A Speculation of N. Katz Concerning
the Distribution of Arithmetic Quantities
(Notes by D. Wright of a lecture by N. Katz given at Princeton on Oct. 12, 1994)

1. Description of the Pattern

There are many important theorems in number theory asserting that a sequence of arithmetic quantities of some kind is uniformly distributed. N. Katz has discovered a remarkable pattern in the finer aspects of distribution of many of these sequences, which we will describe below.

Suppose for each \(n \geq 1 \) we have a set

\[S_n = \{ 0 \leq \theta_1 \leq \theta_2 \leq \cdots \leq \theta_{\nu_n} \leq 1 \} \]

of “angles” (normalized so that \(2\pi = 1 \)). We shall assume that \(\lim_{n \to \infty} \nu_n = +\infty \). We say this set sequence is uniformly distributed if for any continuous \(\mathbb{C} \)-valued function \(f(\theta) \) on \(\mathbb{R}/\mathbb{Z} \) we have

\[\lim_{n \to \infty} \frac{1}{\nu_n} \sum_{i=1}^{\nu_n} f(\theta_i) = \int_0^1 f(\theta) \, d\theta \]

Katz gave four examples of such sequences.

Gauss sum angles: The Gauss sums are

\[g(\chi) = \sum_{x=1}^{p-1} \chi(p) \exp \left(2\pi i \frac{x}{p} \right) \]

where \(p \) is an odd prime and \(\chi \) is a nontrivial multiplicative character modulo \(p \). It is well known that

\[g(\chi) = \sqrt{p} \exp(2\pi i \theta_\chi) \]

for some angle \(\theta_\chi \) normalized as above. Thus, \(S_n \) consists of all the \(\theta_\chi \)'s for the \(n \)-th odd prime \(p \).

Kloosterman sum angles: The Kloosterman sums are

\[\kappa(a) = \sum_{x=1}^{p-1} \exp \left(2\pi i \frac{x + a\pi}{p} \right) \]

where \(a \in \mathbb{F}_p \) (the finite field of order \(p \)), \(a \neq 0 \), and \(\pi \) denotes the multiplicative inverse of \(x \) modulo \(p \). By the work of Hasse and Weil, it is known that

\[\kappa(a) = 2\sqrt{p} \cos(\alpha_a) \]

for some angle \(\alpha_a \in [0, \pi] \). We would like to consider the set of \(\alpha_a \) for \(1 \leq a \leq p-1 \), for the \(n \)-th prime \(p \). These are now known to be equidistributed with respect to the Sato-Tate measure thanks to work of Adolphson and Sperber and independently N. Katz. In this note, we “straighten out” these angles by the map:

\[\theta_a = \frac{2\alpha_a - \sin(2\alpha_a)}{2\pi} \]

The \(\theta_a \)'s now form a uniformly distributed set sequence.
Elliptic Curve Angles: For an elliptic curve E defined over \mathbb{Q}, let $N_E(p)$ be the number of points modulo p. Again by Hasse, we know that for the primes p with good reduction

$$N_E(p) = 1 + p - a_p$$

where

$$a_p = 2\sqrt{p}\cos(\alpha_p)$$

with $\alpha_p \in [0, \pi]$. Conjecturally, these have the Sato-Tate distribution again. As in the Kloosterman case, we straighten the angles by the same formula to arrive at angles $\theta_p \in [0, 1]$. The n-th set then consists of θ_p for the first n primes p where E has good reduction.

Gaussian primes: For any integer $n \geq 1$, let S_n consist of $\theta_\eta = \text{Arg}(\eta)/2\pi$ for all primes $\eta \in \mathbb{Z}[i]$ with norm less than or equal to n, where Arg denote the principal value of the argument of a complex number. Hecke showed by his theory of L-functions attached to Grössencharakteren that these angles are uniformly distributed.

We now suppose we have the angles in S_n ordered in increasing fashion as described previously. We consider the normalized “spacings”

$$\delta_i = \nu_n(\theta_i - \theta_{i-1}), \quad 2 \leq i \leq \nu_n$$

and

$$\delta_1 = \nu_n(\theta_1 - \theta_{\nu_n} + 1)$$

These are a set of nonnegative real numbers with mean normalized to be 1. We define the cumulative distribution function to be

$$F_n(t) = \frac{1}{\nu_n} \text{Card}\{i \mid \delta_i \leq t\}$$

for all $t \geq 0$. Then F_n is an increasing nonnegative step function such that $F_n(t) = 1$ for all t sufficiently large.

The fantastic discovery of Katz is that in all cases described above we have empirically that

$$\lim_{n \to \infty} F_n(t) = 1 - e^{-t}$$

He produced many graphs of involved cases demonstrating this phenomenon.

This observed distribution would indicate a blurring of the normalized spacings. If the angles were exactly equally spaced the cumulative distribution function would be exactly

$$F(t) = \begin{cases}
0, & \text{for } 0 \leq t < 1, \\
1, & \text{for } 1 \leq t
\end{cases}$$

No explanation, even conjectural, of the observed limit has apparently been offered by anyone.

2. Some numerical computations

The Gaussian prime angles are perhaps easiest to calculate in large quantities. Also, because of the vast amount of information provided by Hecke L-functions (they were invented by Hecke for an attack on the problem of proving that there are infinitely many primes of the form $n^2 + 1$, among other things), this might be the case with the strongest possibilities for attack. We used Henri Cohen’s PARI to tabulate some data.
First, we give a bound n on the norms of the primes to be considered. For each prime $p \equiv 1 \pmod{4}$ with $p \leq n$, we calculated $0 < a < b$ such that $p = a^2 + b^2$. Then the Gaussian prime $b + ai$ has norm p and argument between 0 and $\pi/4$. By symmetry, we may restrict attention to Gaussian primes in that sector, as all of them are obtained through the variations $\pm a \pm bi$ and $\pm b \pm ai$, resulting merely in a multiplication of the numbers of spacings by 8. We then compute the associated angle

$$\theta_p = \arctan(a/b)$$

After this computation we have a large vector of these angles, which we sort in increasing order

$$0 < \theta_1 < \theta_2 < \cdots < \theta_l < \pi/4$$

(Note: all the θ’s must be distinct by primality.) l is the number of primes $p \equiv 1 \pmod{4}$ not greater than n.

We then compute the normalized spacings by

$$\delta_i = \frac{4l}{\pi} (\theta_i - \theta_{i-1})$$

for $1 \leq i \leq l$, where we interpret $\theta_0 = \theta_l - \pi/4$. Next these spacings are sorted into increasing order (and renumbered to reflect this sort). The cumulative distribution function is the step function

$$F(t) = \begin{cases}
0, & \text{for } 0 \leq t < \delta_1, \\
\frac{i}{l}, & \text{for } \delta_i \leq t < \delta_{i+1}, \\
1, & \text{for } t \geq \delta_l
\end{cases}$$

In the document “Calculations of Gaussian primes,” we plot this function together with $1 - e^{-t}$ for $n = 100,000$ and $n = 500,000$. The agreement is plausible, but not totally convincing. The PARI programs are also listed in that document.

Concerning the primes $p \equiv 3 \pmod{4}$, there are only 65 of norm less than 500,000 (this requires $p^2 \leq 500,000$). Since there are 20,796 gaussian primes with norm less than 500,000 in that sector, including those primes adds only about 0.003 to the graph.

3. Quantifying the Agreement Between Prediction and Observation

Katz measured the quality of the match between theory and experiment by computing the Kolmogorov-Smirnov statistic as follows. Suppose we have computed the cumulative distribution function $F(x)$ on the basis of N sample points. Supposed the expected distribution function is $G(x)$. Then the Kolmogorov-Smirnov statistic is the maximum deviation $|F(x) - G(x)|$ over all the computed values multiplied by \sqrt{N}. In the table below, we abbreviate the associated Kolmogorov-Smirnov statistic by KS and the maximum deviation by Δ_{max}.

<table>
<thead>
<tr>
<th>m</th>
<th>n</th>
<th># primes</th>
<th>KS</th>
<th>MD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,000,000</td>
<td>39,175</td>
<td>13.5318</td>
<td>0.0684</td>
</tr>
<tr>
<td>1,000,000</td>
<td>1,100,000</td>
<td>3642</td>
<td>1.3153</td>
<td>0.0218</td>
</tr>
<tr>
<td>5,000,000</td>
<td>6,000,000</td>
<td>32,138</td>
<td>4.0912</td>
<td>0.0228</td>
</tr>
</tbody>
</table>
4. **Origins**

The ideas and computations of Katz were motivated by recent work of Sarnak and Rudnick computing the n-tuple correlation function of the zeroes of the Riemann zeta function and more generally any automorphic L-function. This generalized the computation of the pair correlation of the Riemann zeta zeroes by Montgomery.