Ch. 10 Modules

Let R be a ring.

A left R-module is an abelian group M together with an action

$$R \times M \to M$$

$$(r, m) \mapsto rm$$

satisfying:

a) $(r+s)m = rm + sm$

b) $(rs)m = r(sm)$

c) $r(m+n) = rm + rn$

for all $r, s \in R$, $m, n \in M$.

If R has a 1, we also require $1.m = m$.

(Right R-modules are similarly defined)

If R is a field, we say M is a vector space.

The action rm is also called scalar multiplication.
A ring R is a left (or right) R-module too with scalar multiplication:

$$rm = \text{ordinary ring multiplication}$$

for $r \in R, m \in R$.

Given left R-modules M, N, the direct product $M \times N$ is the direct product as additive groups with scalar multiplication:

$$r(m, n) = (rm, rn)$$

The product $\prod_{i \in I} M_i$ of a family $\{M_i\}_{i \in I}$ is similarly defined.

$R^n = \text{direct product of } n \text{ copies of } R$

$$= \{ (x_1, \ldots, x_n) \mid x_i \in R, 1 \leq i \leq n \}$$

= free R-module of rank n.
Any abelian group is also a \mathbb{Z}-module with scalar multiplication:

$$\begin{align*}
na &= \begin{cases}
\frac{a+\ldots+a}{n \text{ times}} & \text{if } n > 0 \\
0 & \text{if } n = 0 \\
(-a)+\ldots+(-a) & \text{if } n < 0
\end{cases} \\
&= \lfloor n \rfloor \text{ times}
\end{align*}$$

An R-submodule N of an R-module M is an additive subgroup which is closed under scalar multiplication: $rx \in N$ for $r \in R$, $x \in N$.

An ideal of R is the same as an R-submodule of R.

Submodule Criterion: A nonempty subset $N \subseteq M$ is a submodule iff $x+ry \in N$ for all $x, y \in N$, $r \in R$. (Assuming R contains a 1.)

10.1 - 3