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The 3D index of an ideal triangulation

Dimofte-Gaiotto-Gukov define the 3D index of an ideal
triangulation:

I : {oriented ideal triangulations} → Z((q1/2))

T 7→ IT

The index IT is built from the tetrahedron index
I∆(m, e)(q) ∈ Z[[q1/2]], for m, e ∈ Z.

I∆(m, e)(q) =
∞∑

n=(−e)+

(−1)n q
1
2n(n+1)−(n+ 1

2 e)m

(q)n(q)n+e

where e+ = max{0, e} and (q)n =
∏n

i=1(1− qi ).
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Very roughly speaking, if the manifold has r cusps and T has N
edges (and so N tetrahedra), then

IT (q) =
∑

k∈ZN−r⊂ZN

(−q1/2)∗
N∏

j=1

I∆(∗, ∗)(q)

Here:
I k is a vector, with an integer “number of copies” of each of the

N − r edges
I j runs over the tetrahedra of T
I ∗ terms are “dot products” between k and how the edges are

incident to the tetrahedra



“Physics tells us” that IT should be an invariant of the manifold M.

However:

Problem 1
The sum in the definition of IT may not converge, so IT is not
well-defined for all T .

Theorem (Garoufalidis, Hodgson, Rubinstein, S)

IT is well-defined ⇔ T is 1-efficient ⇐ M is atoroidal and T admits
a semi-angle structure.

(1-efficiency is a property about normal surfaces in the
triangulation. We will come back to what a semi-angle structure is
shortly.)
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Theorem (Garoufalidis)
If T , T ′ are two triangulations of M connected by a 2-3 move and
IT , IT ′ are well-defined, then IT = IT ′ .

Theorem (Matveev, Piergallini)
Any two ideal triangulations of M are connected by a sequence of
2-3 moves.

Problem 2
We have no idea if the 1-efficient or semi-angle structure admitting
triangulations are connected by 2-3 moves.
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The plan

Construct a set of triangulations χM of M so that:
I χM depends only on the topology of M.
I χM is connected by 2-3 moves.
I Every member of χM admits a semi-angle structure.

Then define IM to be IT for any T ∈ χM . This would promote the
3D index to a topological invariant of M.

Theorem (Garoufalidis, Hodgson, Rubinstein, S)
This works.
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Semi-angle structures

Associate angles (real numbers) to the edges of the tetrahedra of
T , so that:

1. In each tetrahedron, angles at
opposite edges are the same.

2. In each tetrahedron,
α1 + α2 + α3 = π.

3. Around each edge of T ,∑
α = 2π.

If all angles are in [0, π] then this is a semi-angle structure.

The dihedral angles of an ideal hyperbolic tetrahedron satisfy (1)
and (2), and if many ideal hyperbolic tetrahedra fit together nicely
in H3 then their angles also satisfy (3).



So we use hyperbolic geometry to build our
triangulations with semi-angle structures.

Theorem (Epstein-Penner)
Let M be a hyperbolic 3-manifold with one
torus boundary component. Then there is a
canonical subdivision of M into convex ideal
hyperbolic polyhedra.

If all polyhedra are tetrahedra then we are done – we choose
χM = {the Epstein-Penner decomposition}.

If not, then we need to subdivide the polyhedra into tetrahedra, in
some canonical set of ways.
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We cannot just take all subdivisions of the polyhedra into ideal
hyperbolic tetrahedra since:

Problem 3
It isn’t known if the set of all geometric triangulations of a convex
ideal polyhedron is connected by 2-3 moves. (True in dimension 2,
false in dimension 5.)

However,

Theorem (Gelfand-Kapranov-Zelevinsky)
Regular triangulations of a convex polytope in Rn are connected by
geometric bistellar flips.
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Regular triangulations of a polytope in Rn

Here a polytope is the convex hull of a set of points in Rn.

Roughly speaking, a triangulation of the polytope is regular if it is
isomorphic to the lower faces of a convex polytope in Rn+1.

regular not regular

Using the Klein model of H3, we have a correspondence

convex ideal hyperbolic polyhedron ↔ convex Euclidean polyhedron
with vertices on S2

“regular ideal triangulation” ↔ regular triangulation
2-3 move or sequence of moves ↔ geometric bistellar flip
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Finally, the triangulations of the faces of
our polyhedra may not match.

This can be fixed by inserting flat
tetrahedra to bridge between the
triangulations.

Our set χM consists of all triangulations of M constructed by the
following:
1. Insert a regular ideal triangulation into each polyhedron of the

Epstein-Penner decomposition.
2. Insert any sequence of flat tetrahedra that bridges between the

induced triangulations on each pair of glued faces of the
polyhedra.

All such triangulations have semi-angle structures, and the set is
connected by 2-3 moves. (In fact, we also need 0-2 moves, we also
prove that these do not change IT .)
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Thanks!


