Fractals and how to make a Sierpinski Tetrahedron

Henry Segerman segerman@unimelb.edu.au

University of Melbourne

http://www.segerman.org

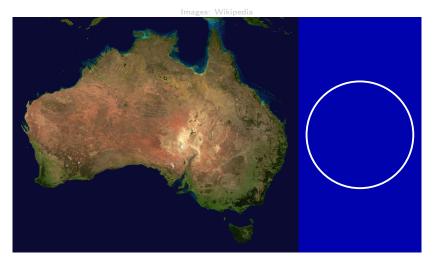
▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Images: Wikipedia

イロト イポト イヨト イヨト

Images: Wikipedia

イロト イポト イヨト イヨト



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Images: Wikipedia

<ロ> < @> < @> < @> < @> < @> < @</p>

The real things are "rough", the mathematical things are "smooth".

The real things are "rough", the mathematical things are "smooth".

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

▶ How can we describe "roughness" more precisely?

- The real things are "rough", the mathematical things are "smooth".
- ► How can we describe "roughness" more precisely?
- One way is to say that something is rough if it has features at many different scales.

(□) (圖) (E) (E) (E)

Images: Google Maps

- The real things are "rough", the mathematical things are "smooth".
- ► How can we describe "roughness" more precisely?
- One way is to say that something is rough if it has features at many different scales.

Images: Google Maps

Are there "simple" rough things? Simple enough for us to try to look at using mathematics?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Self-similarity

An object is self-similar if it is similar to a part of itself.

That is, a small part of the object is the same as a larger part, scaled down.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

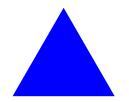
Barnsley's fern

・ロト ・個ト ・ヨト ・ヨト

æ

Images: Wikipedia

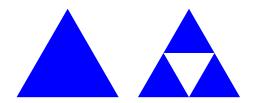
1. Start with a triangle.



◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - のへで

- 1. Start with a triangle.
- 2. Cut it into four triangles and remove the middle one.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

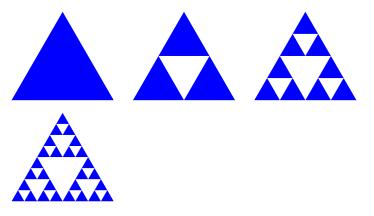


- 1. Start with a triangle.
- 2. Cut it into four triangles and remove the middle one.
- 3. Repeat for the three new triangles.

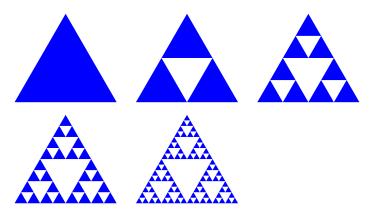
イロト 不得 とうき イヨト

э

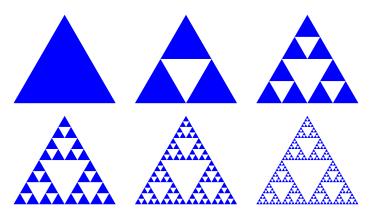
- 1. Start with a triangle.
- 2. Cut it into four triangles and remove the middle one.
- 3. Repeat for the three new triangles.
- 4. Keep going forever.



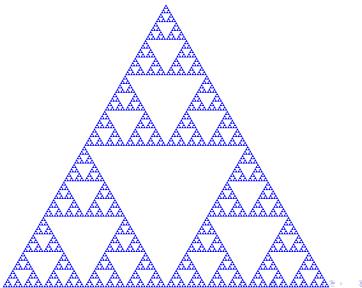
- 1. Start with a triangle.
- 2. Cut it into four triangles and remove the middle one.
- 3. Repeat for the three new triangles.
- 4. Keep going forever.



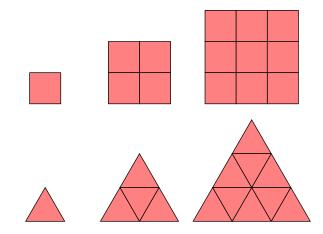
- 1. Start with a triangle.
- 2. Cut it into four triangles and remove the middle one.
- 3. Repeat for the three new triangles.
- 4. Keep going forever.



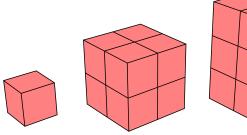
The Sierpinski triangle is self-similar because it is made up of 3 smaller copies of itself, each half the size of the original.

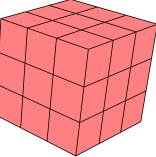


5 DQC



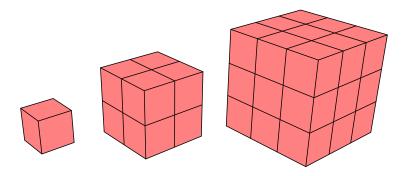
If you double the size of a square or triangle, you can make it from 4 copies of the original. If you triple the size, you can make it from 9 copies of the original.





▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

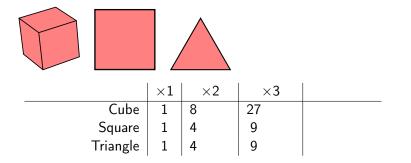
If you double the size of a cube...? If you triple the size...?



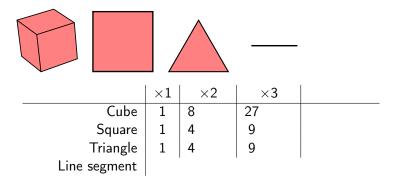
If you double the size of a cube, you can make it from 8 copies of the original.

If you triple the size, you can make it from 27 copies of the original.

<ロ> (四) (四) (三) (三) (三) (三)



▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?



◆□> <畳> < Ξ> < Ξ> < □> < □</p>

	$\times 1$	×2	×3			
Cube	1	8	27			
Square	1	4	9			
Triangle	1	4	9			
Line segment	1	2	3			

		\bigwedge		
	$\times 1$	$\times 2$	×3	Dimension
Cube	1	$8 = 2^3$	$27 = 3^3$	
Square	1	$8 = 2^3$ $4 = 2^2$	$27 = 3^3$ $9 = 3^2$	
Triangle	1	$4 = 2^2$ $2 = 2^1$	$9 = 3^2$ $3 = 3^1$	
Line segment	1	$2 = 2^1$	$3 = 3^1$	

		\bigwedge		
	imes 1	×2	×3	Dimension
Cube	1	8 = 2 ³	27 = 3 ³	3
Square	1	4 = 2 ²	9 = 3 ²	2
Triangle	1	$4 = 2^2$ $2 = 2^1$	9 = 3 ²	2
Line segment	1	$2 = 2^{1}$	3 = 3 ¹	1

		\bigwedge		
	$\times 1$	×2	×3	Dimension
Cube	1	$8 = 2^3$	$27 = 3^3$	3
Square	1	$4 = 2^2$ $4 = 2^2$	$9 = 3^2$	2
Triangle	1	$4 = 2^2$	$9 = 3^2$	2
Line segment	1	$2 = 2^1$	$3 = 3^1$	1
Sierpinski triangle	1	3		

		\bigwedge		
	$\times 1$	×2	×3	Dimension
Cube	1	$8 = 2^3$	$27 = 3^3$	3
Square	1	$4 = 2^2$ $4 = 2^2$	$9 = 3^2$	2
Triangle	1	$4 = 2^2$	$9 = 3^2$	2
Line segment	1	$2 = 2^1$	$3 = 3^1$	1
Sierpinski triangle	1	$3 = 2^{?}$?

		\bigwedge		
	$\times 1$	×2	×3	Dimension
Cube	1	$8 = 2^3$	$27 = 3^3$	3
Square	1	$4 = 2^2$	$9 = 3^2$	2
Triangle	1	$4 = 2^2$	$9 = 3^2$	2
Line segment	1	$2 = 2^1$	$\mathfrak{2}-\mathfrak{2}^1$	1
Sierpinski triangle	1	$3 = 2^{?}$?

The equation $3 = 2^x$ can be solved by $x = \frac{\log(3)}{\log(2)} \approx 1.585$, so this suggests that the Sierpinski triangle has a "fractional" dimension, between 1 and 2!

1. Start with a tetrahedron.

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - のへで

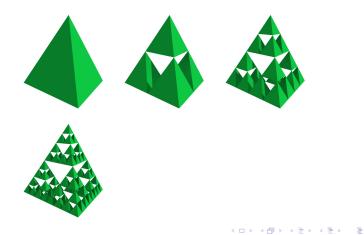
- 1. Start with a tetrahedron.
- 2. Remove the middle to leave four tetrahedra.

- 1. Start with a tetrahedron.
- 2. Remove the middle to leave four tetrahedra.
- 3. Repeat for the four new tetrahedra.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

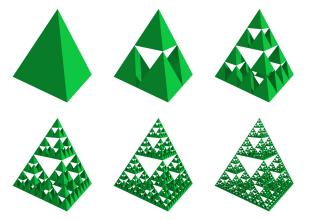
э

- 1. Start with a tetrahedron.
- 2. Remove the middle to leave four tetrahedra.
- 3. Repeat for the four new tetrahedra.
- 4. Keep going forever.



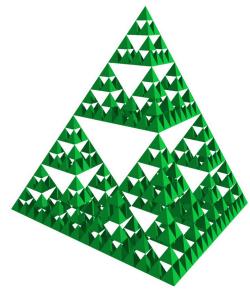
- 1. Start with a tetrahedron.
- 2. Remove the middle to leave four tetrahedra.
- 3. Repeat for the four new tetrahedra.
- 4. Keep going forever.

- 1. Start with a tetrahedron.
- 2. Remove the middle to leave four tetrahedra.
- 3. Repeat for the four new tetrahedra.
- 4. Keep going forever.



The Sierpinski Tetrahedron: Activity

We will be attempting to build this one out of small tetrahedra:



Questions:

- How many tetrahedra will we need?
- What is the shape that gets removed from the middle of each tetrahedron?
- What is the "dimension" of the Sierpinski tetrahedron?

Thanks for listening!