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ARTICLE INFO ABSTRACT

Keywords: In order to solve a non-stationary Stokes-Darcy model with Beavers-Joseph interface con-
Stokes-Darcy HO_W N dition, two non-iterative domain decomposition methods are proposed. At each time step,
Beavers—Joseph interface condition results from previous time steps are utilized to approximate the information on the inter-
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face and decouple the two physics. Both of the two methods are parallel. Numerical results
suggest that the first method has accuracy order O(h® + At). In order to improve the accu-
racy and efficiency, a three-step backward differentiation is used in the second method to
achieve an accuracy order O(h3 + At?), which is illustrated by a numerical example.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Domain decomposition is a natural and efficient way to solve a partial differential equation in parallel. Its major difficulty
is to define the values on the interface between subdomains. For elliptic equations, convergent iterations are used to predict
the values we need on the interfaces and approximate the solutions based on an initial guess [12,50,72,83,92]. For time-
dependent problems, there are two popular ways for domain decomposition. The first one is traditional, which is to apply
the iterative domain decomposition method for elliptic equations at each time step [16,28,30,41,67,71,82]. The second
one is to take advantage of information gained in the previous time steps to construct a non-iterative domain decomposition
method, such as the explicit/implicit domain decomposition (EIDD) method [32-34,43,96,97], stabilized EIDD method
[98,99], IPIC method [62], ADI method [61], and others [42,95]. Based on an implicit discretization in time, the second frame-
work makes use of the results of the previous time steps to predict the values on the interface at the current time step. Obvi-
ously the second way saves on both computation and communication costs because it is non-iterative. The key issue about
non-iterative domain decomposition is how to obtain optimal accuracy and better stability because it uses lagged results
from the previous time steps, i.e., and explicit treatment, instead of iterations to predict the interface values.

The Stokes-Darcy model has been studied for many interesting problems, such as surface water and groundwater flows,
oil flows in a vuggy porous medium, groundwater system in Kkarst aquifers, and industrial filtrations, etc.; see
[2,18,19,22,29,35,44,53,57,69,75,78,90] and references cited therein. This model uses two different systems of partial differ-
ential equations to govern the free flow and the porous media flow separately and then couples them together through some
interface conditions, enabling a better description of the physics compared to that possible with a single-system model.
Therefore, different methods have been developed for solving the Stokes-Darcy model, such as coupled finite element
methods [2,4,18-20,23,44,46,64,86,90], domain decomposition methods (DDM) [17,24,35-40,56,59], Lagrange multiplier
methods [3,51,52,69], two grid method [15,75], discontinuous Galerkin methods [21,26,53,63,84,85], and many others
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[10,11,27,45,47-49,65,68,70,76,77,80,89]. Meanwhile Stokes-Brinkman and other similar models are also studied and com-
pared, see [1,5,8-10,13,14,25,31,54,73,74,79,81,88,91,93,94] and references cited therein.

Among these methods, physics-based domain decomposition is more natural than others since the problem domain nat-
urally consists of two different sub-domains. The possibility of parallel computation and the nature preconditioning of do-
main decomposition methods have motivated the development of some efficient methods for solving the system of discrete
equations; see [17,24,38-40,59]. On the other hand, most of previous works on the Stokes-Darcy system use the Beavers—
Joseph-Saffman-Jones (B]S]) [58,60,87] interface conditions or even further simplification because well-posedness can be
demonstrated in a fairly straightforward manner. However, the BJS] condition ignores certain contributions made by the flow
in the porous media flow to the coupling of the two models; the ignored contributions may be important [22] in some appli-
cations such as karst aquifers. The more physically faithful Beavers-Joseph (B]) [7] interface condition is more accurate be-
cause it fully accounts for the contributions of the two flows in the coupling of the two models. Additionally, most of the
existing work is for the steady state Stokes-Darcy model instead of the time-dependent one, which is more interesting.
In this article, we develop two parallel non-iterative domain decomposition methods for the non-stationary Stokes-Darcy
model with Beavers-Joseph interface condition.

The rest of paper is organized as follows. In Section 2, we introduce the Stokes-Darcy system with Beavers-Joseph inter-
face condition. In Section 3, the system is decoupled by using some Robin boundary conditions. In Section 4, the semi-dis-
cretization of the decoupled system is presented. Then two parallel non-iterative domain decomposition methods are
proposed with a numerical example in Sections 5 and 6 separately.

2. Stokes-Darcy model

We consider a coupled Stokes-Darcy system on a bounded domain Q = Q,,|J Q. c RY, (d = 2,3), see Fig. 1. In the porous
media region Q,,, let ii,, denote the fluid discharge rate in the porous media, X denote the hydraulic conductivity tensor, f;,
denote the sink/source term and ¢,, denote the hydraulic head. Specifically, ¢,, = z + ‘/’,—g where p,, is the dynamic pressure,
z is the height, p is the density and g is the gravity constant. Then the porous media flow is assumed to satisfy the following
Darcy equations.

lim = —KV,, (2.1)

a(;itm—s-vﬂm =fm, tE€][to,T] (2.2)
Eliminating i, we obtain the second-order form of the Darcy system

% - (V) =fo. (23)

In the fluid region Q. let ii. denote the fluid velocity, p. denote the kinematic pressure.fc denote the external body force, and
v denote the kinematic viscosity of the fluid. Additionally, T(i,p.)=2vD(i.)—p. is the stress tensor and
D(i,.) = 1/2(Vii. + V'ii,) is the deformation tensor. Then the fluid flow is assumed to satisfy the Stokes equations
o - 2
atC—V~TF(uC,pC) :fC$ te [t07ﬂ7 (24)

Vi, =0. (2.5)

Let I' = Q,, N Q. denote the interface between the fluid and porous media regions. Along the interface I', we first impose
the following two well-accepted interface conditions:

ﬁc : ﬁc = _ﬁm . ﬁm: (26)
—Tic - (T(Uc, pc) - Tic) = &(m — 2), (2.7)
Qm
F/’P\
Q(:

Fig. 1. A sketch of the porous median domain ,,, fluid domain @, and the interface I".
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where fi. and fi,, denote the unit outer normal to the fluid and the porous media regions at the interface I', respectively.
These two interface conditions are for the continuity of normal velocity and the balance of force normal to the interface.
Since both of them are in normal directions, the following Beavers-Joseph (BJ) interface condition [7] is imposed in the tan-
gential direction on the interface.

. ~ ovvd L
=7 (T (te,pc) - Tie) :Te(n)” (e — Um), (2.8)
where 7; (j=1,...,d — 1) denote mutually orthogonal unit tangential vectors to the interface I', and [] = %

Assume that the hydraulic head ¢,, and the fluid velocity ii. satisfies homogeneous Dirichlet boundary condition except
on I, i.e., ¢, = 0 on the boundary 99, \ I and ii. = 0 on the boundary 9Q, \ I'. Assume that the hydraulic head ¢,, and the
fluid velocity i, satisfies the following initial conditions.

b (0,X,Y) = ¢o(X,Y), (2.9)
Uc(0,x,y) = tig(x, ). (2.10)

Then the spaces that we utilize are
X.={0eH(Q)]"9=0 onoQ\TI},
Qc = 1*(0),
Xm={y €H' (Qn)ly =0 ondQu\T},
L(to. T;Q0) = {¢: d(t,) € Qe VE€ [to,T]},
H'(to, T; Xm, X},)) = {¢ : 6(t,) € Xrn and %(t,) €X,, Vtelty, T},
H'(to, T; X, X.) = {¢ : ¢(t,-) X, and %(tﬁ JeX., Vtelt,T]}.
where X, and X, are the dual spaces of X, and X.. For the domain D (D = Q. or Qy,), (-, -), denotes the [? inner product on the

domain D, and (-, -) denotes the L* inner product on the interface I" or the duality pairing between (Hy/?(I'))" and Hy,*(I"). P,
denotes the projection onto the tangent space on I, i.e.

We also define the following bilinear forms

am(¢m7 ‘p) = (de)mv VW)Q,,,-,
ac (e, ) = 2v(D(iic), D(2)),,,
be(#,q) = ~(V - 2,q),,.

With these notations, the weak formulation of the coupled Stokes-Darcy problem is given as follows [18,19]: find
(i, p.) € H' (to, T; X, X.) x [*(to, T; Q.) and ¢,,, € H'(to, T; X, X.,,) such that

(% a)g +n(a¢m w)ﬂ T liics D)+ De(B,D0) + (s ) + (&b - e} — e - i)

ot '’ ot
_ WA k) P
trace(]])
=N V), + (Fer D)o, + (82,9 Tic), VD € Xe, ¥ € Xin, (2.11)
b.(ii.,q) =0, VqeQ,, (2.12)

It is easy to see that the system of (2.11) and (2.12) is well-posed forfc € [L3(Q))" and f,, € L*(2y) for large enough scaling
constant # [19].

3. Robin boundary conditions and the decoupled system

In order to solve the coupled Stokes—Darcy problem utilizing the domain decomposition idea, we naturally consider Robin
boundary conditions for the Darcy and the Stokes equations by following the idea in [17,24].
First let us propose the following Robin condition for the Darcy system

KV pm - Fim + &m = &n oD T (3.13)
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for a given function &, defined on I'. Hence, the corresponding weak formulation for the Darcy system is given by: for
Em € P (to, T; I2(I)), find ¢m € H' (to, T; Xm, X,,) such that

aA g g }4
(g’tm, ) + an(fm, ¥) + (8 V) = (s W)g,, + (Emo ), VW € X, (3.14)
Om
bm(to) = o (3.15)
On the other hand, we consider the following two Robin type conditions for the Stokes equations
fic + (T(te, Pe) - ) + e - e = & on T, (3.16)
— Pe(T (i, p,) - ic) —ﬂPrﬁc =& onr (3.17)
trace([])

for a given function ¢ defined on I'. Then, the corresponding weak formulation for the Stokes system is given by: for
& e P to, T; (), find i, € H'(to, T; X, X,) and p. € L*(to, T; Q.) such that

dlie SN . . vwd I o
( c V) + ac(te, 7})+bc(v~,pc)+<uc'nc7y'nc>+L<PruﬁPfy>
Qc

ot trace([])

= 657a)gg[+<fcvz_}'ﬁc>* <ECT7P‘ED>': Vi_)GXC, (318)
be(ilc,q) =0, VqeQ., (3.19)
fie(to) = . (3.20)

The Stokes and Darcy systems with Robin boundary conditions can be combined into one system. Indeed, it is easy to see
that if ¢, and & are given, then, there exists a unique solution (¢m, iic, pc) € H' (to, T; Xm, X)) x H' (to, T; Xc, XL) x L*(to, T; Qc)
such that

(‘;ﬁt" 17) + n(agt’" ) + ac(ll, D) + be(D, Pe) + Nam(dm, ) + <flc i, D ﬁc> + ;1<g<2>m,xp>
o on (3.21)
+%<Pﬂﬁpra> =N(fm,¥)q, + (fe. D), + (Ec, D Tic) + N{Em, W) — <€7¢r71’ﬂ7>, YW eQ., eX.,
be(il,q) =0, Vg eQe, (3.22)
bm(to) = o, lc(to) = to. (3.23)

Then we obtain the following compatibility lemma whose proof is similar to that of Lemma 2.2 in [24].

Lemma 3.1. Let (¢, 1c,p.) be the solution of the coupled Stokes-Darcy system (2.11) and (2.12) and let (&m,ﬁc,ﬁc) be the
sqlutipn of the decoupled Stokes and Darcy system with Robin boundary conditions at the interface (3.21) and (3.22). Then,
(m, e, Pe) = (¢, lic, p.) if and only if &, Ecr, and &, satisfy the following compatibility conditions:

& = Hle - fic + Ebm, (3.24)
& = ille - Tie — g + 82, (3.25)
- ovvd .

T — 71)1 K m)- 3.26
: trace(T]) (KVém) ( )

4. Semi-discretization of the decoupled system

Now we present the semi-discretization for (3.14), (3.18) and (3.19). Suppose we have finite element spaces
Xpr C Xm, Xsn C Xc and Qg, C Q.. Here we assume that Xg, ¢ X, and Qg, C Q. satisfy the following inf-sup condition: there
exists a constant y > 0

bina) 427
0-4£Qu0gexg, 12111119l
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Define Py, : X, — Xpy and Py, : Xc — Xg; to be the regular orthogonal projections. With finite element approximation in space,
we can approximate (3.14), (3.18) and (3.19) as follows: Find ¢;, € H' (to, T; Xpp), iy € H' (to, T; Xs) and py, € L*(to, T; Qgy) such
that

o . . s oL .

(%,dfh) + an(¢n, Yn) + <g¢n,l//h> = (fm,¥n)g, + <uh e +g¢h,z//h>, Y, € Xpn, (4.28)
Qm

8ﬁh . - o . 5 L oL o ovvd 2 -

— . U + ac(ty, Dp) + be(Dp, Pp) + (Up - Tic, Op - e ) + ———ee ( P10y, P; D
<8t I)Q (Un, On) (n, Dn) < h h > trace(H)< h h>

r LN o o o OCV\/d_ ~ - -

= (fm yh)szg + <uh M — g + 82, Up - nc> - <trace(l_DP‘C(Kv¢h)7Pf Uh>7 Vo € Xsn, (429)
be(ilh,q,) =0, Vg, € Qg (4.30)
n(to) = Pucbg, 1 (to) = Pilo. (4.31)

5. The first parallel non-iterative domain decomposition method

The basic idea for the first parallel algorithm is to use backward Euler method for the full discretization but approximate
el el and ¢! by using the initial conditions at to and numerical solutions at time t,.

5.1. Algorithm I
In the following, we consider the domain decomposition algorithm for the nth(n =0,1,2,...,N — 1) time iteration step.

1. Forn=0,1,2,...,N — 1, by using (3.24)-(3.26), the initial conditions &52 = Pp¢, and ﬁﬂ = Pyilp, and the numerical solu-
tions ¢} and i at t,, compute

& =1 - fic + gof, (5.32)
&= i, — g + gz, (5.33)
oo VAL g, (5.34)

V/trace(]])

2. Independently solve

Agﬂ — 43?. I n+1 Jn+1 n+1 n
TP ] an (90 ) + (8O0 ) = U)o, + (Ehtn)s Vil € Xon, (5.35)
Om
ﬁﬂﬂ—ﬁﬁ 7 Snil 7 7. pn+l Snil = = O(V\/a Sn+l 7
(T,vh +ac(u,, ,vh)+bc(vh,ph )+<u,, -nc,vh-nc>+m<1’ruh J’rﬂh>
= (Fer3) (B e) = (P, VB € X (5.36)
be(iii*1,qy) =0, Vg, € Qg (5.37)

for ¢+', i1, and Py,
5.2. Numerical example

In this subsection, we will use the following numerical example to illustrate the features of the first parallel non-iterative
domain decomposition algorithm, including its accuracy and stability. We will use Taylor-Hood element for Stokes equation
and quadratic element for the Darcy equation.

Example: Consider the model problem on @ =[0,1] x [-0.25,0.75] where @,, =[0,1] x [0,0.75] and Q. =0,1]
x[-0.25,0. =1, v=1, g=1, z=0, and K = kI where [ the identity matrix and k = 1. The boundary condition functions
and the source terms are chosen such that the following functions are the exact solutions.
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¢m = [2 — msin(mx)][-y + cos(7(1 — y))] cos(2mt),
e = [x*y? + e, —2xy> + 2 — msin(nx)]" cos(2mt),
P. = —[2 — msin(mx)] cos(2my) cos(2mt).

All the numerical results below are for t = 1.
We first choose At = 8h® and list the errors of the first non-iterative DDM in Table 1. By linear regression, these errors
obey

up — ully ~ 0.98861H> %7, |uy, — ul, ~ 2.44430*"°%° ||p, — plly = 4.71990** ™ ||py, — ¢ll, ~ 2.3667h*,
| — |, ~ 4.8451h* """

These results match the regular expectations of accuracy order O(h®> + At) arising from backward Euler method, Taylor-Hood
element and quadratic element.

Secondly, we choose At = h. The first non-iterative domain decomposition algorithm is still stable, but the errors listed in
Table 2 suggests that the accuracy is close to first order. This is expected from the accuracy order O(h3 + At).

Thirdly, we choose At = vh and At = 4h to further investigate the stability of Algorithm I. The numerical results in Tables 3
and 4 are still stable even though the accuracy decreases due to larger At. This is an interesting observation since the numerical
results from the previous time iteration step is used to predict the parameters for the current step in an explicit way. And the
corresponding stability analysis is an interesting future work.

Table 1

Errors of the first non-iterative DDM for At = 8k°.
h [lup — ullg [up — uly lPr — pllo llén — dllo [én — ¢lq
1/8 1.8244 x 1073 2.7194 x 1072 3.4486 x 1072 4.7632 x 1073 7.3861 x 1072
112 5.1366 x 107* 1.0154 x 1072 1.1281 x 1072 1.4546 x 1073 3.2439 x 1072
1/16 2.1483 x 1074 5.3990 x 1073 5.5690 x 1073 6.1663 x 104 1.8165 x 1072
1/20 1.0982 x 104 33672 x 1073 33284 x 1073 3.1585 x 1074 1.1603 x 1072
1/24 6.3561 x 10> 2.3058 x 1073 22205 x 1073 1.8269 x 104 8.0496 x 103
1/28 4.0049 x 107° 1.6799 x 103 1.5906 x 1073 1.1496 x 1074 5.9109 x 103
1/32 2.6846 x 107> 12792 x 1073 11973 x 1073 7.6963 x 107° 45242 x 1073

Table 2

Errors of the first non-iterative DDM for At = h.
h [lun — ully [up — uly llpn — pllo llon — bl [bn — Iy
1/8 2.8310 x 1072 4.0257 x 107! 4.9463 x 107! 2.5244 x 1072 1.4670 x 107!
1/16 1.0396 x 1072 13079 x 107! 1.4506 x 10! 1.5072 x 1072 7.5069 x 1072
1/32 4.2258 x 1073 4.7188 x 1072 5.3956 x 1072 8.4399 x 1072 3.9873 x 1072
1/64 1.8882 x 1073 1.9391 x 1072 2.3967 x 1072 4.4860 x 1073 2.0802 x 1072

Table 3

Errors of the first non-iterative DDM for At = v/h.
h lup — ully [up —uly llpn — pllo llon — ¢l [ — &1y
1/16 3.8980 x 1072 1.3399 x 10° 1.4279 x 10° 3.8980 x 1072 3.8980 x 107!
1/36 4.8068 x 1072 7.1271 x 107! 6.7836 x 107! 3.0056 x 1072 1.5986 x 107!
1/64 3.0636 x 1072 43674 x 107" 4.0150 x 107! 2.4734 x 1072 1.2801 x 107!
1/100 2.1632 x 1072 2.9799 x 107! 2.7240 x 107! 2.1179 x 1072 1.0706 x 107"

Table 4

Errors of the first non-iterative DDM for At = 4h.
h [lun — ullo [up —uly llpn = Pllo llon — ¢llo [ — @1y
1/16 3.8980 x 1072 1.3399 x 10° 1.4279 x 10° 3.8980 x 1072 3.8980 x 107!
1/32 3.0358 x 102 43176 x 107! 41615 x 107" 2.4786 x 1072 1.2818 x 107!
1/64 1.0695 x 1072 13534 x 107! 13273 x 107! 1.4975 x 1072 7.2658 x 1072

1/128 42719 x 1073 4.7940 x 1072 5.2260 x 1072 8.4211 x 1073 3.9562 x 1072
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6. The second non-iterative domain decomposition method

The numerical results in Section 5.2 imply that the accuracy of the first non-iterative domain decomposition method is
O(h3 + At) in I? norm for ii, and ém. Hence, in order to obtain the third order accuracy, At needs to be proportional to h’.
However, in practice a larger At is usually needed in order to dramatically reduce the computation cost in time iteration
and make the numerical simulation efficient. To overcome this shortcoming of the first non-iterative DDM, in this section
we propose the second non-iterative DDM, which employs the three-step backward differentiation and the idea of predic-

tor-corrector. The new method improves the accuracy order to be O(h3 + At3) so that third order accuracy can be still
achieved when At = h.

6.1. Algorithm II
In the following, We consider the domain decomposition algorithm for the nth(n =0,1,2,...,N — 1) time iteration step.

1. For n = 0, by using the initial conditions éﬁh Pp¢o and il uh Pyiio, and (3.24)-(3.26), compute &2 = ﬁﬂ fe + g¢2, &=
0. —gd? + gz, and & = —¥@_p (KV?).

\/ trace(H)

2. Using backward Euler method, independently solve

A1 _ 30 o . i _io
<d)hAt¢h:Wh>Q +am<¢;ud)h>+<g¢ll17l//h>:(fr1l17lph)gm+<[f?n7lph> VI//hEXDlh(u AtUh yll)g

2 5 ovvd
T ac(@i, Bp) + be(Bp,pl) + (T - e, Dy e ) +——me(PLii} P, D
c( h h) c( h ph) < h e, Uh c> tl‘&CE(H)< iy, e h>

—(fm?/h +(&, Dy -1ic) — <EET,P11711>7V7711EXsmbc(ﬁ}NQh):Q Vg, € Qg

for ¢}, i}, and ph
3. Compute &}, = i} - i + g}, &l = uh fic — g¢} +gz and &L, = :"7[ (KV o).
4. Using Crank-Nicolson, independently solve race([ )

910 b1+ o b1+ b0
(d"‘ " ,v/h) +ay (‘ﬁh . ¢”uwh> + <gd”‘ : ¢h,wh>
Qn
1 0 1 0 2150 21,530 51, 50
— (30 +<5m;Cm7wh>7vwh6xm, (”hm”hv,> w(“@“ 717h>+bc(ah,"h§ph)
Ql'ﬂ SZC
0
C

i . avvd T flefo . g+
+ e, Uy - e ) + P P ey, + (=€ ,
< 2 ¢y Yh c trace(H) T 2 ©th 2 h . 2 )

Z1 0
y& .
%7P10h>7 Vo € Xs,

ﬁl-e—ﬁb
bc<’12 “,qh>=0, Yq, € Qs

to update ¢}, i, and p.

5. Update
& =) Tic + g4, (6.38)
fg = iy - fic —g¢h + 8z, (6.39)
- avvd 5
0 = ——=—=—==P:(KV}). (6.40)

trace(]])

6. For n =1, approximate ¢2, ~ 21 — &% 2 ~2¢! — &0, and &, ~ 28, — &,
7. Using two-step backward differentiation, independently solve

72 74A1 70 ~ N
(WHW) + Um (Qb%vlph) + <g¢ﬁ7‘//h> = (fr%u‘ph)gzm + <éﬁ11 lPh>7 V‘ph € XDh:

Qn
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302 — 4ii) + 10 . o Sy = . o aovd L
(T7 Un . + ac(Up, Un) + bc(thph) + <uh ‘M, Uy - nc> +Te(m<Pr(uh7Pﬂ/h>
= (ﬂi, 17h>gc + (&, Dy Tic) — <2§ppﬂ_}h>a VU € Xap,
b (ﬁﬁv%) =0, Vg, € Qs
for ¢2, 112, and p2.
8. Update
2 =7 +gd?, (6.41)
&=} i - g + gz, 6.42)
- awvd "2
=——=—=—P;(KV¢j; ). 6.43
e Vtrace([]) I( ¢“> (6.43)
9. Forn=2,...,N —1, by using the numerical solution at t, and (3.24)-(3.26), approximate &' ~ 3¢% — 3¢ 4 en-2)

&l a3 -3¢ + &Y and S A 38 - 38 + 82
10. Using three-step backward differentiation, independently solve

h 7¢h

6At

(11&5;“ — 181 +9¢1 " — 212

11 — 1817 4 9idp-1 — 2002
6At

) - an (5 ) + (800 0n) = (0 U g, + (En ) W € Xon, (6.44)
Qm

iy 1 = — A 1 3, 1 =2 = —
,vh) +ac (1, 2n) + be(Bn, D) + (i i, By - ic)
Q

oavvd 2n41 >\ (Fnt1 2 g+l 3 = Entlp 7 7

Te(]_[)@)ruh ,PrUh> = (fc ; ”h)gc + (& Dy - 1) — <€Cf Pr”h>7VUh € Xsn, (6.45)
be(d;".an) =0, ¥4y € Qs (6.46)
for ¢p+', @', and py+l.

11. Update

&t = i i+ gyt (6.47)
- ljﬁﬂ e — ggr + gz, 6.48)
CRNC Lo 6.49
& = (K9, (6.49)

Remark 6.1. The three-step backward differentiation needs the solutions at the first three time iteration steps (n = 1,2, 3) to
start the iteration. Because only the initial condition at n = 0 is given, the solutions at n = 1 and n = 2 need to be approx-
imated numerically. Since the global error of three-step backward differentiation [6], the local truncation error of two-step
backward differentiation [55], and the local truncation error of Crank-Nicolson scheme [66] are all of order O(At?), the
numerical solutions of the second parallel non-iterative domain decomposition method at n = 1 and n = 2 do not deteriorate
the global accuracy (see, e.g., Section 10.3 in [55]). Hence one can expect the global accuracy order of the second parallel non-
iterative domain decomposition method is O(h3 + At?) if Taylor-Hood element is used for Stokes equation and quadratic ele-
ment is used for the Darcy equation. This will be numerically verified in the following subsection.

6.2. Numerical example
To illustrate the numerical behavior of the second non-iterative DDM (Algorithm II), we consider the same example in the
previous section and also choose At = h. From the data and the linear regression below, we can see that the second algorithm

is stable and the accuracy order is O(h® + At?). Table 5 contains the errors of the second non-iterative domain decomposition
algorithm. By linear regression, the errors in Table 5 obey

lun — ullg ~ 3.70360°7 Juy — ul, ~ 52245071,
|, — by ~ 5.2780H> %%,

th - p”o ~ 652.09’13'38637 Hd)h _ ¢”0 ~ ‘1.87‘14}12,77467

We also choose At = vh and At = 4h to further investigate the stability of Algorithm II. The corresponding numerical re-
sults are still stable even though they are less accurate than those of Table 5 because of larger At. This performance is similar
to that of Tables 3 and 4. Hence we omit the corresponding datum here to reduce the length of the presentation.
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Table 5

Errors of the second non-iterative DDM for At = h.
h llup —ullp [up — uly lpr = pllo llon — ollo [dn — Blq
1/8 4.7982 x 1072 7.4699 x 107! 7.8154 x 107! 6.2885 x 1072 7.9476 x 1072
1/16 2.9626 x 1073 4.6352 x 1072 5.1155 x 1072 7.2116 x 107* 1.8563 x 1072
1/32 22817 x 1074 3.6045 x 103 35519 x 103 1.3457 x 10°* 45593 x 103
1/64 1.8125x 107° 3.9907 x 1074 3.7080 x 104 1.9298 x 107° 1.1335x 1073
1/128 1.6344 x 10°° 8.1105 x 10~° 7.3452 x 107° 25619 x 1076 2.8291 x 1073

7. Conclusions

In this article we propose two parallel non-iterative multi-physics domain decomposition methods for non-stationary
Stoke-Darcy model with Beavers-Joseph interface condition. Both of the two methods possess the optimal convergence
rates expected from the finite elements and time discretization schemes used.
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