8.8: Improper Integrals

Any integral \(\int_a^b f(x) \, dx \) with

1. one endpoint \(a \) or \(b \) equal to \(\infty \) or \(-\infty \),

or
2. a vertical asymptote \(x = c \) for \(f(x) \) with \(c \in [a, b] \),

is called improper.

They are always evaluated as limits of proper integrals.

Example: \(\int_{-\infty}^{\infty} \frac{1}{x} \, dx \)

\[
= \lim_{N \to \infty} \int_{-N}^{N} \frac{1}{x} \, dx
= \lim_{N \to \infty} \left[\ln|N| - \ln(1) \right]
= \lim_{N \to \infty} \ln(N) = \infty.
\]

This integral diverges to \(\infty \).

Example: \(\int_{1}^{\infty} \frac{1}{x^2} \, dx = \left[-\frac{1}{x} \right]_{1}^{\infty} = \lim_{N \to \infty} \left(-\frac{1}{N} - (-1) \right) = 1 \)
The area under \(y = \frac{1}{x^2} \) for \(x \geq 1 \) is finite. \[\int_{1}^{\infty} \frac{1}{x^p} \, dx = \frac{x^{1-p}}{1-p} \bigg|_1^\infty \]

\[= \left(\lim_{N \to \infty} \frac{N^{1-p}}{1-p} \right) - \frac{1}{1-p} \]

\[= \begin{cases} \frac{1}{p-1} & \text{if } p > 1 \vspace{1em} \\ \infty & \text{if } p < 1 \end{cases} \]

Ex: \[\int_{0}^{\infty} e^{-x} \, dx = \left. -e^{-x} \right|_0^\infty \]

\[= \lim_{N \to \infty} (-e^{-N}) - (-1) = 1 \]
\[\int_{0}^{1} \frac{dx}{\sqrt{x}} \]

Improper at \(x = 0 \), because there is a vertical asymptote.

\[= 2 \sqrt{x} \bigg|_{0}^{1} = 2 - \lim_{h \to 0^+} (2 \sqrt{h}) \]

The limit approaches the improper endpoint

\[= 2 - 0 = 2. \]

If the limit exists and is a finite number, we say the improper integral converges.

If the limit is \(\infty \) (resp. \(-\infty \)), we say it diverges to \(\infty \) (resp. \(-\infty \)).

Otherwise, we simply say the integral is divergent or "Does Not Exist."

\[\text{Ex:} \int_{1}^{\infty} \frac{dx}{\sqrt{1+x^3}} \]

We cannot integrate this in elementary terms, but
we can say it converges to a finite number

since \(\sqrt{\ln x^3} \geq \sqrt{x^3} = x^{3/2} \) and so

\[\frac{1}{\sqrt{1+x^3}} \leq \frac{1}{x^{3/2}}. \]

Then, \(\int_{1}^{\infty} \frac{dx}{\sqrt{1+x^3}} \leq \int_{1}^{\infty} \frac{dx}{x^{3/2}} = 2 \)

by our previous formula \(\frac{1}{p-1} \) with \(p = \frac{3}{2} \).

This is the **Comparison Theorem**;

If \(f(x) \leq g(x) \) for \(x \in [a, b] \),

then \(\int_{a}^{b} f(x) \, dx \leq \int_{a}^{b} g(x) \, dx \).

In our example,

\[\int_{1}^{\infty} \frac{dx}{\sqrt{1+x^3}} \] is an increasing function

of \(N \) bounded above by 2.

Thus, it does have a limit.
Comparison Test:

If \(f(x) \geq g(x) \geq 0 \) for \(x \geq a \),

1. if \(\int_a^\infty f(x) \, dx \) converges, so does \(\int_a^\infty g(x) \, dx \).
2. if \(\int_a^\infty g(x) \, dx \) diverges, so does \(\int_a^\infty f(x) \, dx \).

Example: \(x^2 \geq x \) for all \(x \geq 1 \).

So \(-x^2 \leq -x \) for all \(x \geq 1 \).

So \(e^{-x^2} \leq e^{-x} \) for all \(x \geq 1 \).

Thus \(\int_1^\infty e^{-x^2} \, dx \) converges since we showed \(\int_1^\infty e^{-x} \, dx \) converges.

Also, \(\int_0^\infty e^{-x^2} \, dx = \int_0^1 e^{-x^2} \, dx + \int_1^\infty e^{-x^2} \, dx \)

converges.

Finally, \(\int_{-\infty}^\infty e^{-x^2} \, dx = \int_{-\infty}^0 e^{-x^2} \, dx + \int_0^\infty e^{-x^2} \, dx \)

\(= 2 \int_0^\infty e^{-x^2} \, dx \) converges.

Amazing Fact: \(\int_0^\infty e^{-x^2} \, dx = \sqrt{\pi} \)
The error function:

\[\text{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt \]

Note that \(\text{erf}(0) = 0 \) and \(\text{erf}(\infty) = 1 \).

In statistics we talk about the mean or average value of a measurement and the standard deviation (or spread).

For example, the mean height of OSU male students might be 6'2" = 74" with a standard deviation of 3".

Then under the normal bell curve assumption, the probability that a random male student has height in \((74 - 3, 74 + 3)\) is \(\text{erf}\left(\frac{3}{\sqrt{2}}\right) = 0.68 \) \(\text{erf}\left(\frac{3}{\sqrt{2}}\right) = 0.95 \).
Ex: \(\int_{-\infty}^{\infty} \frac{7x^9}{1+x^2} \, dx \)

Split into: \(\int_{-\infty}^{0} \frac{7x^9}{1+x^2} \, dx + \int_{0}^{\infty} \frac{7x^9}{1+x^2} \, dx \).

Both are \boxed{\text{divergent}}.

Be careful: \(\int_{-N}^{N} 7x^9 \, dx = 0 \) for all \(N \), so we do not use that to decide convergence.

Ex: \(\int_{-\infty}^{\infty} \frac{1}{1+x^2} \, dx = \int_{-\infty}^{0} \frac{1}{1+x^2} \, dx + \int_{0}^{\infty} \frac{1}{1+x^2} \, dx \)

\[= \arctan(x) \bigg|_{-\infty}^{0} + \arctan(x) \bigg|_{0}^{\infty} \]

\[= 0 - \lim_{x \to -\infty} \arctan(x) + \lim_{x \to \infty} \arctan(x) - 0 \]

\[= -\left(-\frac{\pi}{2}\right) + \frac{\pi}{2} = \boxed{\pi}. \]

Ex: \(\int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} \, dx \)

Improper at both endpoints.

\[= \int_{-1}^{0} \frac{1}{\sqrt{1-x^2}} \, dx + \int_{0}^{1} \frac{1}{\sqrt{1-x^2}} \, dx \]

\[= \arcsin(x) \bigg|_{-1}^{0} + \arcsin(x) \bigg|_{0}^{1} \]

\[= -\arcsin(-1) + \arcsin(1) = -\left(-\frac{\pi}{2}\right) + \frac{\pi}{2} = \boxed{\pi}. \]
\[\int_0^1 \ln x \, dx = x (\ln x - 1) \bigg|_0^1 \]
\[= -1 - \lim_{x \to 0^+} x \ln x \bigg|_0^1 \]
\[= -1 - \lim_{x \to 0^+} \frac{\ln x}{\frac{1}{x}} \]
\[= -1 - 0 \quad \text{by L'Hôpital} \]
\[= -1. \]