8.2: PIDs

Prop. Every prime ideal \(\neq 0 \) in a PID \(R \) is maximal.

Proof: Let \(P = (p) \) be a prime ideal, \(p \neq 0 \).

Suppose \((p) \subseteq (a) \).

Then \(a \divides p \). Hence \(p = ab \) for some \(b \in R \).

Then \(a \in (p) \) or \(b \in (p) \) since \((p) \) is prime.

If \(a \in (p) \), then \((p) = (a) \).

If \(b \in (p) \), then \(b = pc \) for \(c \in R \).

Hence, \(p = ab = pac \Rightarrow ac = 1 \)

\[\Rightarrow a \in R^* \Rightarrow (a) = R \] \(\Box \)

Corollary: If \(R[x] \) is a PID, then \(R \) is a field.

Proof: In the polynomial ring \((x) \) is a prime ideal \((x) = \{ f(x) \mid f(x) \in R[x] \} \)

\[\Rightarrow x \divides f(x) \] or \(x \divides g(x) \)
8.2-2 (Also, \(\mathbb{R}[x]/(x) \cong R \) is an integral domain.)

Hence \((x)\) is maximal and

then \(\mathbb{R}[x]/(x) \cong R \) is a field.

Defn: \(N: R \to \{0, 1, 2, \ldots\} \) is a Dedekind-Hasse Norm if for every \(a, b \in R \setminus \{0\} \) either \(a \in (b) \) or \(\exists s \in \mathbb{R} \) s.t. \(0 < N(sa - tb) < N(b) \).

Prop: \(R \) is a PID iff \(R \) has a Dedekind-Hasse Norm.

Proof: \((\Leftarrow)\) Let \(I \) be a nonzero ideal, and \(b \in I \) have minimal norm \(b \neq 0 \).

Given \(a \in I \), the ideal \((a, b) \subseteq I\),

and so there is no element \(\neq 0 \) with strictly smaller norm. Hence, \(a \in (b) \). \(\square \)

\((\Rightarrow)\) Left to textbook.
We can now prove \(\mathbb{O} = \mathbb{Z} \left[\frac{1 + \sqrt{-19}}{2} \right] \) is a P.I.D.

Suppose \(\alpha, \beta \in \mathbb{O} \) and \(\alpha / \beta \notin \mathbb{O} \).

We must show \(\exists s, t \) with

\[
0 < N(s\alpha - t\beta) < N(\beta) \quad \text{(where } N(a) = a\overline{a}^*)
\]

or \(N\left(\frac{\alpha}{\beta} s - t\right) < 1 \).

Write \(\frac{\alpha}{\beta} = \frac{a + b\omega}{c}, \quad a, b, c \in \mathbb{Z}, \quad c > 1 \),

\[
(a, b, c) = 1 \quad \text{with } \omega = \frac{1 + \sqrt{-19}}{2}.
\]

Note \(\omega^2 = \omega - 5 \).

Since \((a, b, c) = 1 \) \(\exists x, y, z \in \mathbb{Z} \) such that

\[
(a + b)x + by + cz = 1.
\]

Let \(q, r \) be such that \(a\gamma - 5b = qc + r \)

and \(\|r\| \leq \frac{c}{2} \).

Let \(s = y + x\omega \) and \(t = q - z\omega \).

Then

\[
s \frac{\alpha}{\beta} - t = (y + x\omega)\left(\frac{a + b\omega}{c}\right) - (q - z\omega)
\]

\[
= \frac{ay + (ax + by)}{c}\omega + \frac{b - q}{c}\omega^2 - q + z\omega
\]

\[
\omega - 5
\]
\[a y - 5 b x - q c = \frac{(a+b)x + by + c z}{c} \]

Note: \(|\varepsilon| \leq \frac{1}{2}\) and \(\delta = \frac{1}{c}\).

So, \(N(\varepsilon + \delta w) = (\varepsilon + \delta w)(\varepsilon + \delta \bar{w})\)

\[= \varepsilon^2 + \varepsilon \delta + 5 \delta^2 \]

\[\leq \frac{1}{4} + \frac{1}{2c} + \frac{5}{c^2} \]

Decreasing function of \(c\).

For \(c = 3\) we get \(\frac{1}{4} + \frac{1}{6} + \frac{5}{9} = \frac{35}{36} < 1\).

Thus, this proves the claim for all \(c \geq 3\).

If \(c = 2\), then since \(\frac{a}{2} + \frac{b}{2} w \neq 0\),
either \(b\) is odd or \(a\) is odd.

In all cases, \(a^2 + ab + 5b^2\) is odd.

Choose \(q\) so that \(a^2 + ab + 5b^2 - 2q = 1\).

Then \(N\left(\frac{(a+bw)(a+b\bar{w}) - q}{2}\right) = N\left(\frac{a^2 + ab + 5b^2 - 2q}{2}\right)\)

\[= N\left(\frac{1}{2}\right) = \frac{1}{4} < 1\]. QED.