 3.4695 × 10−4 1.6279 × 10−3 2.7342 × 10−1

320 6.2895 × 10−5 1.6478 × 10−4 5.4890 × 10−2 9.3999 × 10−5 4.0700 × 10−4 1.3672 × 10−1

640 2.1016 × 10−5 4.1188 × 10−5 2.7446 × 10−2 2.7678 × 10−5 1.0175 × 10−4 6.8361 × 10−2

body-fitting mesh to handle problems with non-trivial interface geometries. Our numerical results indicate that the IFE
interpolation errors and IFE solution errors have the optimal convergence rate in both L2 and semi-H1 norms, but IFE
solutions may or may not converge optimally in L∞ norm. The accuracies of these two IFE methods seem to be comparable,
but the bilinear IFE method generally requires less time in assembling the involved algebraic system than the linear IFE
method when their meshes have the same mesh size.
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