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Abstract: In this paper,we consider fully discrete finite element methods for the Fluid-Structure Interac-

tion system. For the time discretization, backward difference algorithm and composite left rectangular

methods are adopted to approximate the continuous derivative and integration with respect to ¢, respec-

tively. Existence and uniqueness of finite element solutions are proved, fully discrete error estimates are

obtained.
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1 Introduction

The analysis of fluid-structure interaction
(FSI) problems has attracted growing attention
during recent years. The FSI modeling describes
the dynamics of fluids in contact with the elastic
structures with natural transmission conditions,
coupled the solid unknown with the velocity of
the fluid solution, at a common interface. There
are many numerical studies of the FSI modeling in
recent years. C. Hirt introduced the Arbitrary La-
grangian-Eulerian ( ALE) method as a suitable
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procedure for the analysis of FSI modeling'’. In
the ALE method, the grid nodes may be moved
with the fluid in normal Lagrangian way, or be
held fixed in Eulerian manner. A series of de-
tailed research™* of ALE finite clement methods
for FSI modeling are given. T. Tezduyar and S.
Sathet! developed space-time FSI techniques that
have been applied to a wide range of 3D
computation of FSI problems. These techniques
enhanced the scope, accuracy, robustness and
efficiency of traditional space-time methods.

In Ref. [5], Q. Du, M. Gunzburger, L.
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Hou and J. Lee explained the physical validity of between fluid and solid, and let It =390, \y, I, =
the FSI modeling. In addition, they considerd 30, \ 7, denote the parts of the fluid and solid

weak fomulations for FSI modeling and estab- boundaries respectively, excluding the interface
lished the existence of weak solutions. In Ref. y. Let n;(i=1,2) denotes the unit outward nor-
[6], They further discussed a divergence-free for- mal vector to Q;(i=1,2).

mulation of FSI modeling which does not involve

the fluid pressure field. Based on this formula- 0

tion, they presented a semi-discrete finite element I,

formulation of FSI modeling and derived error es-
timates.
The object of this paper is to discuss the fully

discrete finite element approximation, prove the
. . .. Fig.1 G tric descripti f the fluid
existence and uniqueness of finite element solu- 18 cometric description ot the T

. . . — structure interaction model
tions, and derive the error estimates for the fully

discrete finte element approximations. The rest of . . .
] ) We consider the following FSI system, in the flu-
paper is arranged as follows. In section 2, we re- . .
id region ,, we apply the Stokes system
call some relevant results of Ref. [5,6]. In sec-

. . X L. W t+p— 1Ay = i in O s
tion 3, we discuss the fully discrete finite element e # ) e )
S ] ) divw=0 in 2,
approximation and establish the existence and u-
. . . v=0 on I,vl—o=w
niqueness of the finite element solutions and de- 915
b

rive the error estimates. ) ]
where v="_(v;,+**,v,)T denotes the fluid velocity,

2 Results for semi-discrete finite ele-  , rcpresents the fluid pressure, £ denotes the giv-
ment approximation en body force per unit mass, p; and u represent

2.1 Weak formulation the constant fluid density and viscosity, and v,

. . denotes the given initial velocity.
Assume that the fluid and solid occupy two g Y

. . . . . In the solid Q, , ider th ti f
neighboring open Lipschitz domains, Q; CR? and n the solid 02, we consider the equations o
0, CR? where d=2,3. Q is the interior of Q; U

Q. , i.e. Q is the entire fluid—solid region. More-

linear elasticity

over, we let y=3dQ,[) 9Q, denote the interface

ptty — 2ppdive(u) — Ao div [(dividI] = p,f, in s,
u=0 on P27 (22)

u|t=O:u0 andut|t=O:u1 in 2,

where u= (uy »+** yu;) T and u, denote the displace- Across the fixed interface ¥ between the fluid
ment and velocity of the solid, respectively. e(u) and solid, the velocity and stress vector are both
1 /du; | Jdu; . continuous, 1. e.

= [7(9 —|—a—>] represents the strain tensor.

Z; X/ di u,=v onV, (2.3)
f- represents the given loading force per unit mass 2use@) » ny + 2, (div win, =
s p#2 and 2, denote the Lame constants, p, repre- pny —pVven onV, (2.4
sents the constant solid density ,u, and u, denote where n; denotes the outward-pointing unit nornal

the given initial data. I denotes the unit matrix. vector along the boundary 9Q;,i=1,2.
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Through out this paper, H"(K) ,m&R, de-
notes the standard Sobolev spaces with order m
defined on the region K equipped with the stand-

Vector-valued Sobolev

ard norm || ¢ ||.x-

spaces are denoted by H” (K). We use the follow-
ing L* inner product notations on scalar and

vector-valued L? spaces:

[prqlc = JK pq dK VY p,q € L*(K),

By using Korn’s inequalities it can be verfied

the bilinear forms a;[ * , * ] are coercive, i. e.

a;lusu] > k; || u ||%,ni

Q2.7
Yu € H;, if meas (I';) 40
[usu]ni +taluu] >k || u ||%nl

(2.8)
Yu € H;, if meas (I';) =0

In this paper, h and z, defined in the latter sec-
tion, denote discretization parameter in space and

time direction, respectively. The letter C denotes

def v in (), def | Vo

u, inQ,, u

and the weighted L? inner product [[ « , * ]]:

[[5”]]] = [Pl&’]]n] + I:sz”]]nz

d
Qaslu,v] = J {X; (diva) (divw) + 2y, Ze,-,— (we; (v)}dQ

0, ij=1

in 01,
in ,,

Cuav]x =J w+vdK Yu,v € LK),
K
where the spatial set K is Q or y or Q;, for i=1,
2.

We define function spaces
H;[H; ()] | o: with the norm || * || Hi — ||

. ||1,ni,i=1s2 (2.5)
We define the bilinear forms:
|
a[uv:l=J Zd:auiﬂdﬂ Vu,v € H
1 ’ o /lli’jzl axj al‘j ’ 19
Vu,VEHz, (2.6)

blv.q] =—Jn qdivvd2 Vve H,,Vq€ L @)

generic constant that may not be the same at dif-
ferent occurrences. For simplification, by x=<y(y
= x) we mean that there exists a constant C such
that + <Cy (y = Cx), where C is independent
with & and r.
2.2 Semi-discrete approximation results

In this section, we will recall the weak for-
mulations, and error estimates for the semi-

discrete finite element approximation.

¢ In g,

and fE 7 Tn ' (2.9)
fl 11’1(22,

Véqpe LP(D. (2.10)

Thus the divergence—free weak formulation for (2. 1) — (2. 4) can be put conveniently into the following

form: seek a & such that
£€ L*(0,T;L* (),

$|nl ELZ(OsTsHl)a le$|Ql

Lyl +aleg)+a[ [ e dsig = [Lf ] — aslusg]
£0) = &,
["& 10 s = [ & o) 1ds acent,
0 0

The existence and uniqueness of the solution

for the auxiliary prloblem (2. 11) — (2. 15) was

a.£€ L*(0,T;¥"), (2.1D)

— 0. [[&) [nds € L0, T3 HL, (2.12)
V,EWw, (2.13)

(2. 14)

(2.15)

|
proved in Ref. [6].

In what follows we assume that ; CR? and
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Q; CR? are both polyhedral domains. Let A de-
note a discretization parameter associated with the
triangulation 7* of Q,1i. e. h=maxg s {diamK,}.
We also assume that K; do not cross the interface

v. For each 0<<h<1,we choose that H* C H; (Q)
NC(Q)and Q' CL*(Q,) as finite element spaces

def
that contain linear functions. We set Hf =H" |, ,i

inf’ [ u—uw, | 0.0, = R || +1,0;
w, € H;

inf’ [ u—uw, | Lo, S [ ul +1,0;
w, € H;

infl lg—all 0.0, = gl oy

7% €Q;

Under the definition
in 01 )

def \ 43
& = .
du, 1n 2,

the semi-discrete finite element formulation can

(2.19

be put as follows

(La.4 ’77)1]] + a6 ?77h:| +

o[[ein]-

|:|:f’77h:|:| —as[u,, ?77h:| vﬂh € H,
(2.20)

Vo,n in 01 ’

def
Son = &(0) = { (2.21)

u,,, ing,,

Lemma 2.1 Assume that f1, f5,u, »u; and v, sat-
ify (2.11) — (2. 12). Then, there , there exists a
unique solution &, € C' (0, T; ¥") which satisfies
(2.13)—(2.15).

The error estimate between the continuous

solution defined by (2.11) — (2. 15) and the semi-
discrete finite element solution defined by (2. 20)
—(2.21) are derived in Ref. [6],i. e.
Lemma 2.2 Assume that f,,f,,u,,u, and v, sat-
isfy (2.11)—(2.12). Let (v,u) be the solution of
(2.13)—(2.15), and (v, ,u,) be the solution of
(2.20)— (2. 21). Assume that for some r€[1,
kl,v€ L* (0, T; H' (@2)),9v € L* (0, T; H
), peL? (0, T; H (2,)),du€ L0, T; H!
(2:)) v EH (Q)su, €EH ()5 u, € H!
(2:), and po € H (Qy). Then,

[ v(®) — v (@) || 0,0, +

” V=" ” L0, T3 H)) +

Vue HFH(\Q,) n Hm
Vu € H’—H(Q,) n H,‘v

Vgqe H W) N H;,

=1,2. and ¥ ={5 € H":b[n,q]=0, Vq, €
Q'}

Assume that H? ,H} ,and Q! satisfy the stand-
ard approximation propertiest™,1i. e. , there exists

an integer >0, such that

r 6 [Oyk:l. (2. 16)

r E I:O’k:l. (2. 17)

r 6 I:O 9k:|. (2. 18)

|
I s () — 9, () | 0,0, +
[ u(® —u, (@ || 1,0, =
R Clvo g, + T I g, +
It | 1.0, + Il 20 Il v, +
2l 2o, 13H @ ) T
Rl vl 20,1y H oy T
[l w |l 20,1y H 0, T
o | Lo mE T
(2.22)

¢ depends on the region regu-

[l 9. |l 20,13 H @, )
Remark 2. 1
larity assumptiont™®. In particular, if both @, and
, are convex (i. e. ¥ is necessarily a straight

line), then e can be chosen arbitrarily small.

3  Fully discrete finite element for-
mulation and error estimate

We now consider a fully discrete scheme for
(2.11)—(2.15). Suppose [0,T] is partitioned in-
to equal subintervals with time step = T/M,
where M is a positive integer. we denote ¢, = nr
(0<n<M) in the following discussion. The fully
discrete form of (2.11)—(2.15) is as follows
Find{& }*,CH" such that.

[[5@: ’77h:|:| +a & ’77h:| +

az[Ln(fh)N]h] =

|:|:f’77h:|:| — az[uo,n ?77h:|

Vo € H 3. D
§=ga={" "W (3.2)

w,, in(;,
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where, the operator d, denotes the backward
difference operator,i. e.

38 = (& —¢& "/ (3.3)
and L, denotes the composite left rectangular op-
erator,l. e,

L,(&) =+t +'. G
According to the fully-discrete form (3. 1) — (3.

2), u} and v} can be put as the following form:

{Vh =& |n1 ’
(3.5)
u, = L,(§, |n2) + uo, .

Theorem 3.1 Assume that fi, f;,u,,u; and v,
satisfy (2.11) — (2. 12). Then, there exists a u-
nique series of {& }M ,C H" satisfy (3.1)— (3. 2).

Proof
of 9, and L,, the fully-discrete formulation (3. 1)

According to the operator definitions

— (3. 2) is equivalent to the following

%[[52 97]h:|:| +a L& 97]h:| =

—[l& ]~

& et at8.ml+
|:|:f’7]h:]:] —as[uo s7]h:|s
Vo € H, (3.6)
& = G- 3.7
Recall that {g;}}'=1 are a basis of H", therefore

M
& = Z%(x)gj(tn). Let g= (g1, gu)"y h=
i=1

(h19"'9h—M)T7 A1 - {al (ngv ¢i)}M><M9 and B:
{LLe; @i J1}mxms then we can use matrix format
to rewrite (3.6)—(3.7) as follows

Find g=(g;,***»gn) 7T such that:

(%B +A1>g=F, (3.8)

where F is the corresponding term of the right

side of (3. 6). Since matrices A, , B are all positive
definite, the coefficient matrix lB + A, is posi-
T

tive definite, therefore, invertible. Thus there ex-
ists a unique g= (g ,***,gn) " satisfying (3. 8).
Noting the relations (3. 5), we immediately
obtain the existence of a series of (v} ,u}) satisfy-
ing the fully disctete formulation (3.1)— (3. 2),
as follows
Theorem 3.2  Assume that fi, fo,u,,u, and v,
satisfy (2.11) — (2. 12). Then, there exists a u-

nique series of {(v},u)}M, C H" X H} satisfying
(3. 1)—(3.2).

Based on the fully discrete formulation (3. 1)
— (3. 2), we derive the corresponding error
estimates.
Theorem 3.3 Assume that fi, f;,u,u; and v,
satisfy (2. 5). Let (v,u) be the solution of the
continuous weak problem (2. 6) — (2. 8); and
(v} su}) be the solution of fully discrete problem
(3.1)—(3.2). Assume for some r&E[1,k],vEL?
O, T;H (2,)),dvyEL*(0, T; H ' (2,)), du
€L 0, T;H ' (2,)), du€ L* 0, T; H ' (),
WwEH(Q), u EH'(Q;) and u, € H' ().
Then, the following error estimates hold: for 0
n<M

M
I =i o, + 25 I 0" — i | 3.0, +
n=1

w =il oa, + & —ui 10, =
(A" +o)( || v |l 1,0, + lw | +1,9, +
[l u | 1,0, +
I 2o | o, + 2l 2.1 @ ) T
G+ o v Il 2orutiay +
I w |l 22co,m,m+ 0y +
I 9emv Il 20,20 @+

Il Gure || 20,7,mm @) (3.9

def def
where z is the time step, and v =v(¢,) ,u" =u(s,)

Proof Subtract (3.1)—(3.2) from (2. 20)
—(2.21), and let t=t,, then we have

0= [[3t$h(tn) _§t$Z ’ﬂh:]:] +
a & (t) _&’77)1:]+
w[["a®d— L. ]=
(006, (t) — 3.6, (2D ’77h:|:| +
[09.6.(t.) — 3.6 ’77h:|:| +
a[& () _&977)1]"}_
as [J: &()ds—L, (&), ]—i—

az[Ltn (Eh)_Ln(Eh)ﬂ]h] V7]h € H",
(3.10)

where

def
Lt,, (Eh) = T(eh(to) +$h(t1) = e +Eh(trl))'

Set ¢" = &,(2,) — & and choose y, = ¢" € H"in (3.
10), then we have
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[[ : ¢ :|:|a+a1[e e ]+ ‘L'"Z:;;r”e]“%,nz—i—r. (3.14)
as[z(e® +e e, ] = Therefore,
_[[atsh(tn)_§t$h(tn)?e"]]_ M
. e 130+7>, el fa +
as [Jo Eh(s)dS_Lt,, (Eh)senJ N n=1
Moreover, applying the interpolation error theo- Z;T [ %vnz =
ry,the following operator error estimates holds: M
' A e 13, +
‘J‘ Eh(s)ds_LG (sh) S n=1
0 1,0, —l
ol a.gll L2, TsH (@) » ZT e |l %,nz) + 7, (3.15)
_ i=0
||az$h(tn)_az$h(tn)||o,a = ! 2 1 .
tlld& Il o ritan- where A =max{ 1, Thi—1 }
5l

Thus, the following inequality holds

1
- e 180+ el <

1 — 1
ol Il PR P PP

n—1
. 1 .
N+ gl e Nt +
j=

le ltat 3 lle lf +C% 31D
simplifying(3. 11) ,we have
1
(= 1) lelsat el =

1 .

—let 5ot e llia +

2t
n—1

e el 2a, + 2 (3.12)
j=0

Noticing that [ e [[5, =

A e | i.a,, foralle” € H,. Therefore,
1
(zz2)leltat eIt +

B =Dl e 2, =

1
2t

n—1
e, e llta, + 2
=0

Summing over n from 1 to M and multiplied by ¢
on both side of (3.13),yields

(3—2¢) e a0+

M
> e it +
n=1

M
Ut =D el e Iia =

e llellia =

e 11 8.0+

(3.13)

M
2> e llga+
n=1

Applying the discrete Gronwall inequity: a,

n—1
+b,<c,tA2a;=a,+b,<c, exp(nd),yields
=0
! M
el 2a+7>) e llfa +
n=1

(3.16)

M
) e 13y =7
n=1
Recalling the definition of ¢*, and applying the
triangle inequlity, we obtain,

| s () —uj, || 1,0, <
J s(Dds—L, (&)|  +
0 1,0,
'L, &) —L,(&) Il 1.0, =

M
T+TE ” e || 1,0, =T (3.17
n=1
M
Dl v —vill3e =
n=1
M
Dilelta s« (3.18)
a=1
v Ctd = Vi o, + Il w(e) —t || 0.0, =
M
TE e lloe=r< (3.19)
n=1

Combining (3.17)—(3.19), (2. 22), with the triangle ine-
quality, we obtain (3.9).
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