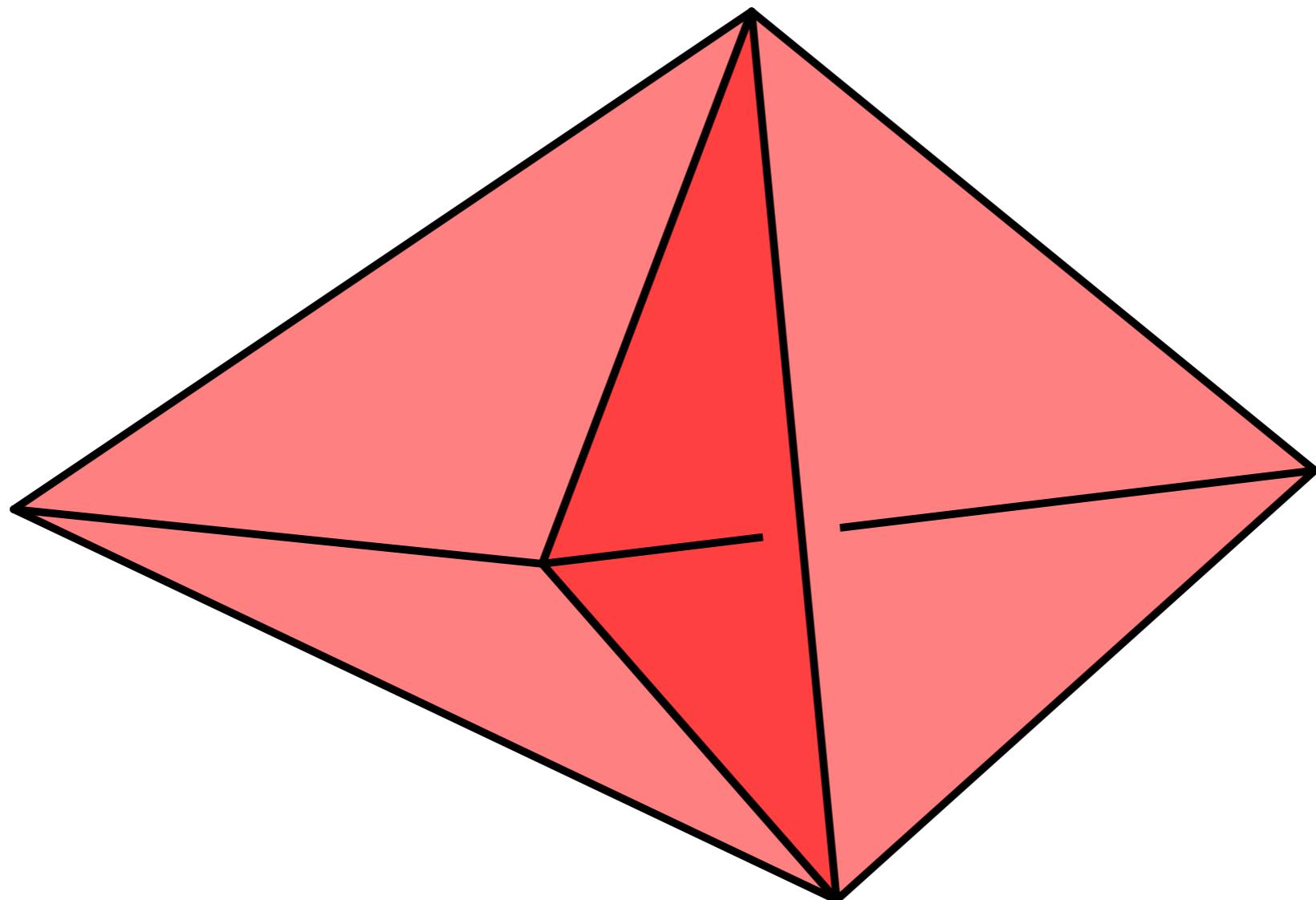


Avoiding inessential edges

Henry Segerman
Oklahoma State University

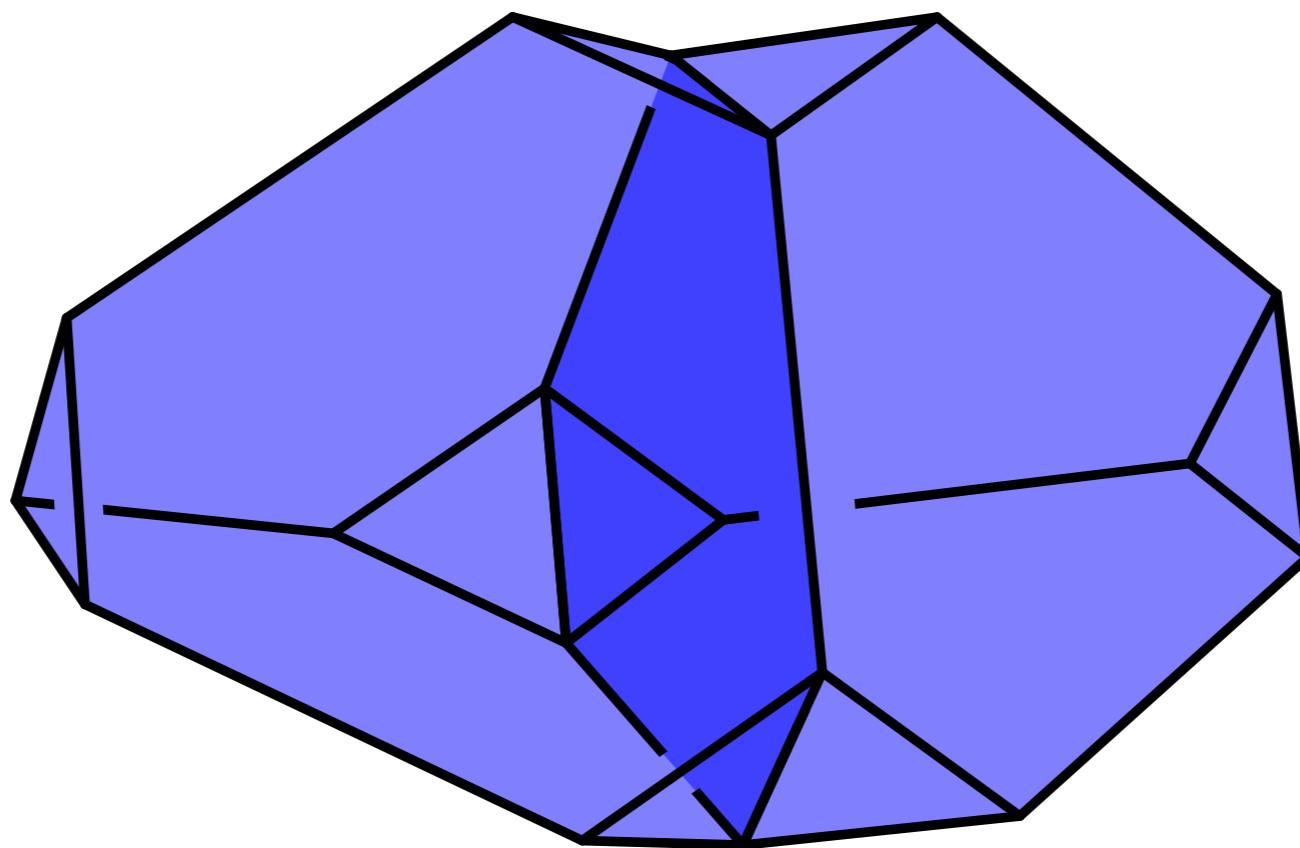
joint work with
Tejas Kalekar and
Saul Schleimer

Triangulations



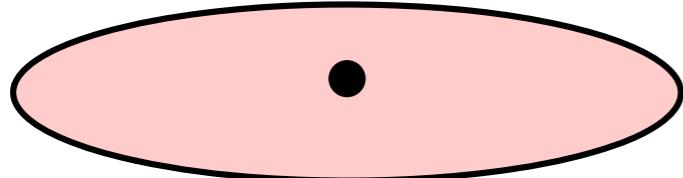
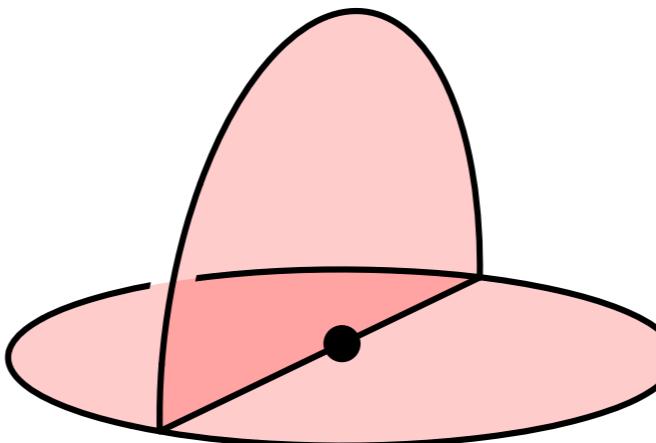
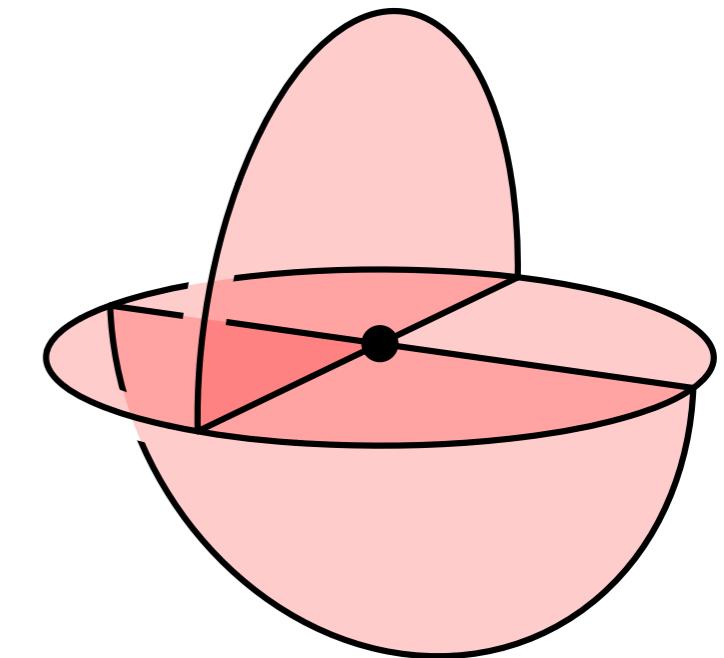
(material vertices)

Ideal Triangulations



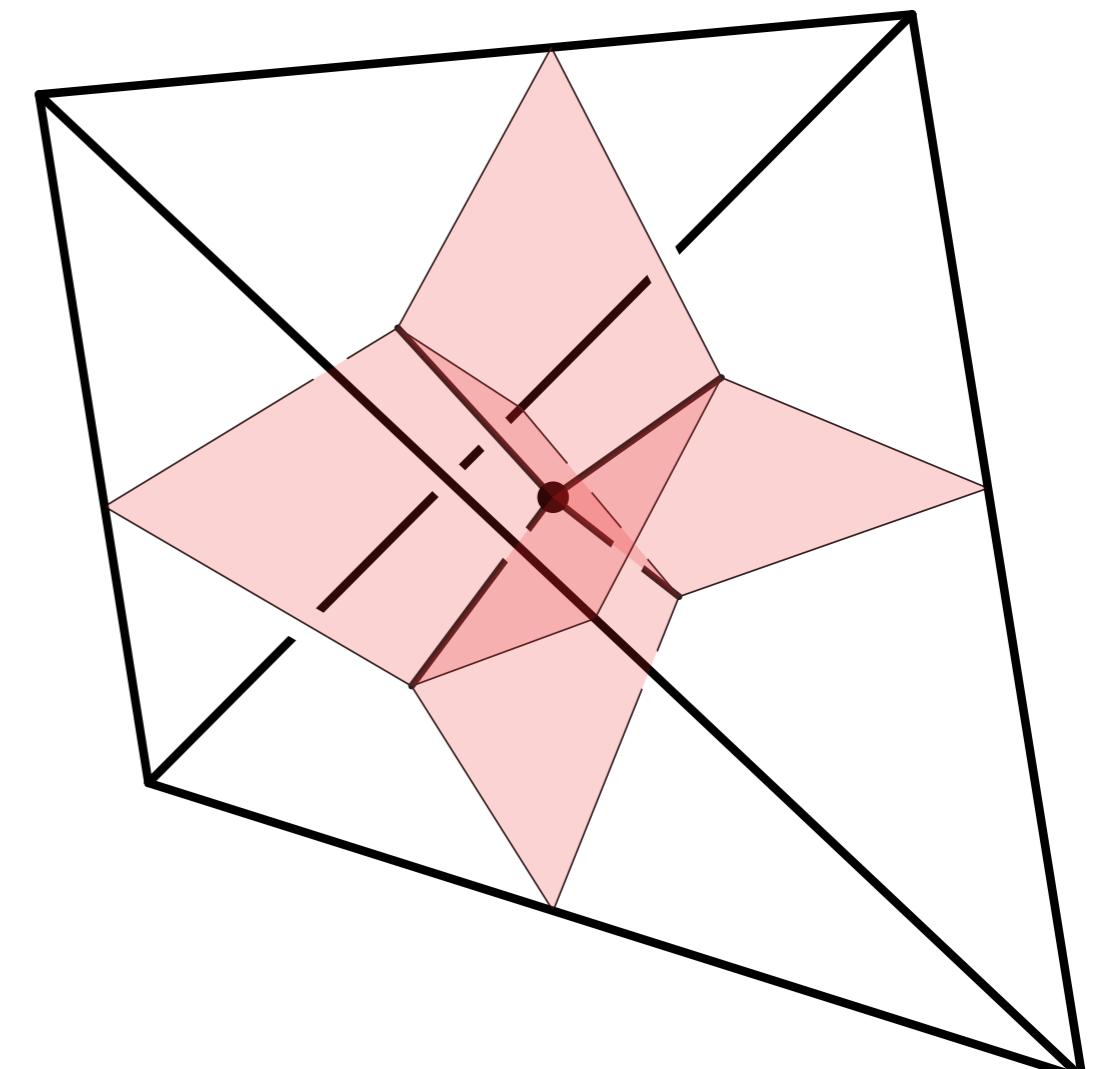
(ideal vertices)

Foams



A *foam* (aka *special spine*) in a manifold M is a two-dimensional complex such that each point has one of the three neighbourhoods above.

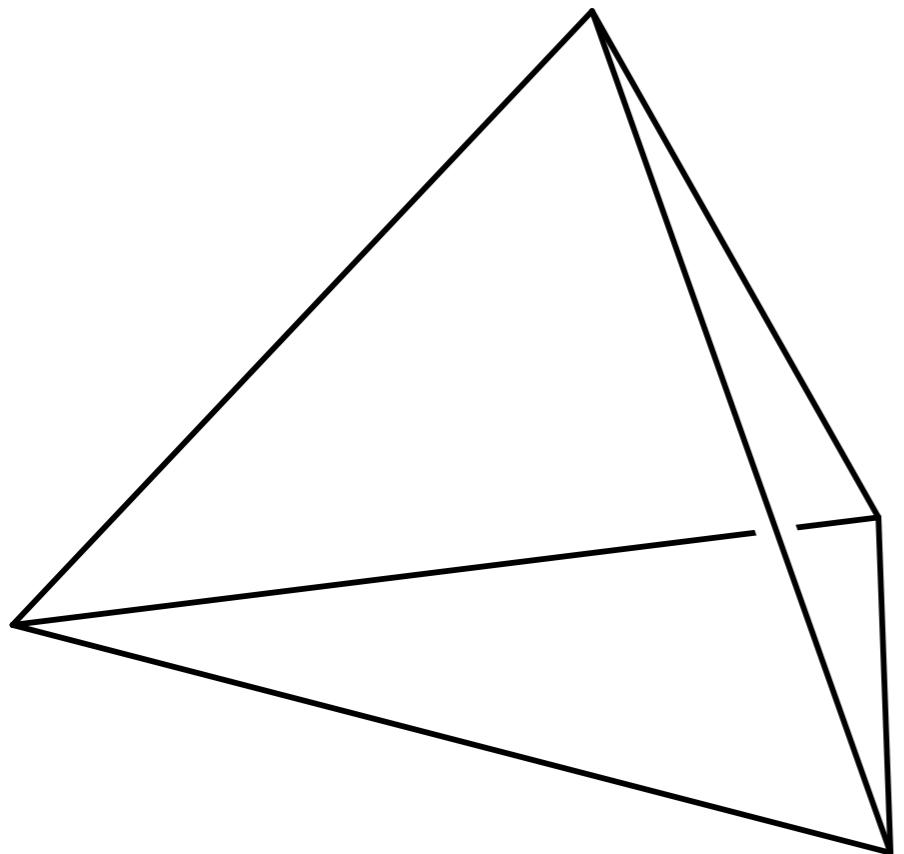
Edges are intervals, faces are disks, complementary regions are balls or surface \times interval (for components of ∂M).



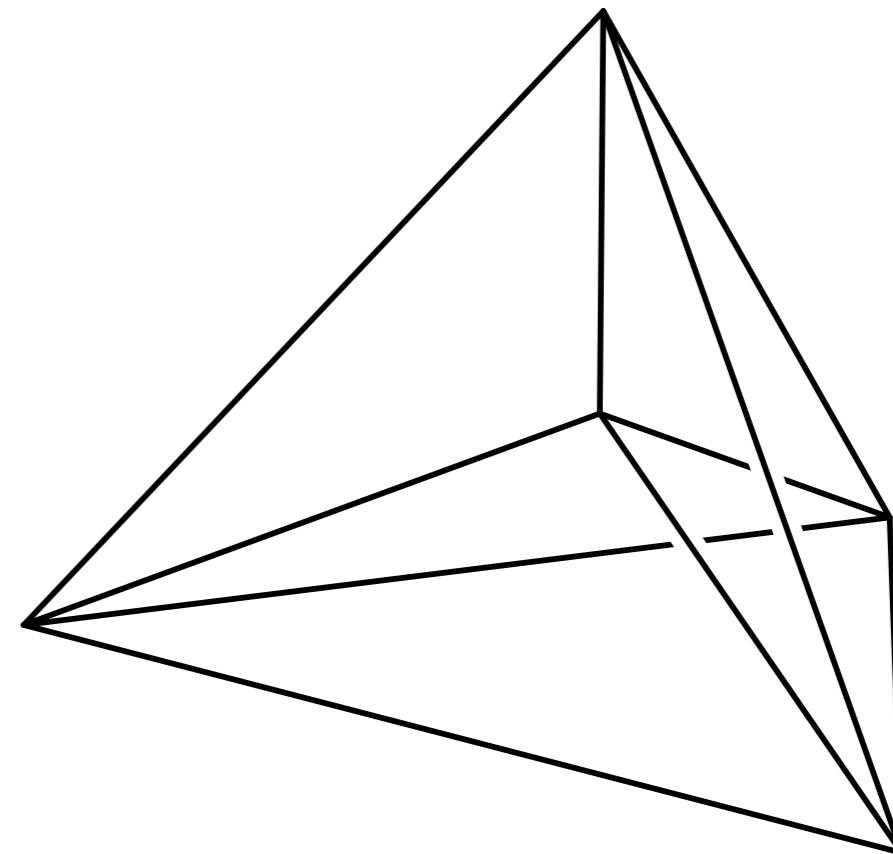
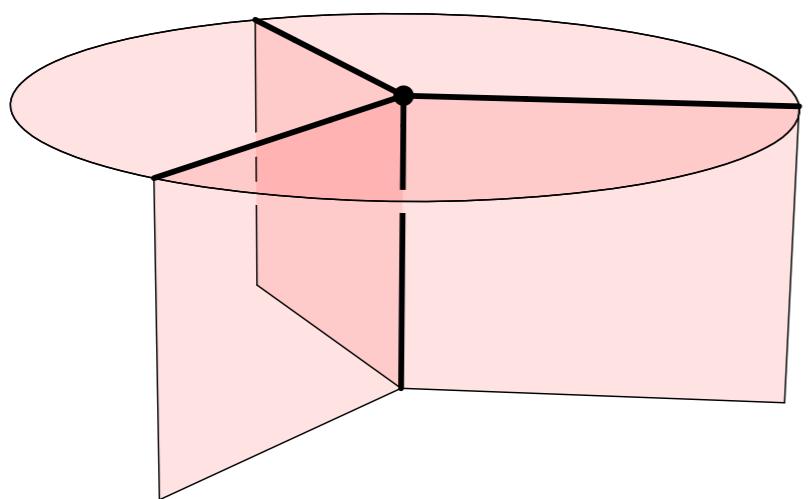
Foams are dual to triangulations.

Foams

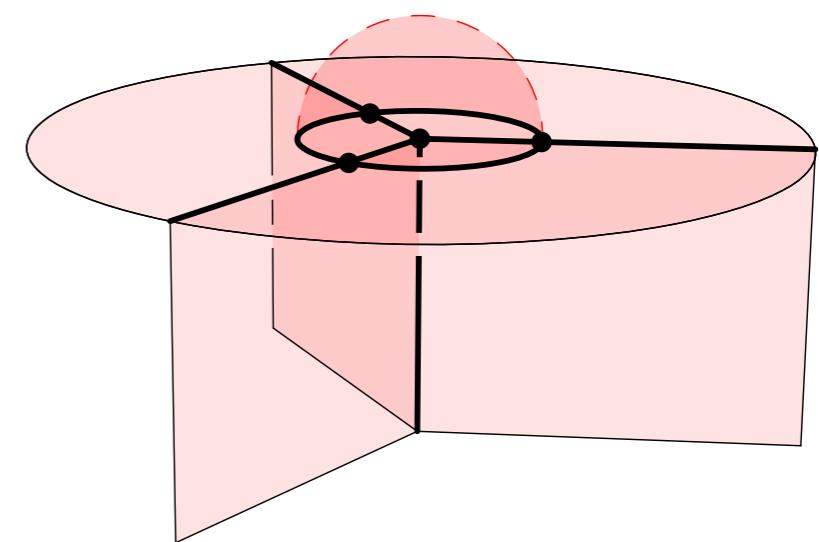
1-4 move



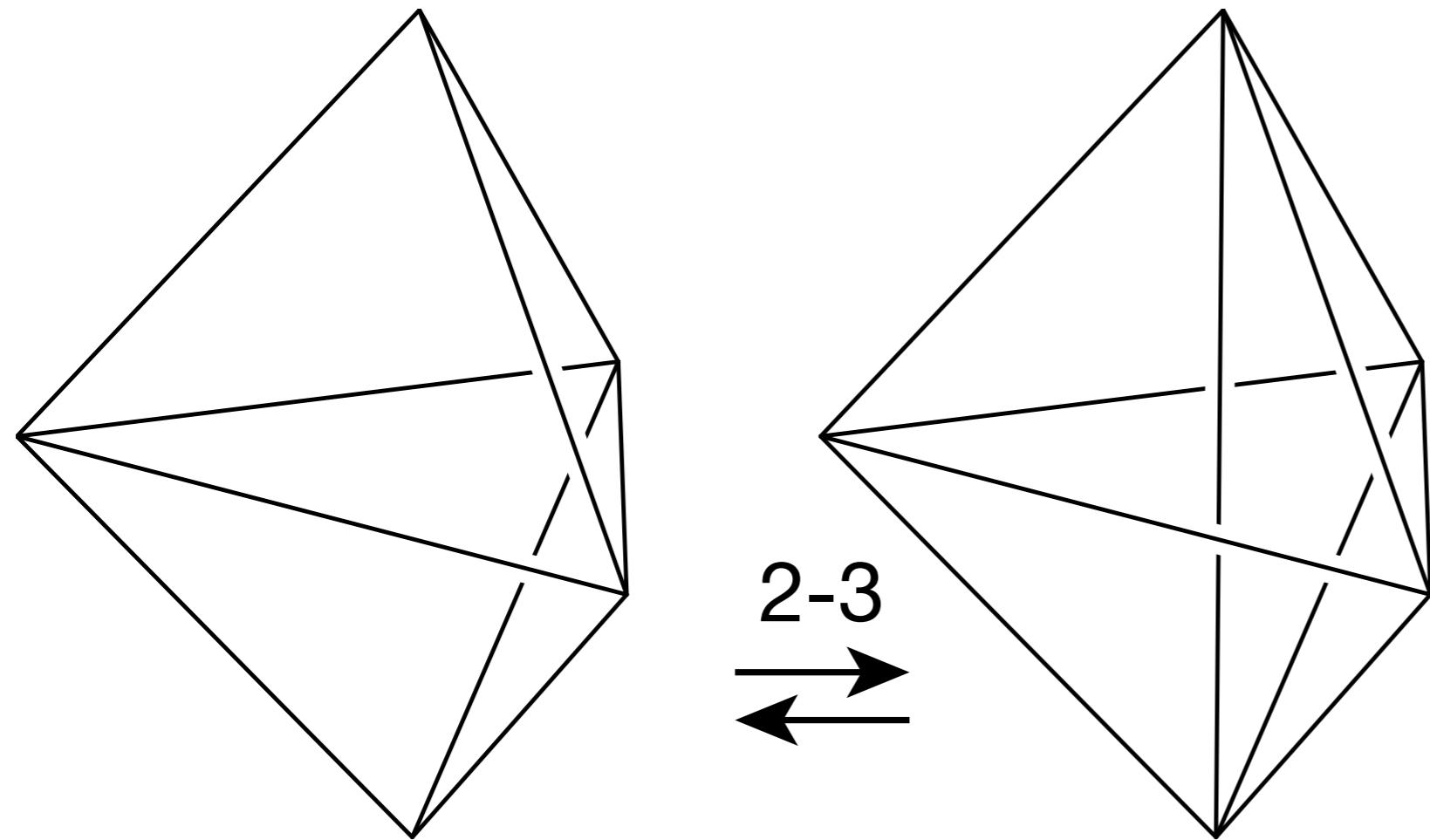
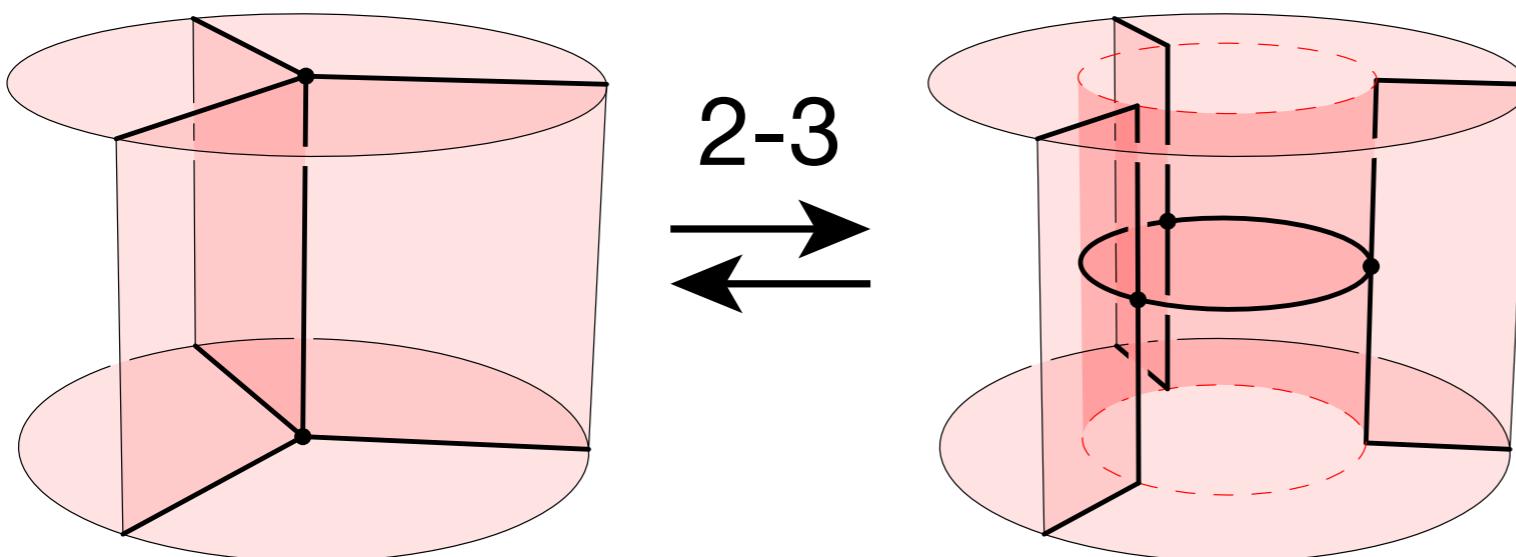
1-4
↔



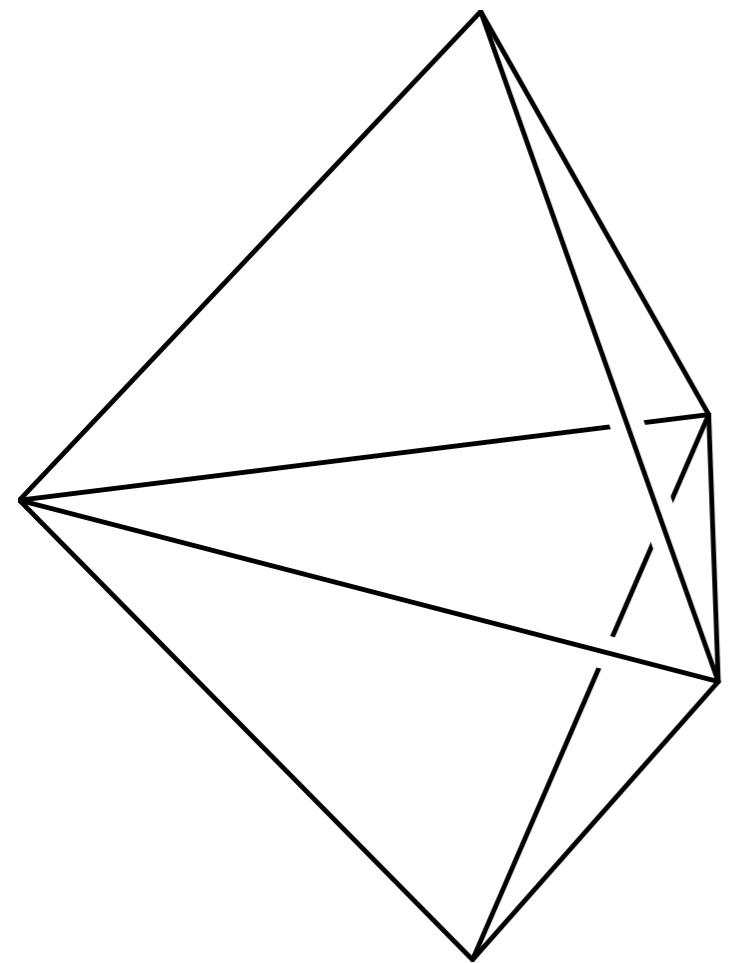
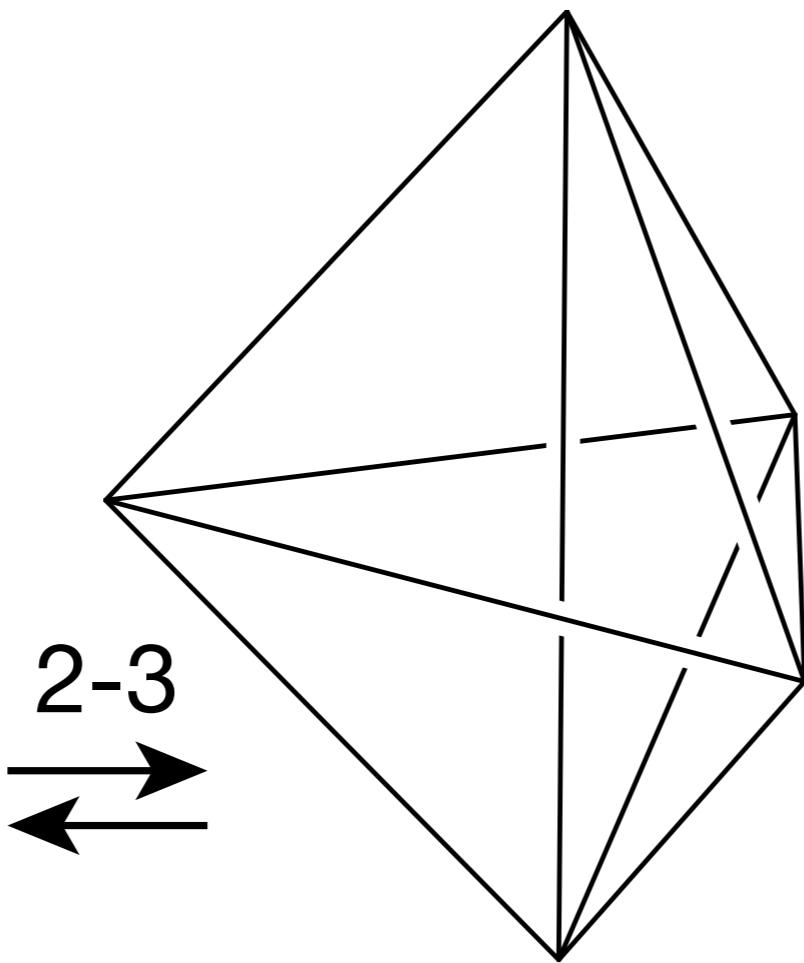
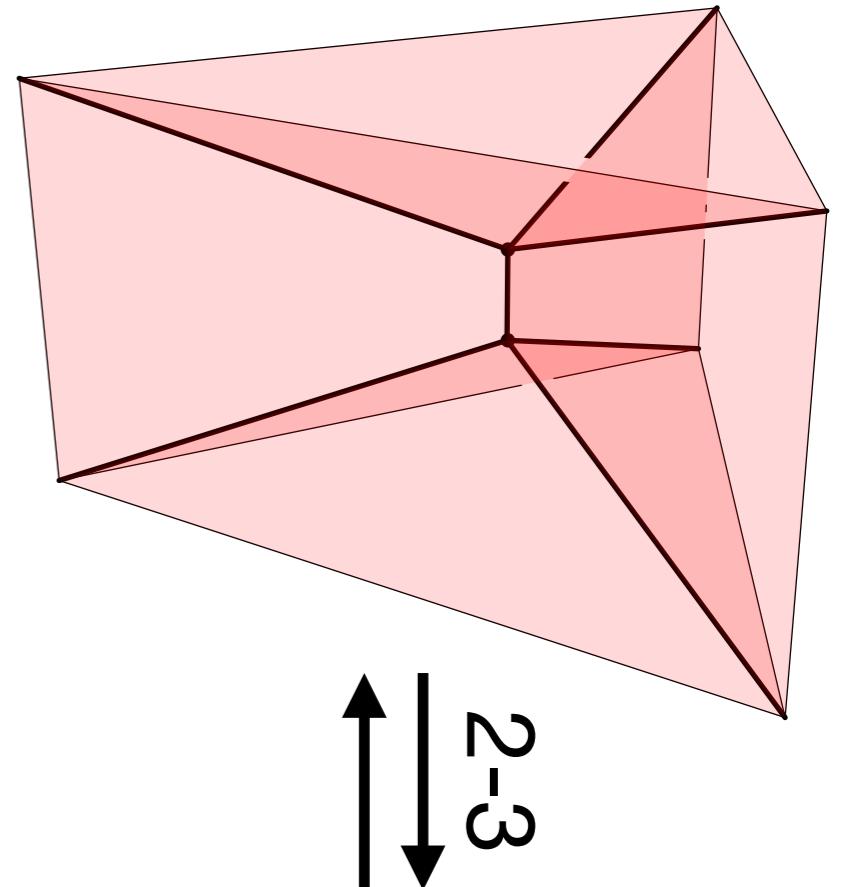
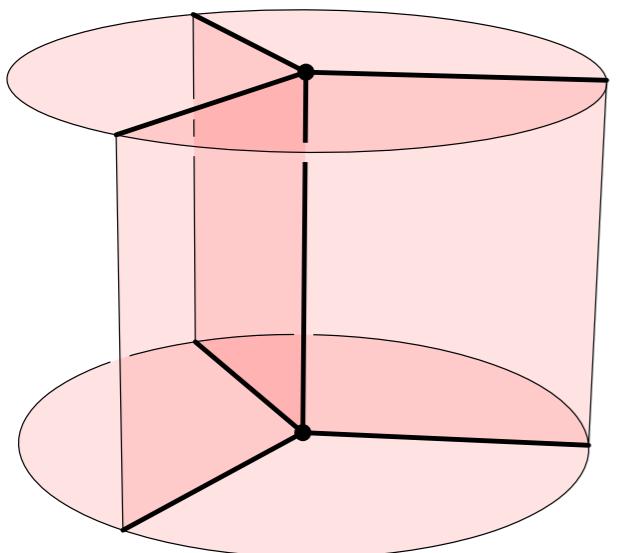
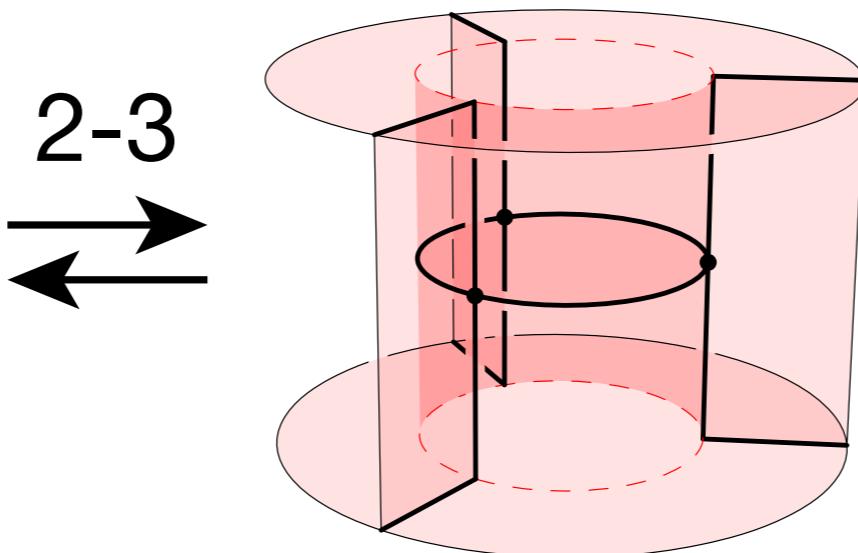
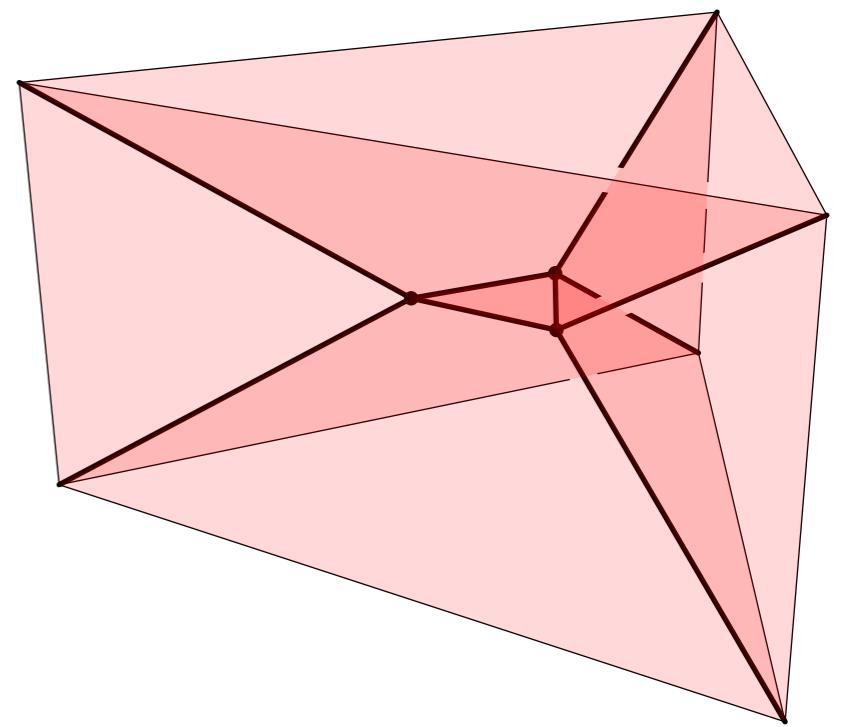
1-4
↔



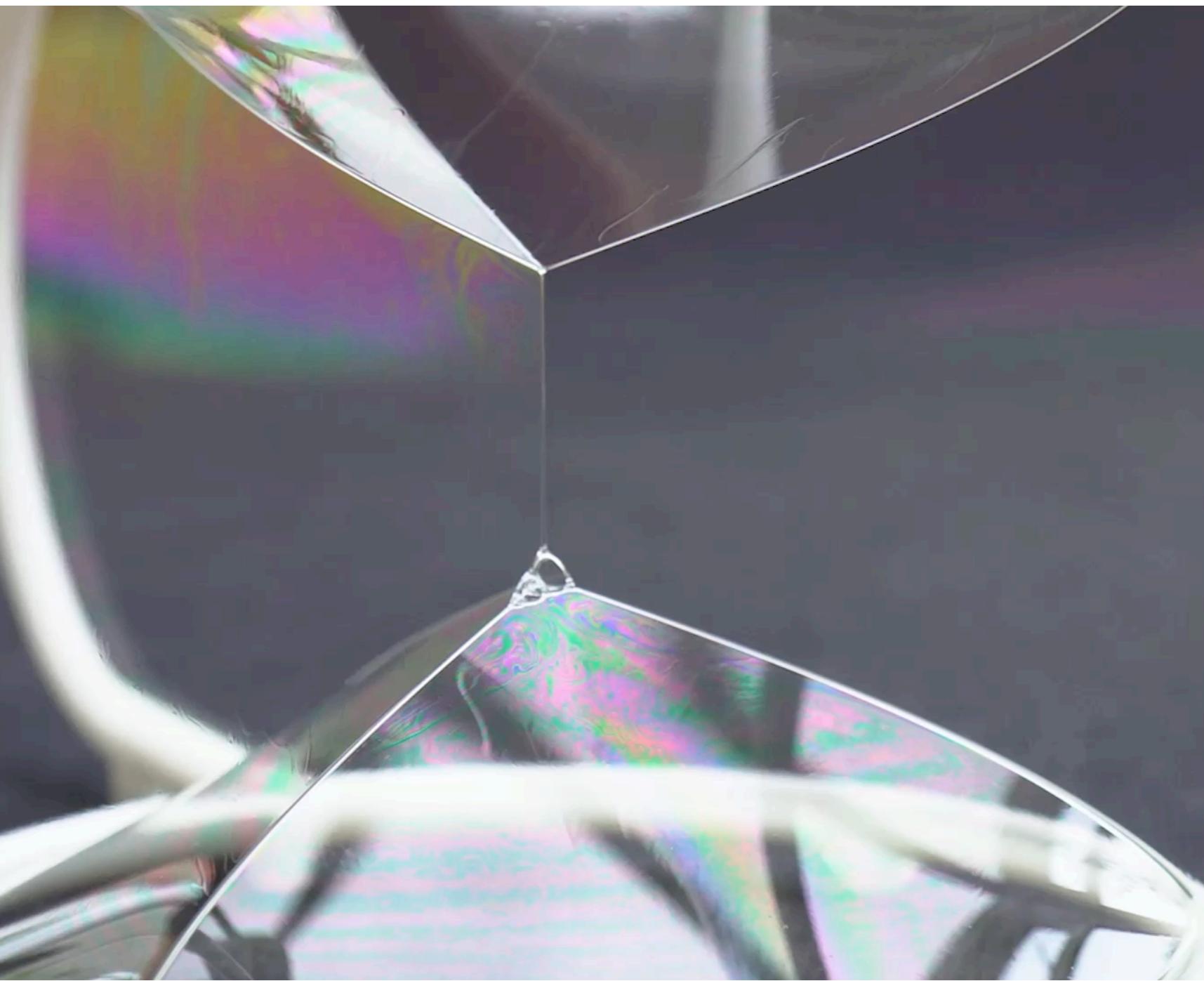
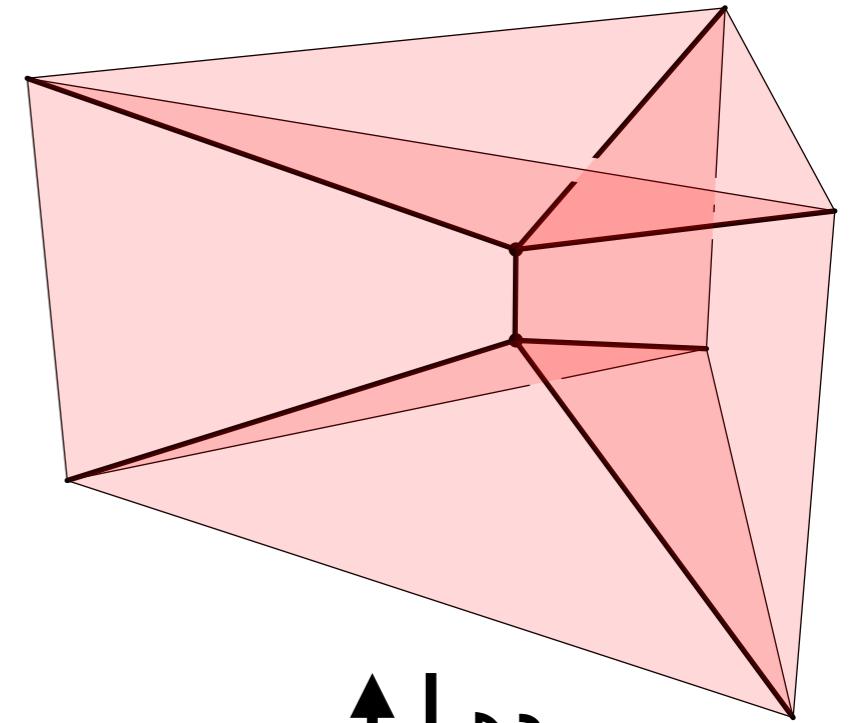
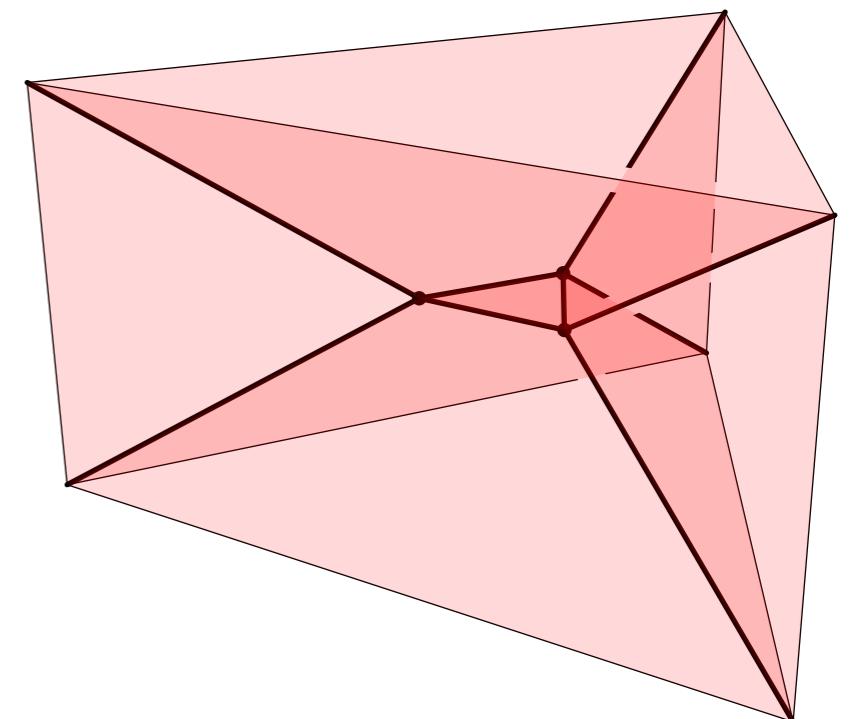
2-3 move



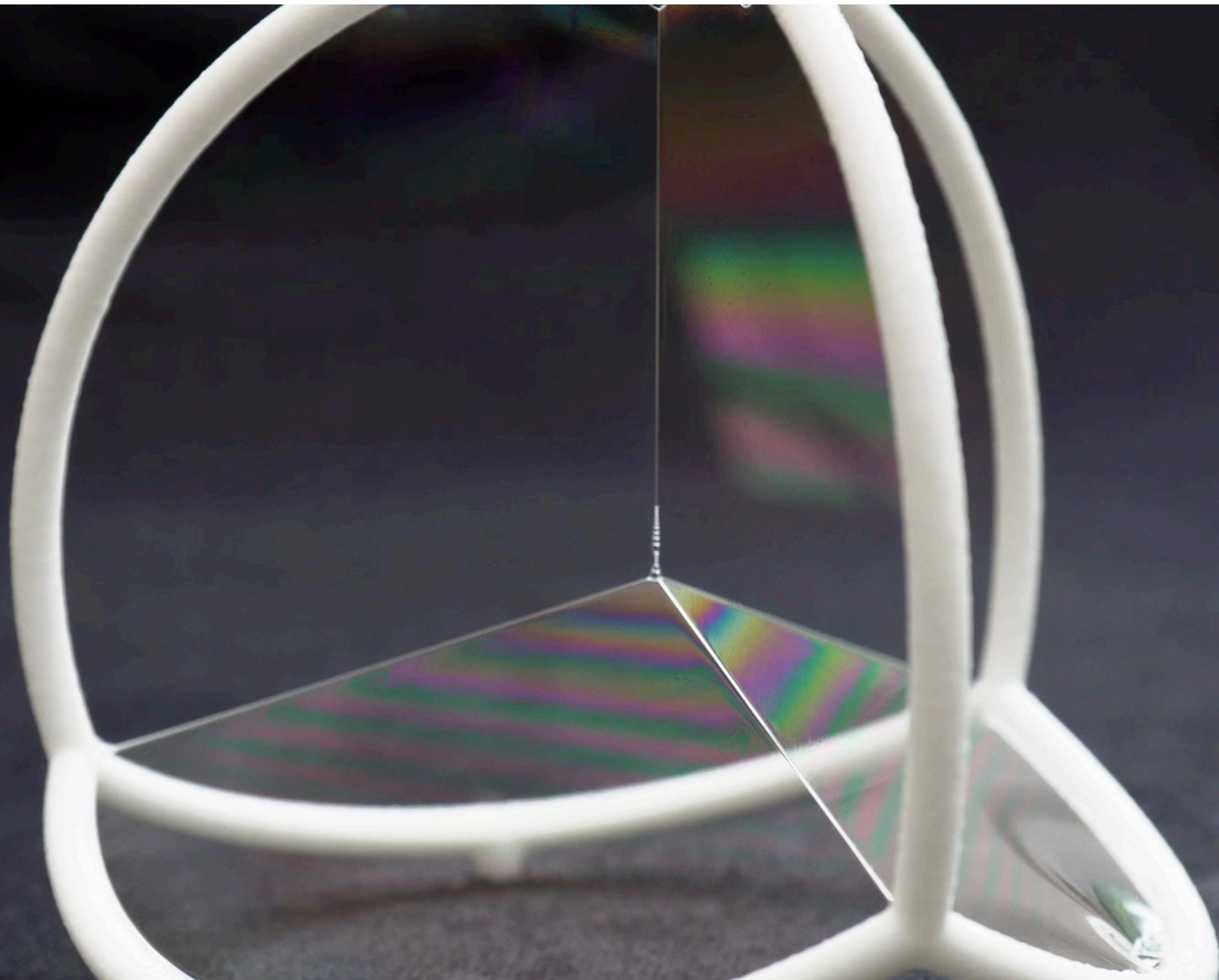
2-3 move



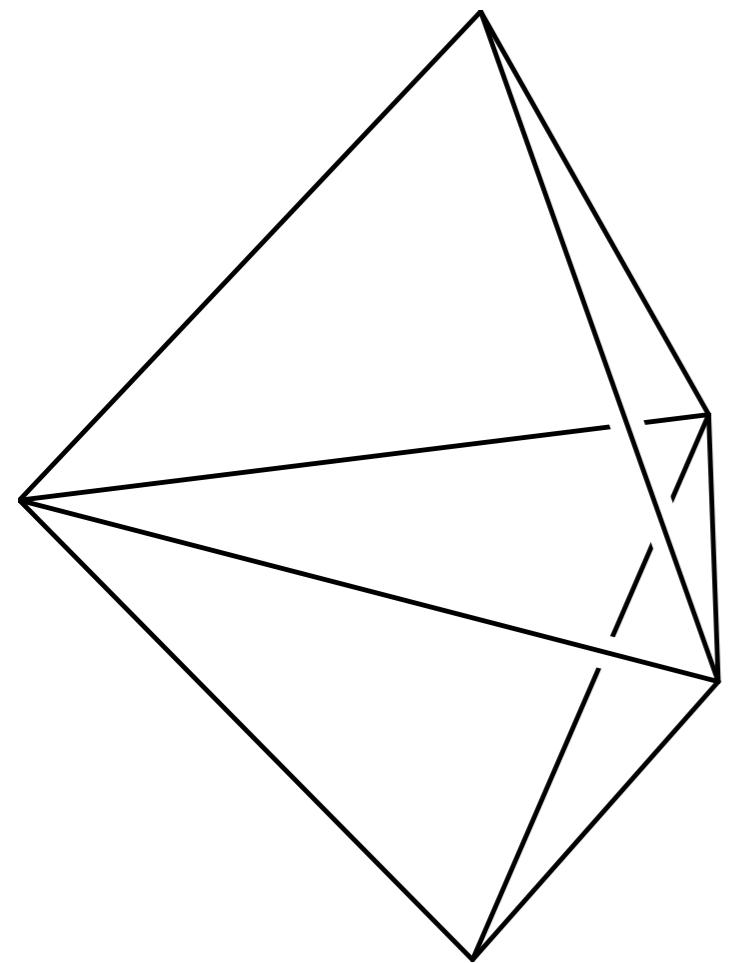
2-3 move



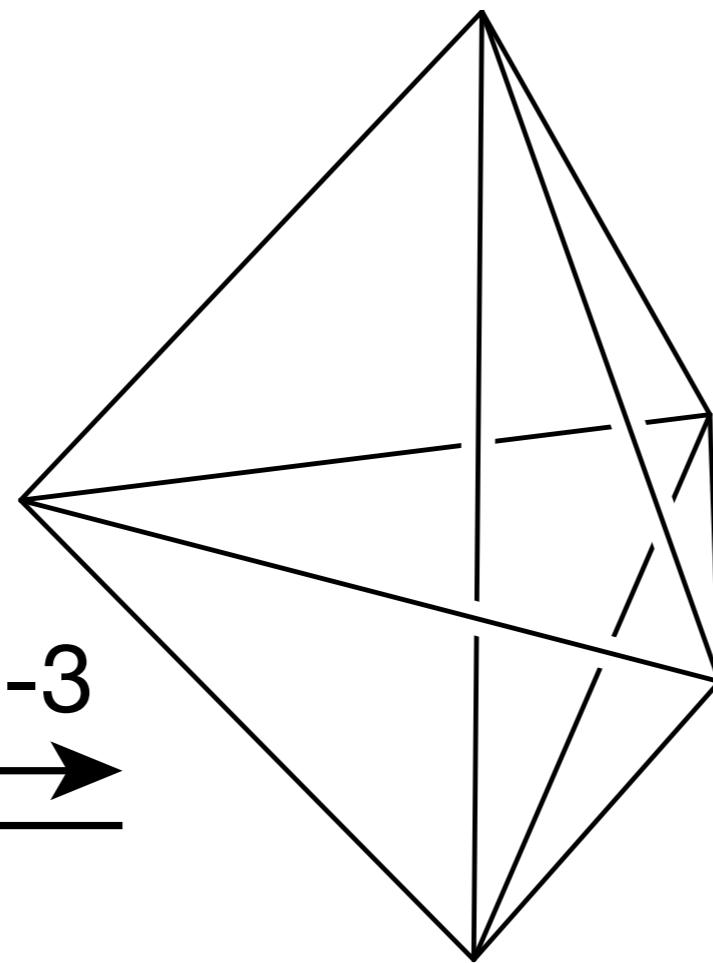
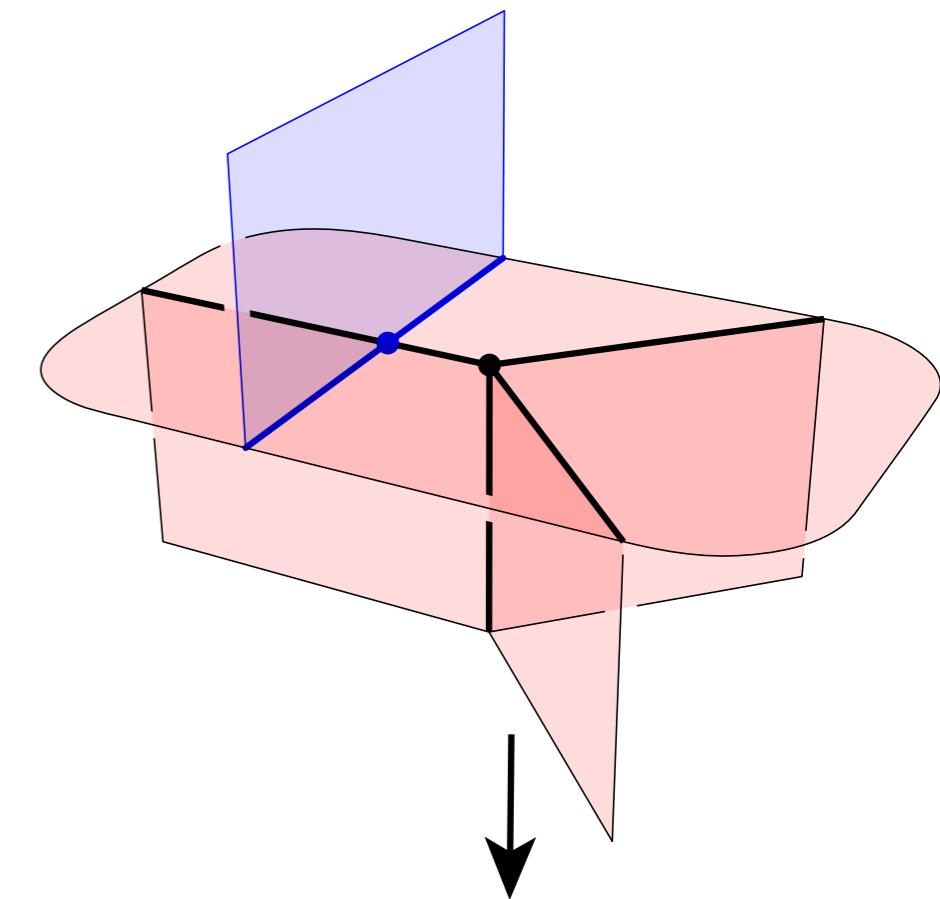
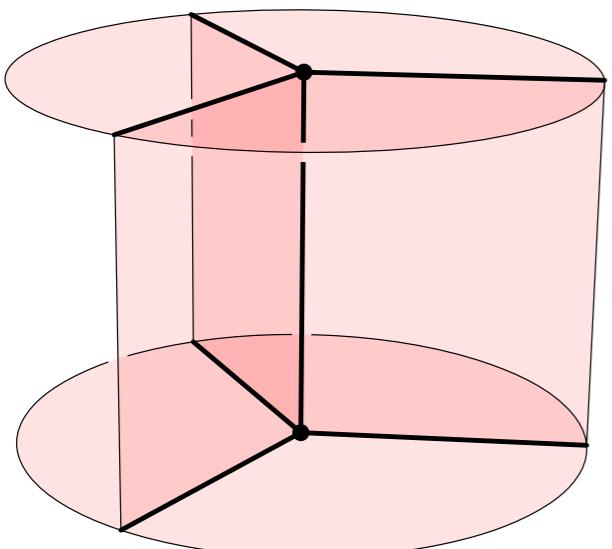
1-4 move



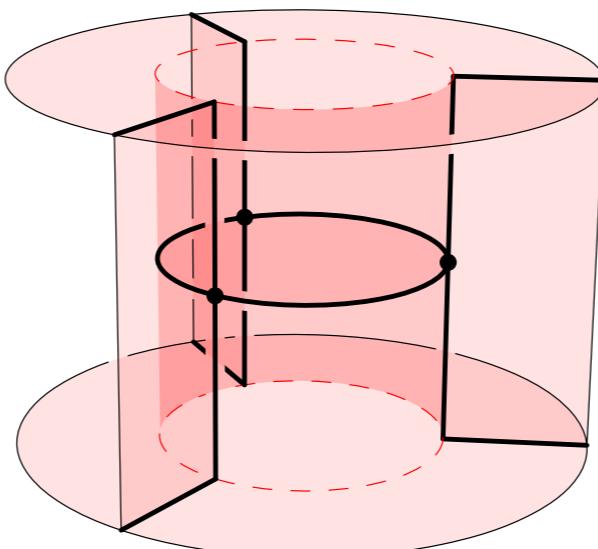
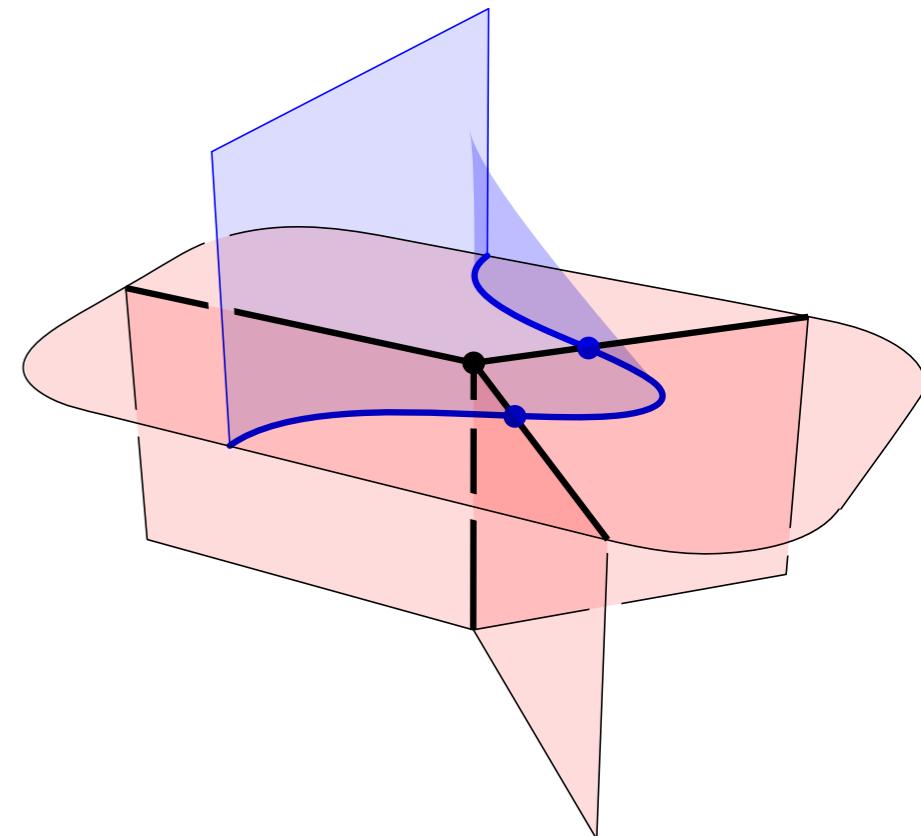
2-3 move



2-3
↔



2-3
↔



Theorem (Newman '26, Alexander '30, Moise '52, Pachner '78, Banagl-Friedman '04):

The set of all triangulations of a three-dimensional manifold M is connected via 1-4, 2-3, 3-2, and 4-1 moves.

Theorem (Matveev '87, Piergallini '88, Amendola '05):

The set of all triangulations of a three-dimensional manifold M with a fixed number of material vertices is connected via 2-3 and 3-2 moves. (Excepting triangulations with a single tetrahedron.)

Results like these are useful for building censuses of triangulations, or for defining invariants in terms of triangulations. For example Turaev-Viro's state sums of quantum 6j-symbols.

all triangulations of M (1-4 and 2-3)

all triangulations of M (1-4 and 2-3)

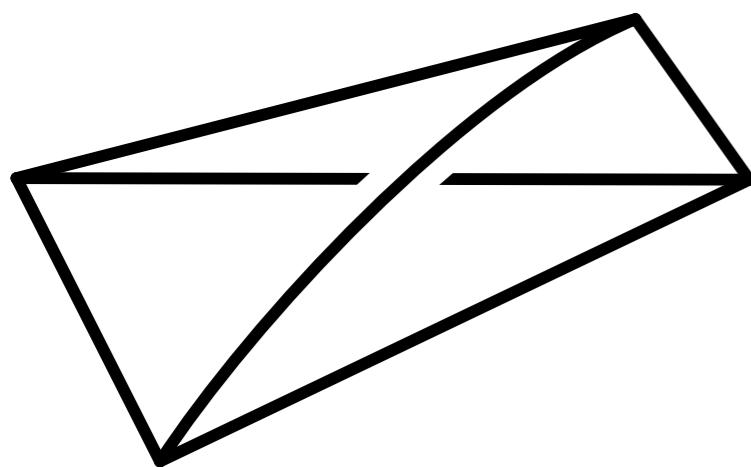
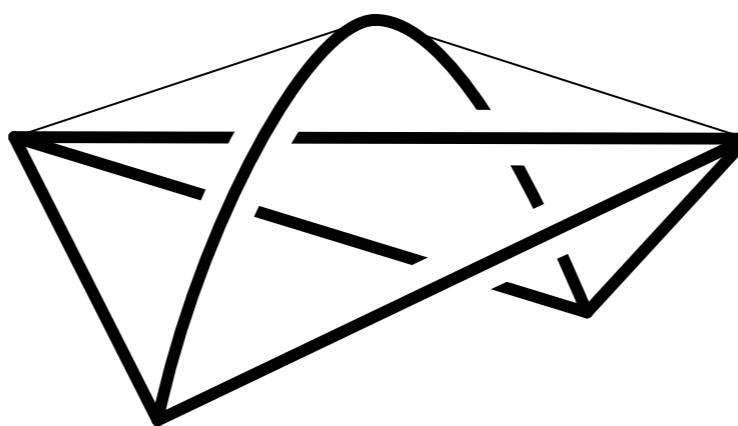
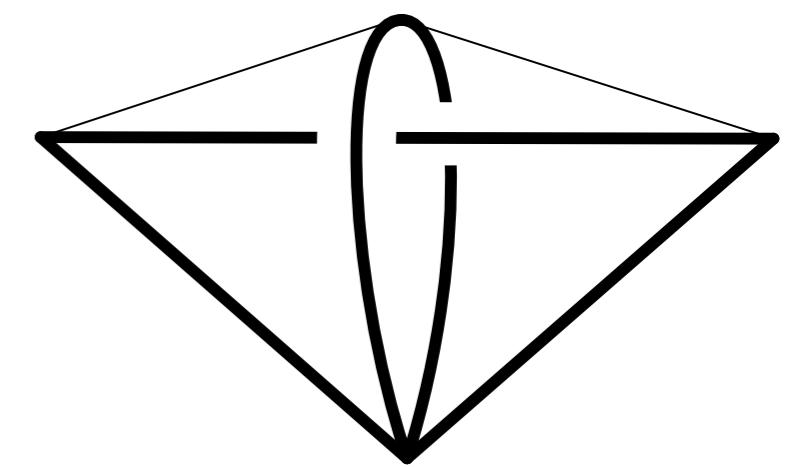
1 vertex (2-3)

2 vertex

...

Theorem (S, '17):

The set of all triangulations of a three-dimensional manifold with a single vertex and with no degree-one edges is connected under 2-3 and 3-2 moves. (Excepting triangulations with a single tetrahedron and if M is the lens space $L(4,1)$.)



all triangulations of M (1-4 and 2-3)

1 vertex (2-3)

2 vertex

...

all triangulations of M (1-4 and 2-3)

1 vertex (2-3)

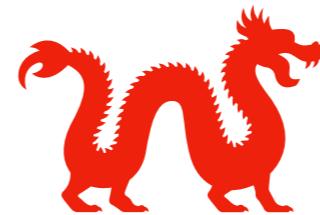
2 vertex

no degree-one edges (2-3)

...

all triangulations of M (1-4 and 2-3)

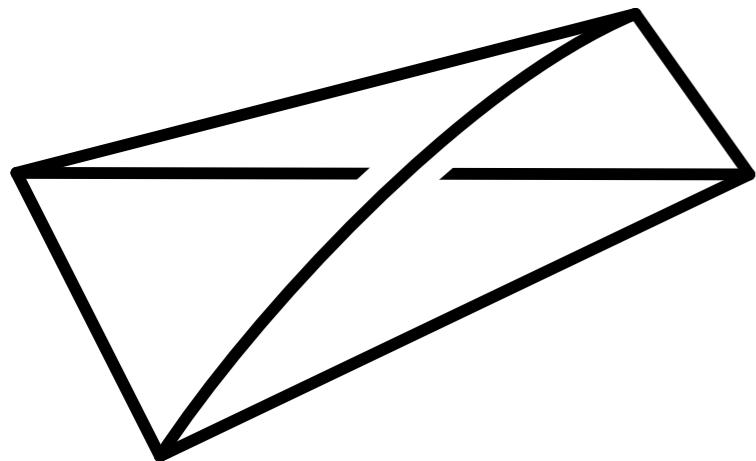
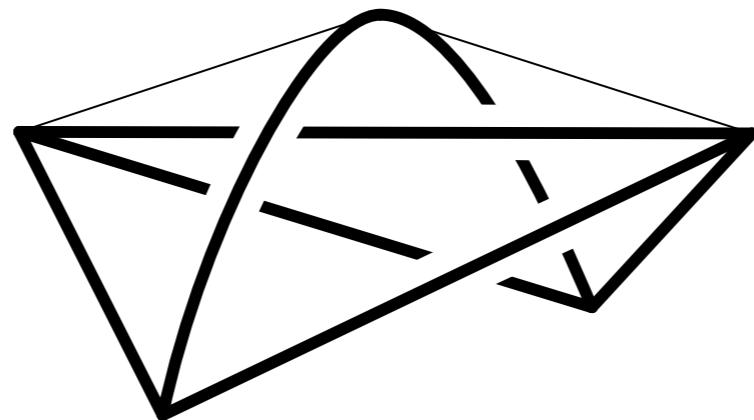
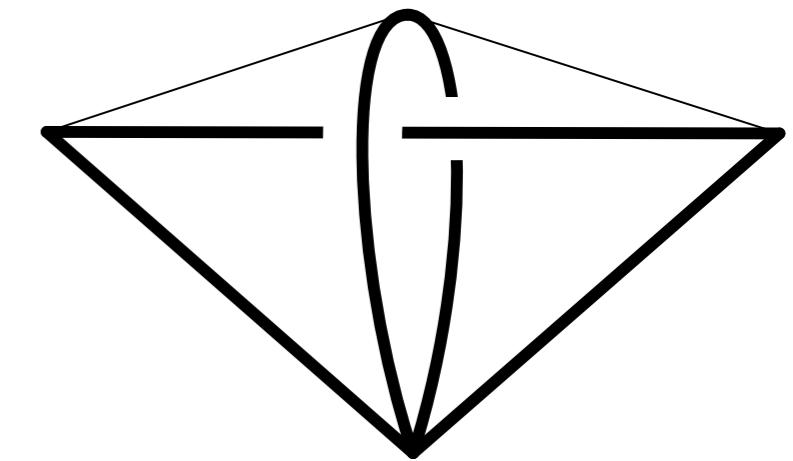
1 vertex (2-3)



no degree-one edges (2-3)

2 vertex

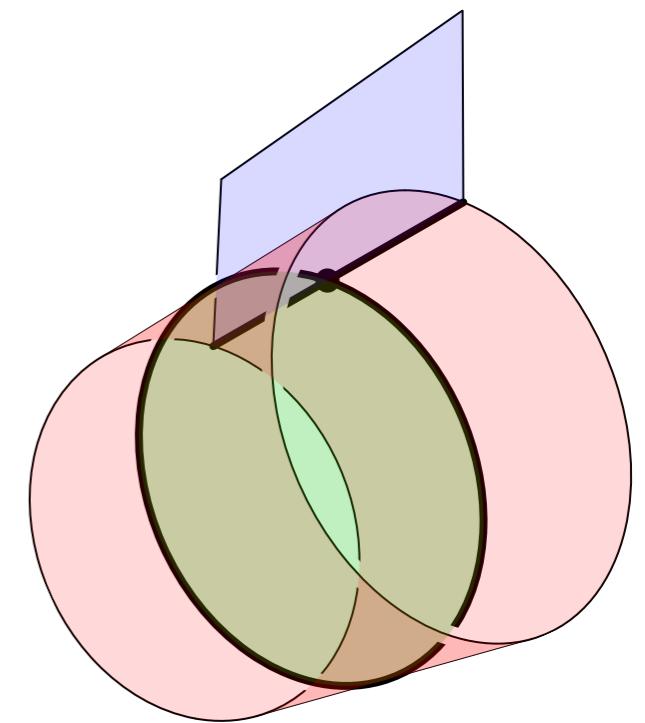
...



Definition: An edge of a triangulation is *inessential* if it can be homotoped (rel boundary) into a neighbourhood of a vertex.

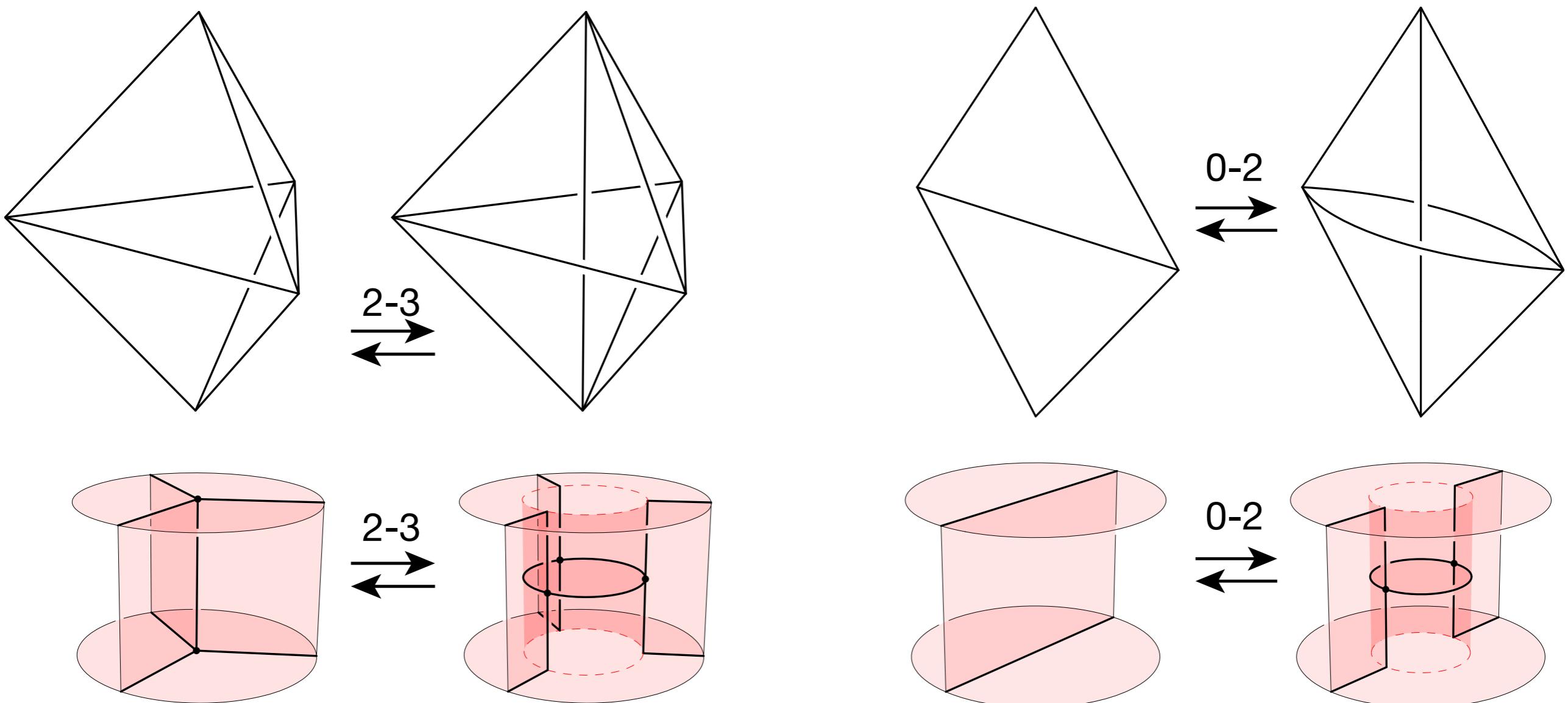
A triangulation is *essential* if it has no inessential edges.

Dually, a face f of a foam is *inessential* if a lift of f to the universal cover meets the same complementary region on both of its sides.



Theorem (Kalelkar, Schleimer, S, '24):

Suppose that M is a compact, connected three-manifold with boundary. Suppose that the universal cover \widetilde{M} has infinitely many boundary components. Then the set of essential ideal triangulations of M is connected via 2-3, 3-2, 0-2, and 2-0 moves.



0-2 move

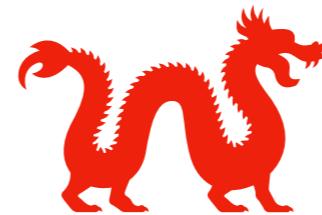
Theorem (Kalelkar, Schleimer, S, '24):

Suppose that M is a compact, connected three-manifold with boundary. Suppose that the universal cover \widetilde{M} has infinitely many boundary components. Then the set of essential ideal triangulations of M is connected via 2-3, 3-2, 0-2, and 2-0 moves.

The theorem says that any two foams in M with no self-contacting bubbles in \widetilde{M} can be connected by 2-3, 3-2, 0-2, and 2-0 moves so that no intermediate foam has a self-contacting bubble.

all triangulations of M (1-4 and 2-3)

1 vertex (2-3)



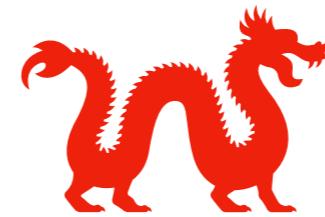
no degree-one edges (2-3)

2 vertex

...

all triangulations of M (1-4 and 2-3)

1 vertex (2-3)



no degree-one edges (2-3)

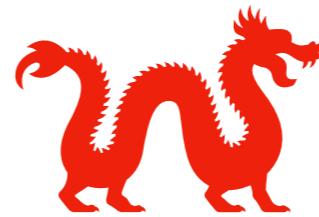
essential (2-3 and 0-2)

2 vertex

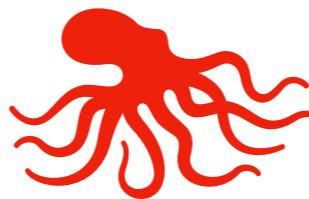
...

all triangulations of M (1-4 and 2-3)

1 vertex (2-3)



no degree-one edges (2-3)



essential (2-3 and 0-2)

strongly one-efficient
taut angle structures
strict angle structures
geometric

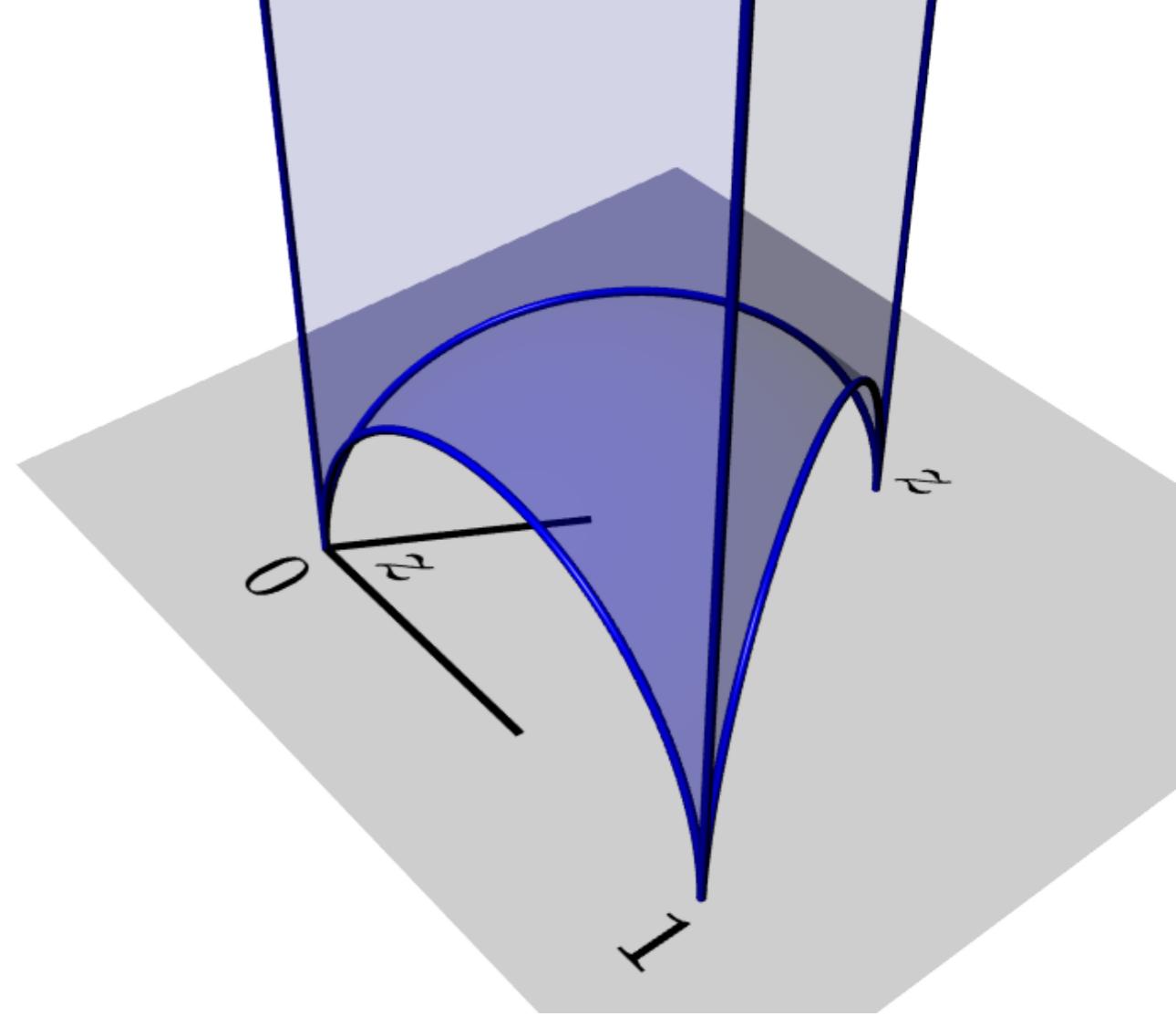
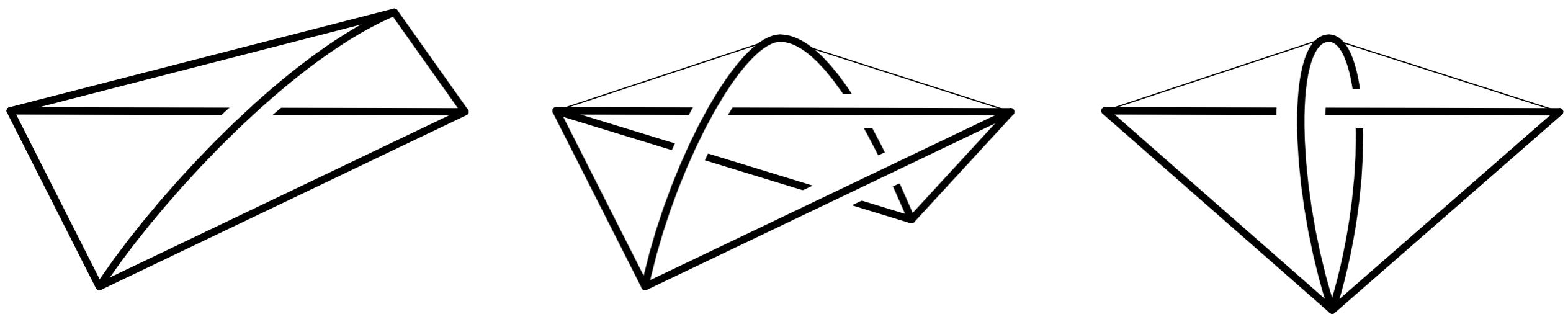
2 vertex

...

Application in quantum topology

Dimofte and Garoufalidis define the *1-loop invariant* τ_T for an ideal triangulation T of a hyperbolic three-manifold.

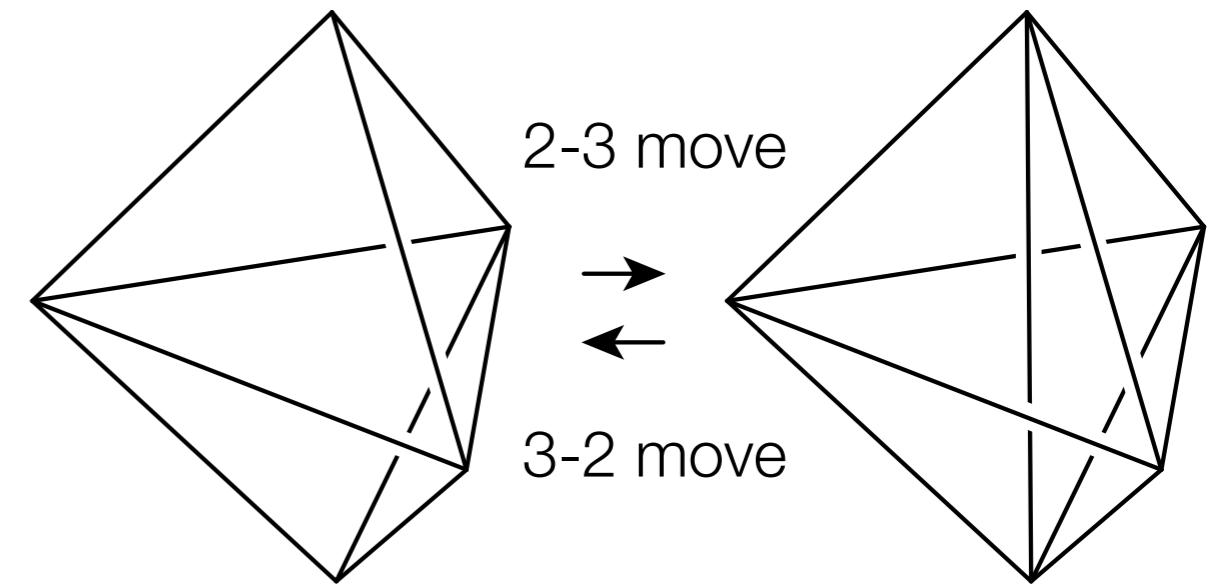
The 1-loop invariant is defined in terms of a solution to Thurston's gluing equations on T .



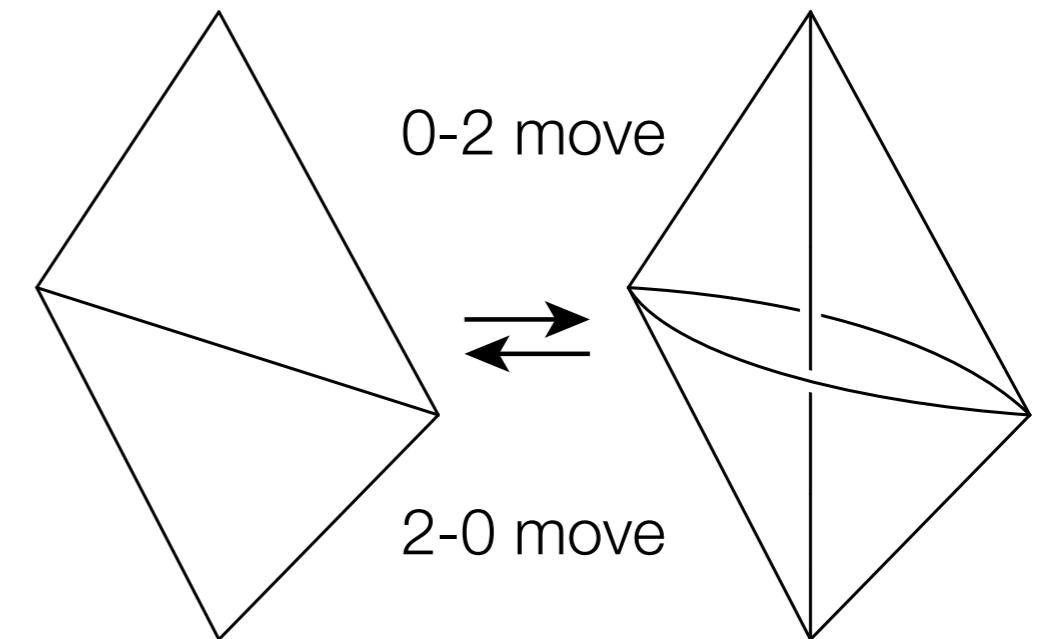
It turns out that a solution exists if and only if T is essential.

Application in quantum topology

Dimofte and Garoufalidis show that τ_T is invariant under 2-3 moves between essential triangulations.

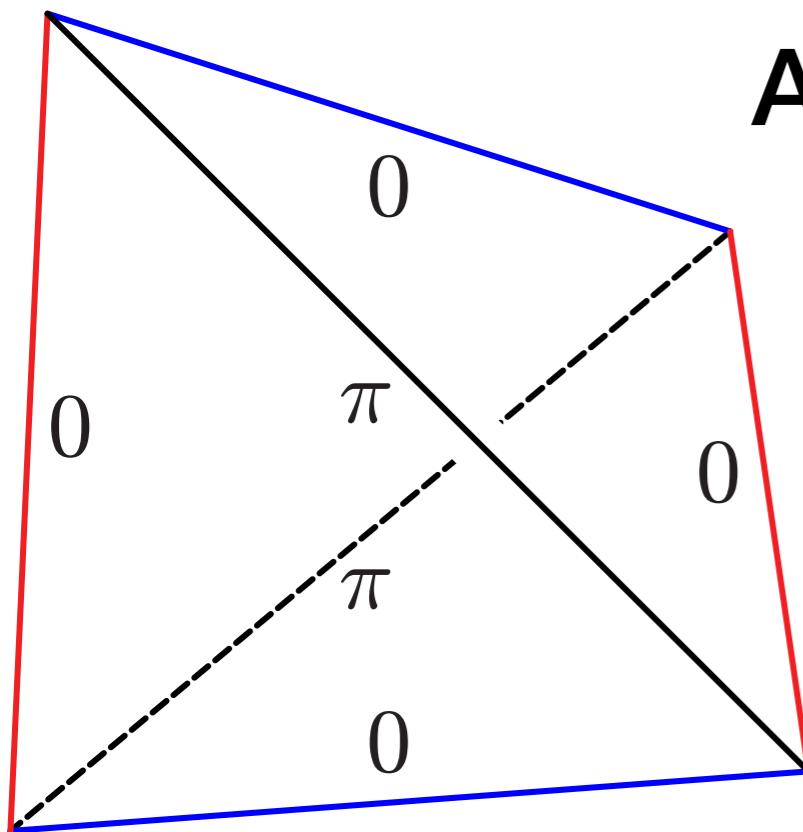


Pandey and Wong show that τ_T is invariant under 0-2 moves between essential triangulations.



Our result then proves that τ_T does not depend on the choice of essential triangulation.

Application to veering triangulations



Conjecture:

Each manifold admits a finite number of veering triangulations.

Schmalian (March 2024) finds many manifolds in the SnapPy census that have zero veering triangulations.

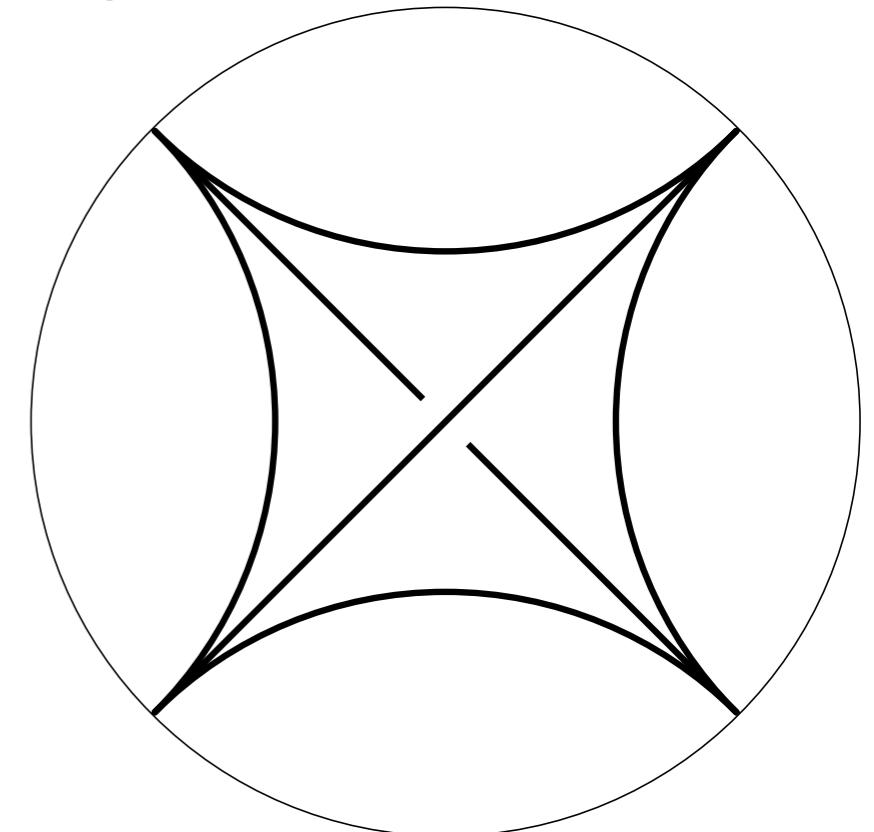
(m006, m007, m011, m029, m030, m037, m047, m049, m060, m064, m081, m082, m095, m116, m117, m129, m130, m142, m143)

(Schleimer-S, work in progress) The figure-eight knot complement has precisely one veering triangulation.

Application to veering triangulations

(Schleimer-S, work in progress) The figure-eight knot complement has precisely one veering triangulation.

A veering triangulation T canonically determines a circular ordering on the vertices of \tilde{T} which is *compatible* with a “flattening” of each tetrahedron.



In part of the proof, we have to carry the circular order and flattening through 2-3, 3-2, 0-2, and 2-0 moves, from a potential veering triangulation to a known triangulation.

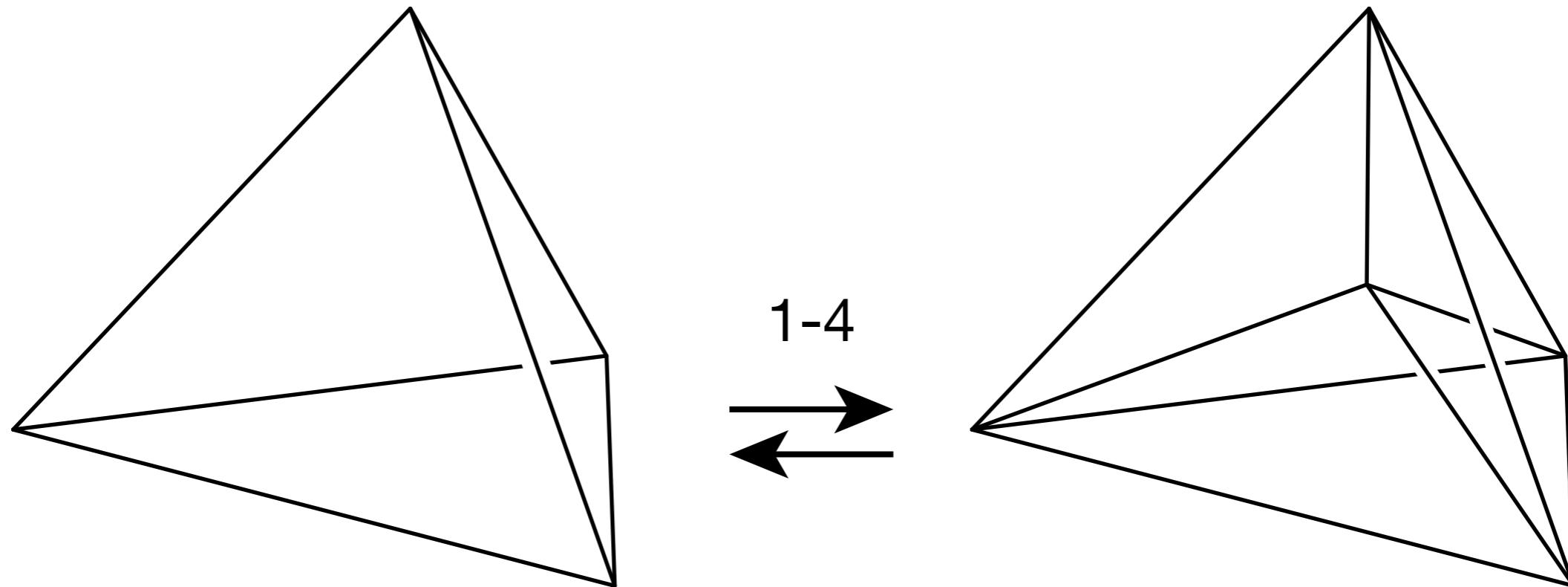
The intermediate triangulations must have essential edges in order to carry the circular order and flattening.

Ideas in the proof of connectivity

Lemma (Kalelkar, Schleimer, S, following Casali):

Let M be a three-manifold with non-empty boundary.

Suppose that T and T' are essential ideal triangulations of M . Then there is a sequence of essential partially ideal triangulations connecting T to T' , where consecutive triangulations are related by 2-3, 3-2, 1-4, and 4-1 moves.



Ideas in the proof of connectivity

Lemma (Kalelkar, Schleimer, S, following Casali):

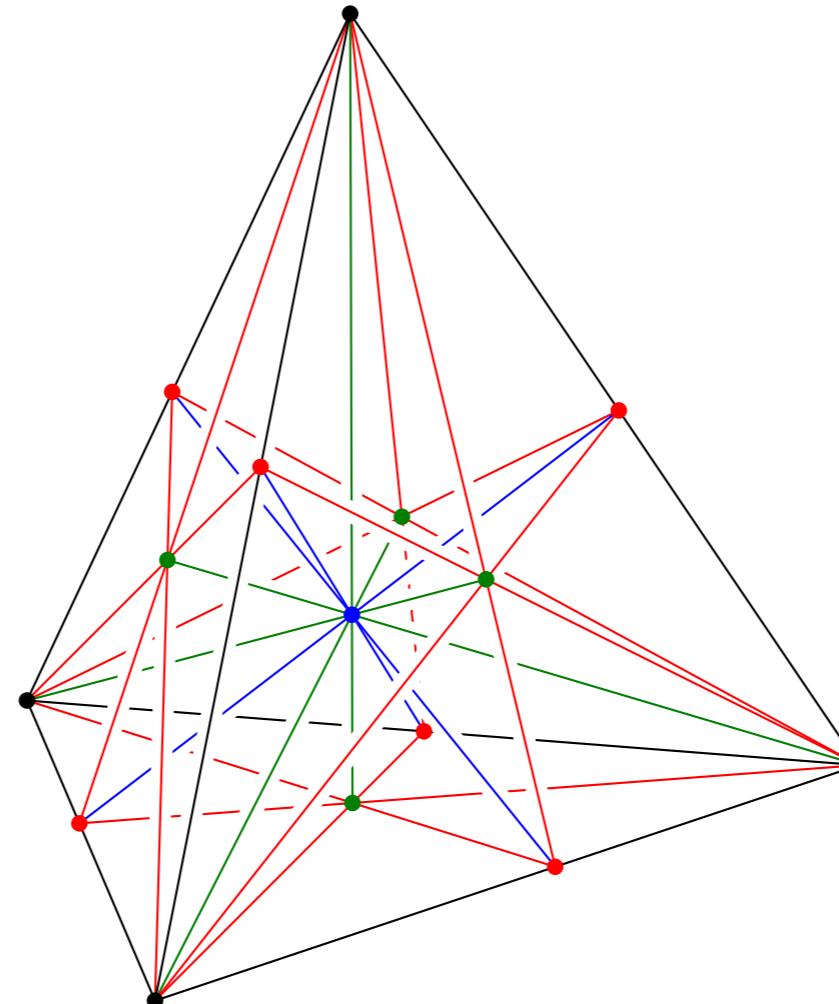
Let M be a three-manifold with non-empty boundary.

Suppose that T and T' are essential ideal triangulations of M .

Then there is a sequence of essential partially ideal

triangulations connecting T to T' , where consecutive

triangulations are related by 2-3, 3-2, 1-4, and 4-1 moves.

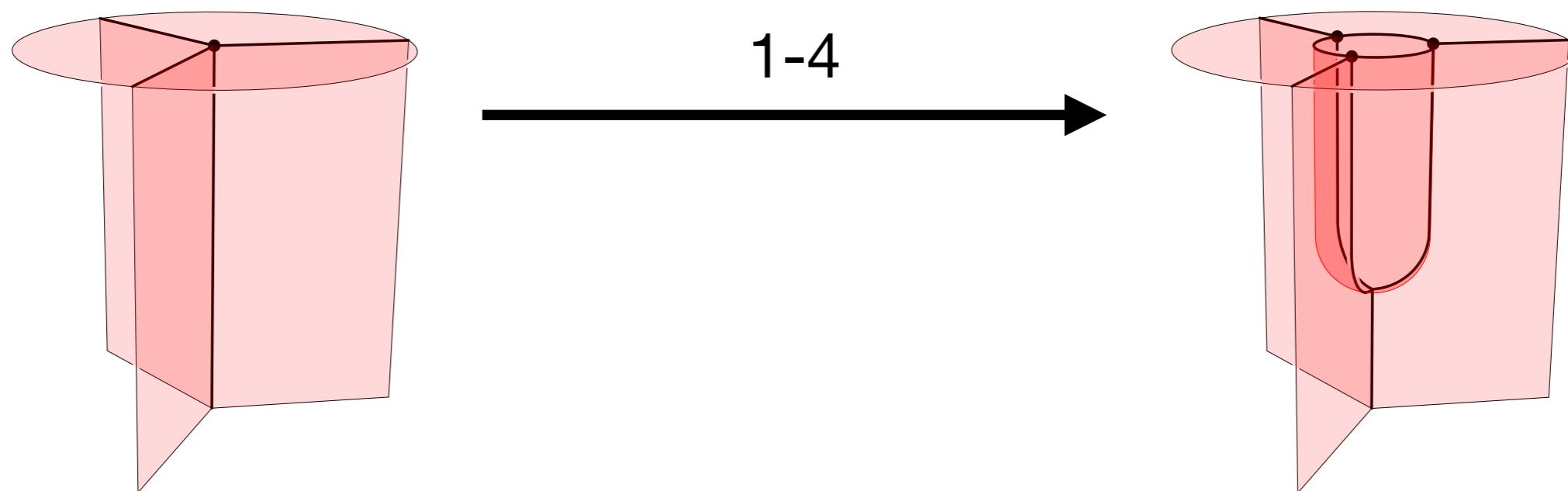


Ideas in the proof of connectivity

Lemma (Kalelkar, Schleimer, S, following Casali):

Let M be a three-manifold with non-empty boundary.

Suppose that T and T' are essential ideal triangulations of M . Then there is a sequence of essential partially ideal triangulations connecting T to T' , where consecutive triangulations are related by 2-3, 3-2, 1-4, and 4-1 moves.

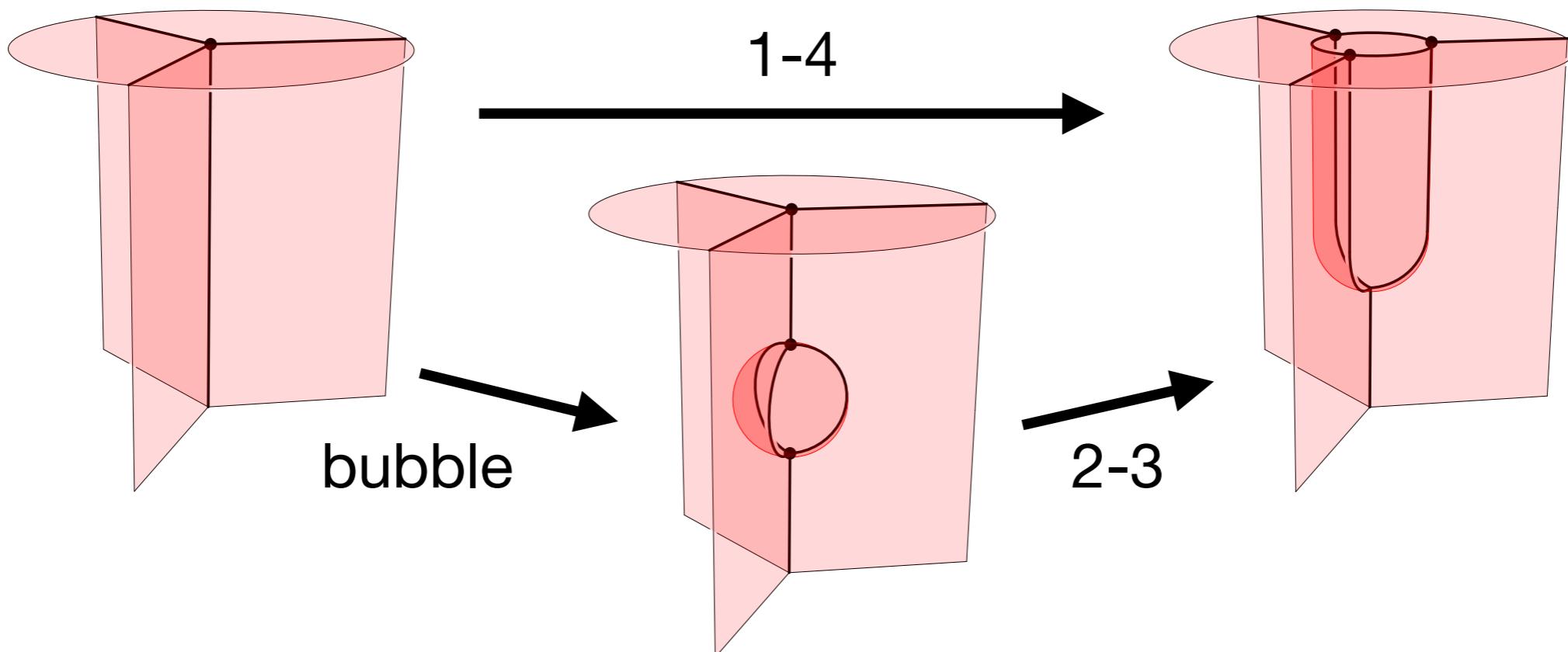


Ideas in the proof of connectivity

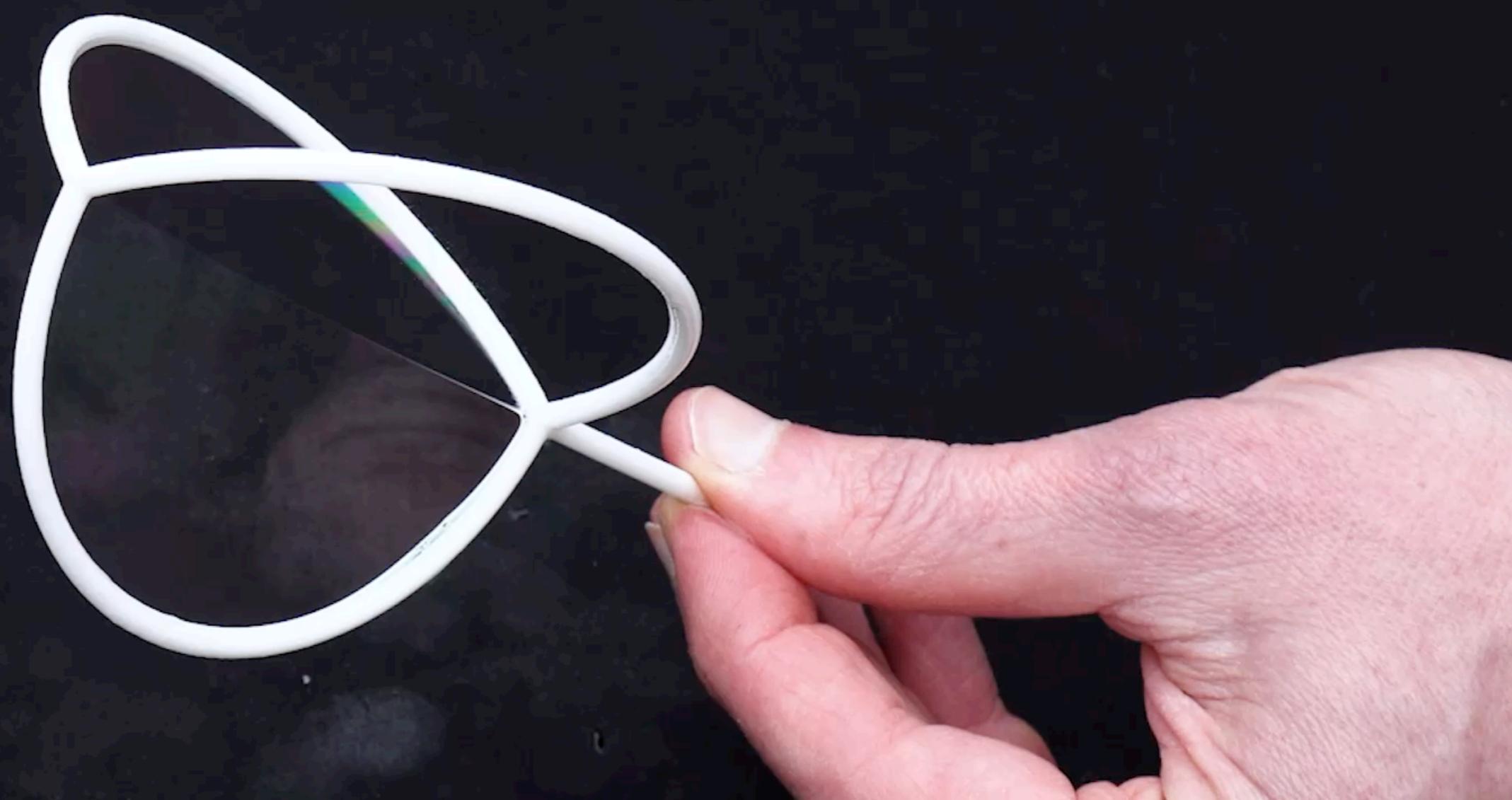
Lemma (Kalelkar, Schleimer, S):

Let M be a three-manifold with non-empty boundary.

Suppose that T and T' are essential ideal triangulations of M . Then there is a sequence of essential partially ideal triangulations connecting T to T' , where consecutive triangulations are related by 2-3, 3-2, ~~1-4~~, and ~~4-1~~ bubble and reverse bubble moves.



Bubble move



Ideas in the proof

so that \widetilde{M} has infinitely many boundary components

Theorem (Kalelkar, Schleimer, S):

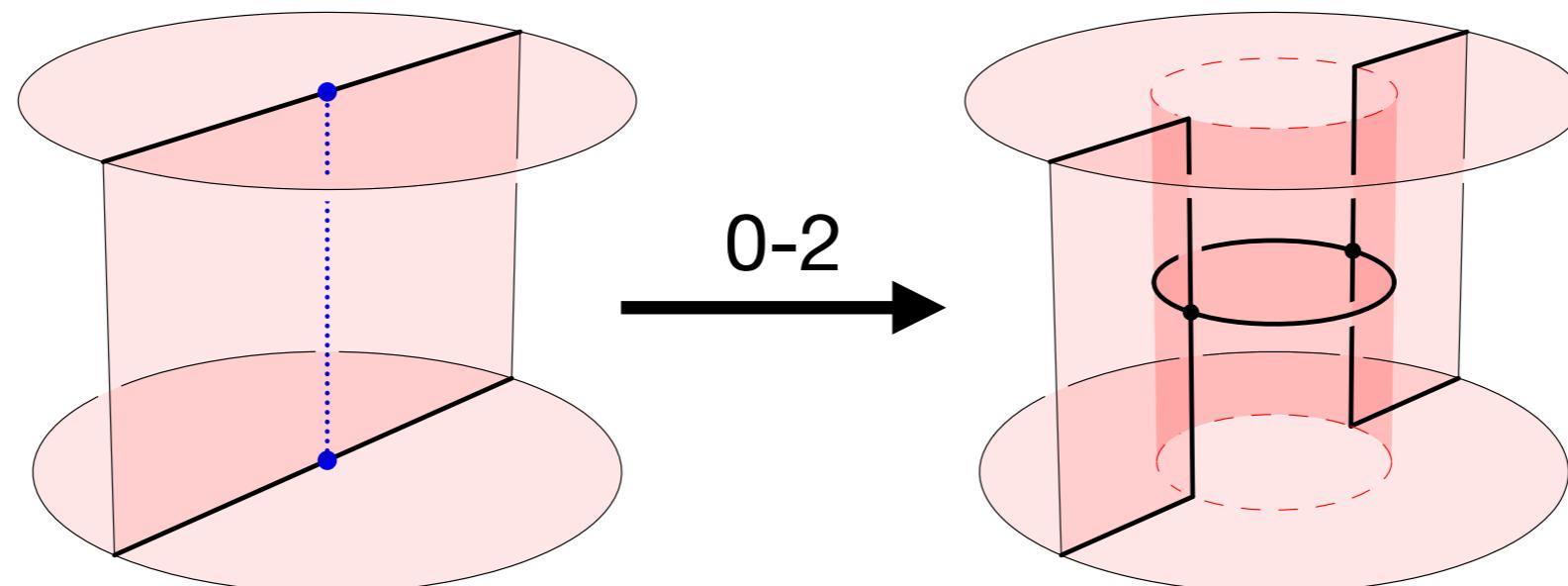
Let M be a three-manifold with non-empty boundary.

Suppose that T and T' are essential ideal triangulations of M .

Then there is a sequence of essential ~~partially~~ ideal

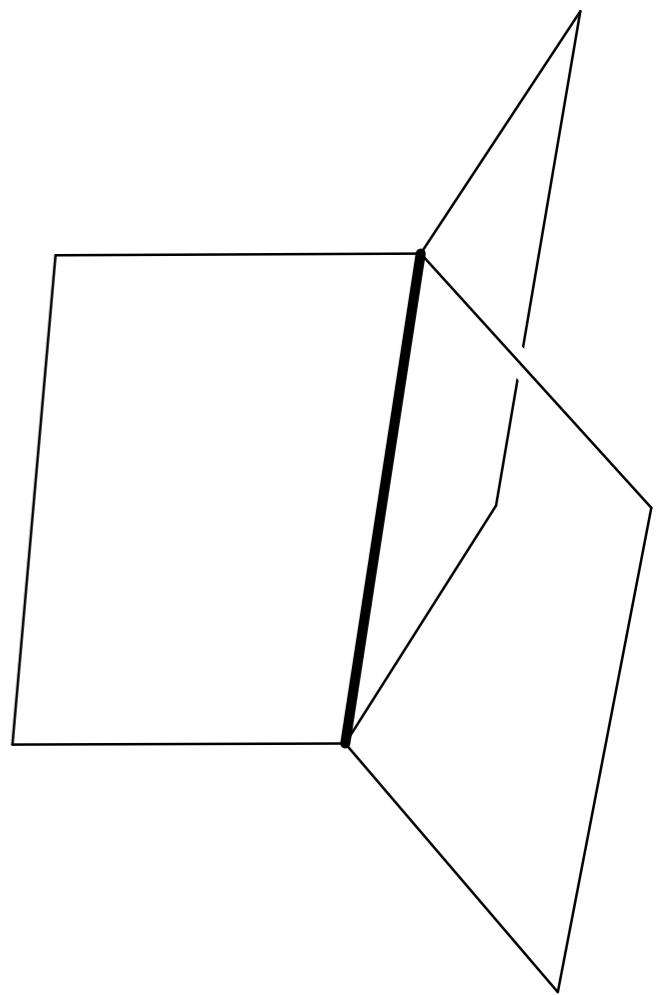
triangulations connecting T to T' , where consecutive

triangulations are related by 2-3, 3-2, ~~1-4~~, and ~~4-1~~ bubble and reverse bubble ~~0-2~~ and ~~2-0~~ moves.

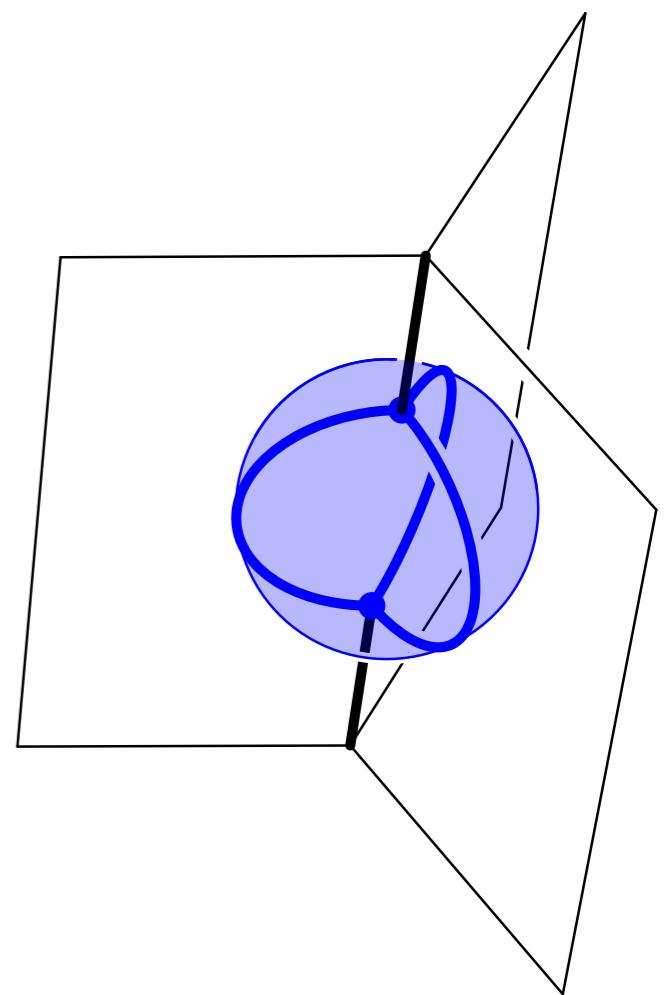


We must closely shadow a sequence of triangulations that includes bubble moves, but not actually do any bubble moves.

If you need to do a bubble move...

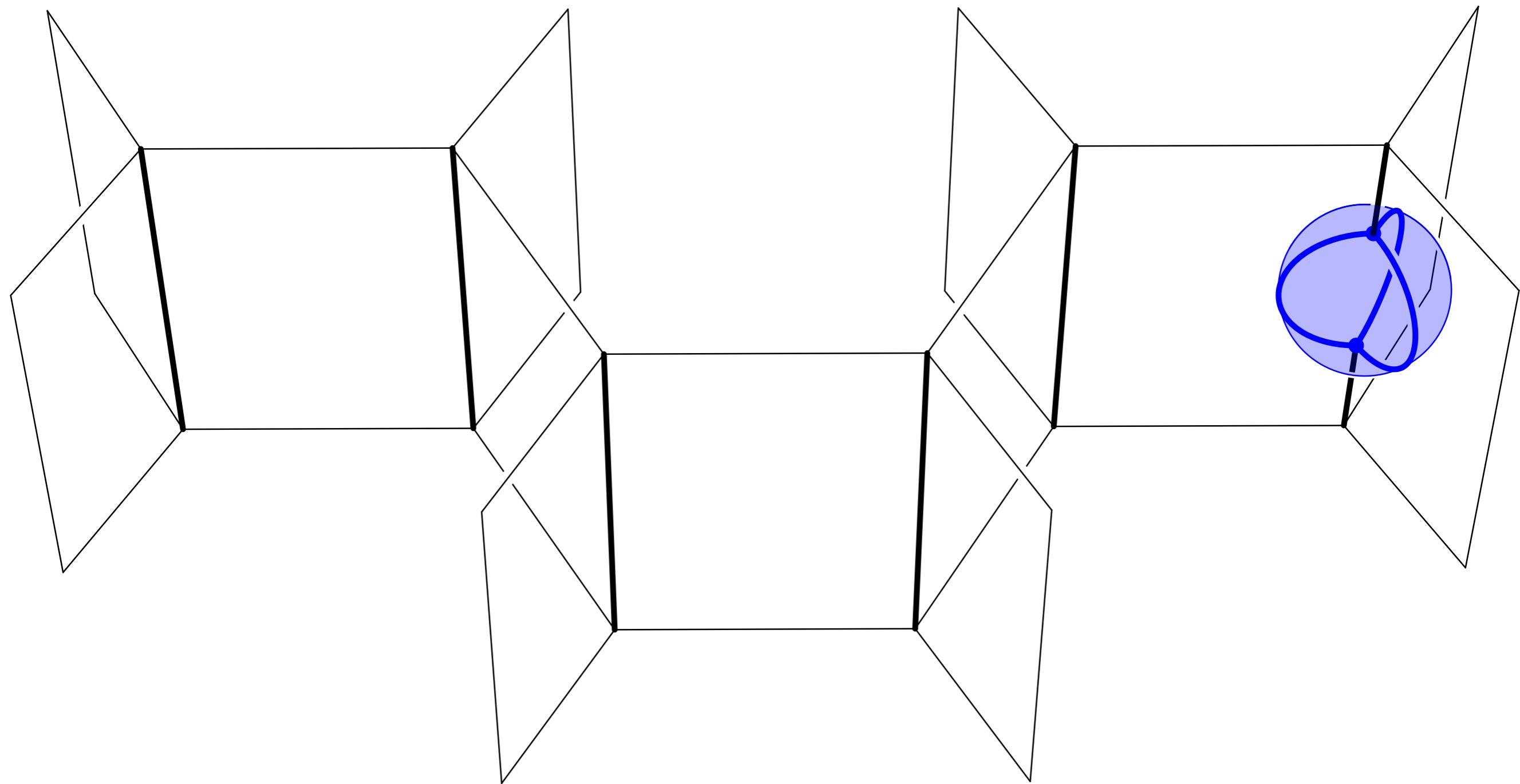


If you need to do a bubble move...



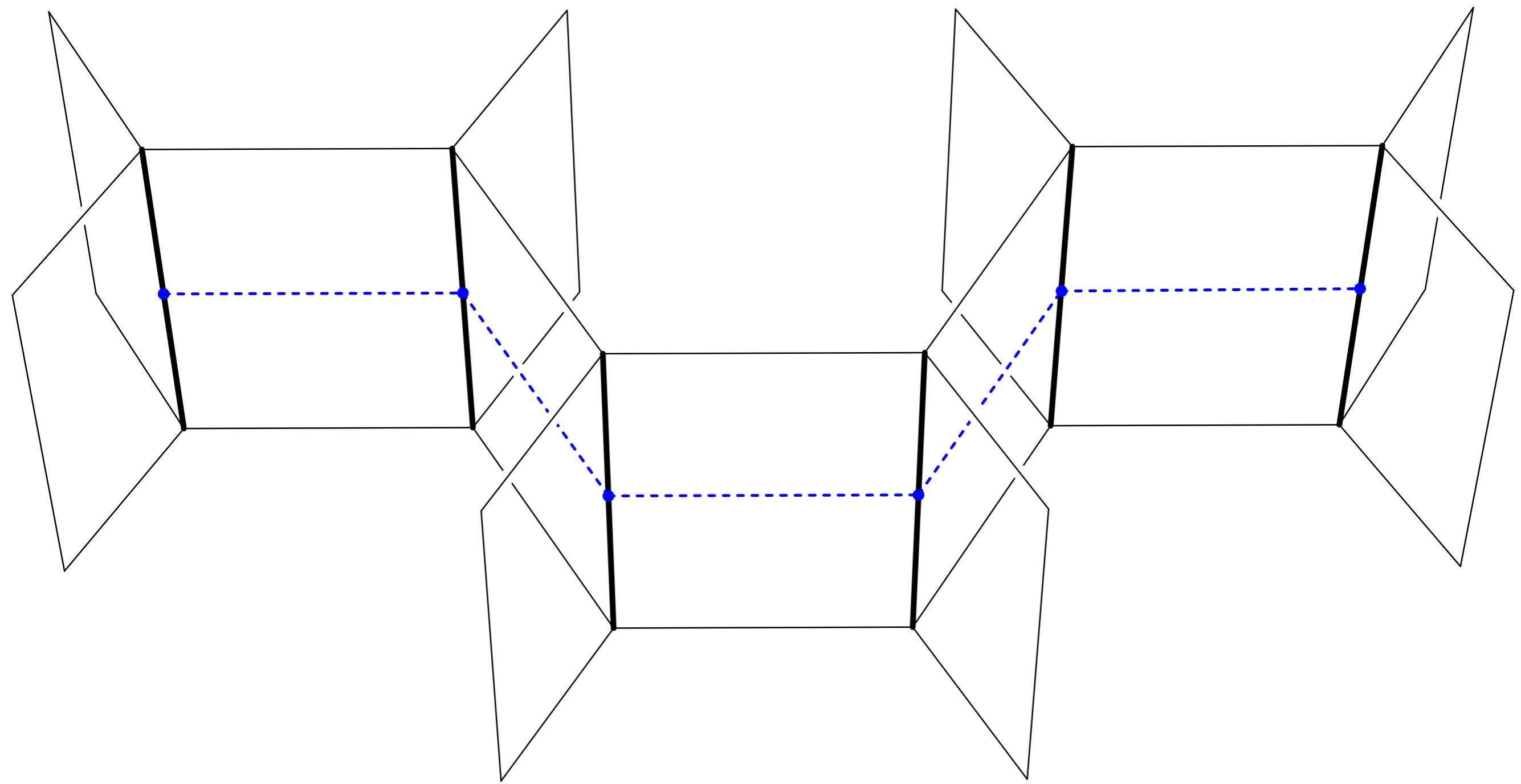
If you need to do a bubble move...

Find a “distant” complementary region (\widetilde{M} has infinitely many).



If you need to do a bubble move...

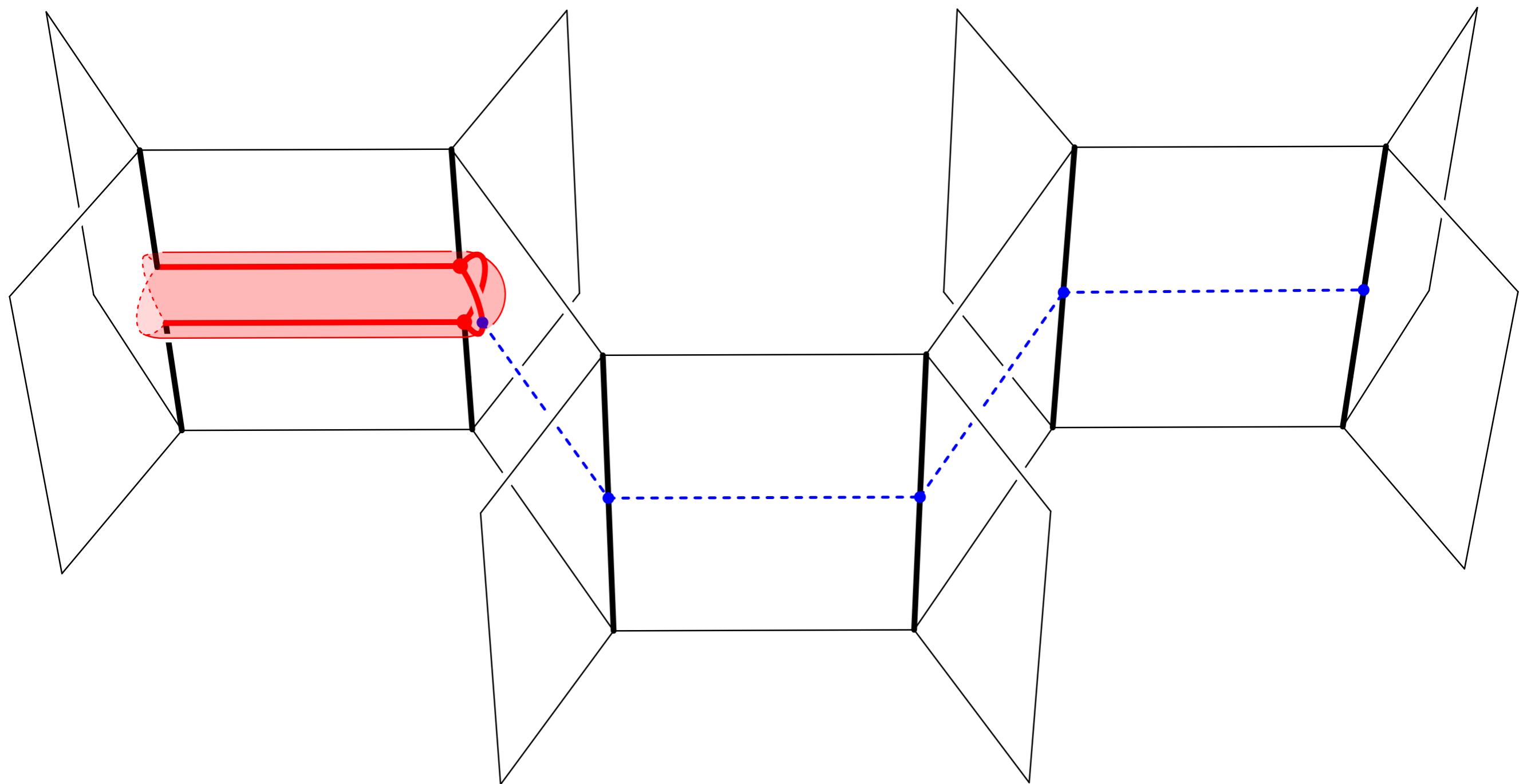
Find a “distant” complementary region (\widetilde{M} has infinitely many).



If you need to do a bubble move...

Find a “distant” complementary region (\widetilde{M} has infinitely many).

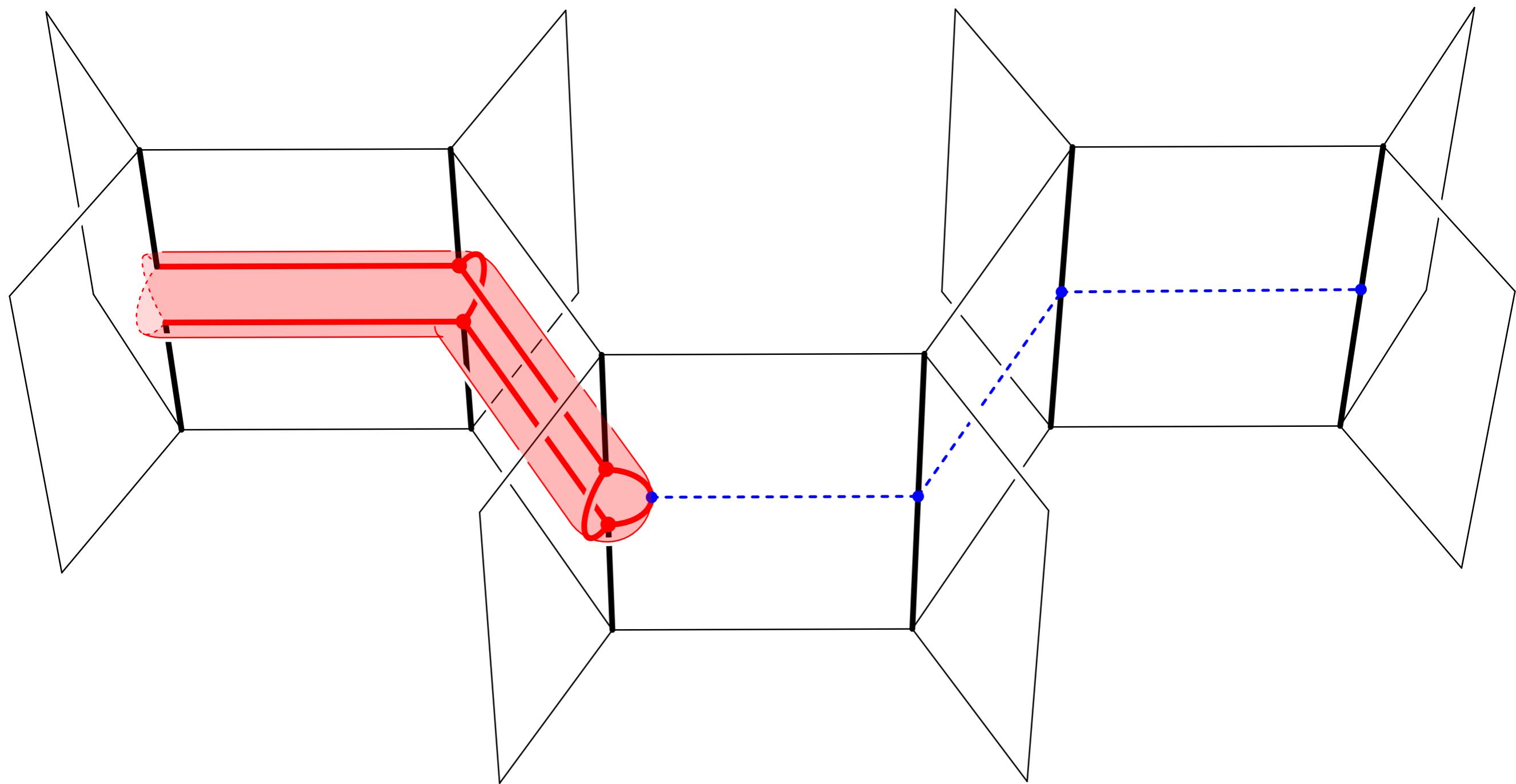
Build a *snake* out of 0-2 moves that connects to that distant region.



If you need to do a bubble move...

Find a “distant” complementary region (\widetilde{M} has infinitely many).

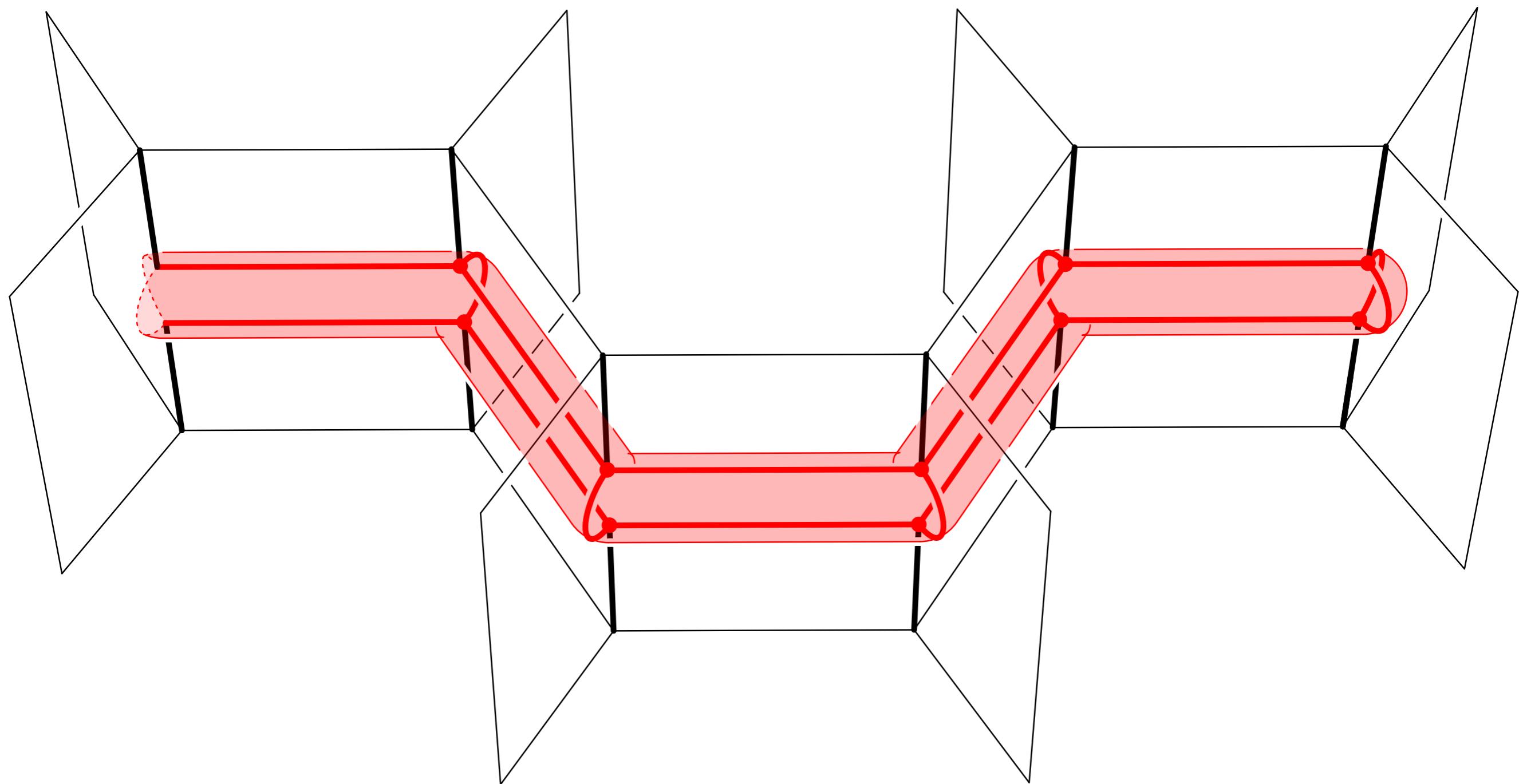
Build a *snake* out of 0-2 moves that connects to that distant region.



If you need to do a bubble move...

Find a “distant” complementary region (\widetilde{M} has infinitely many).

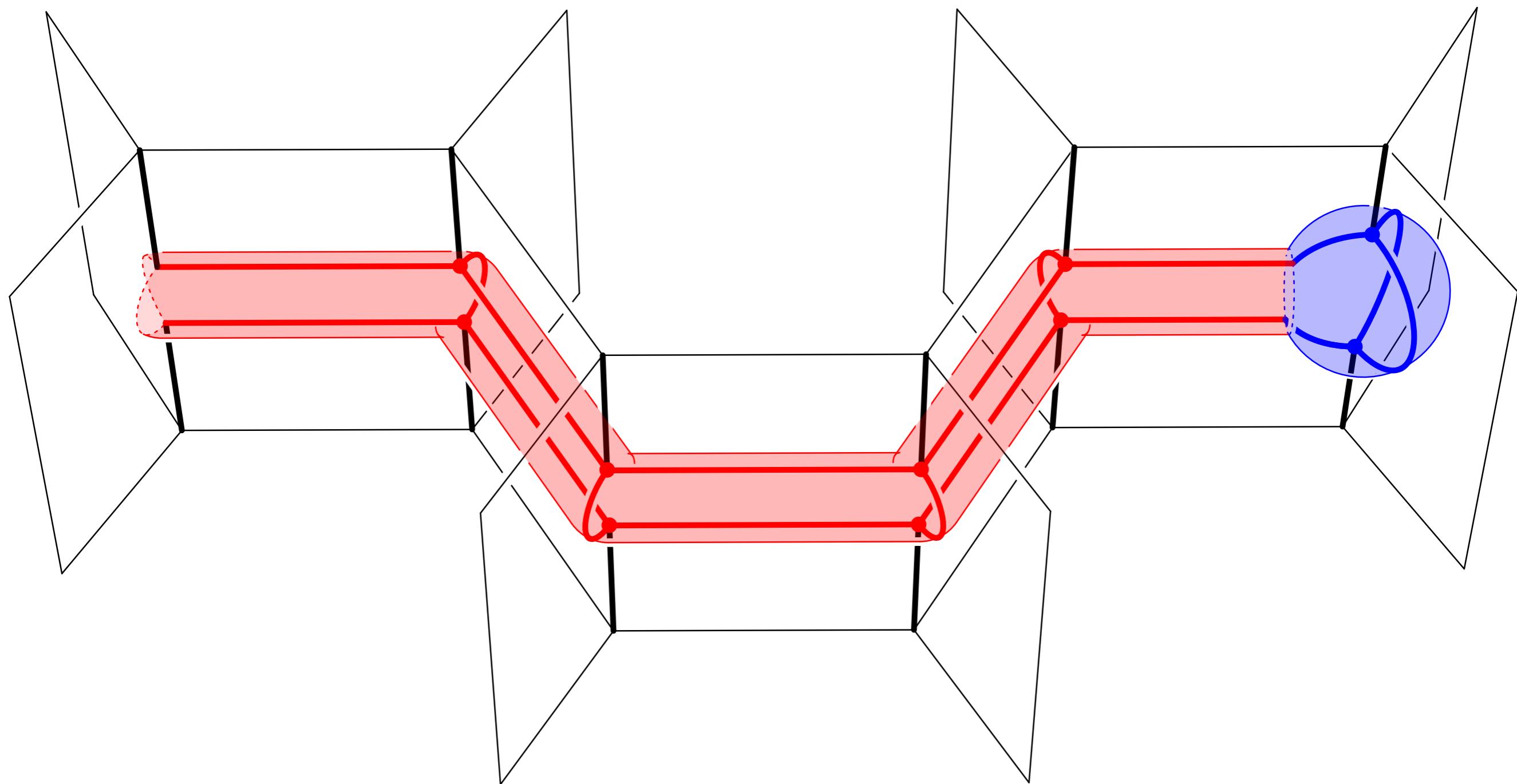
Build a *snake* out of 0-2 moves that connects to that distant region.



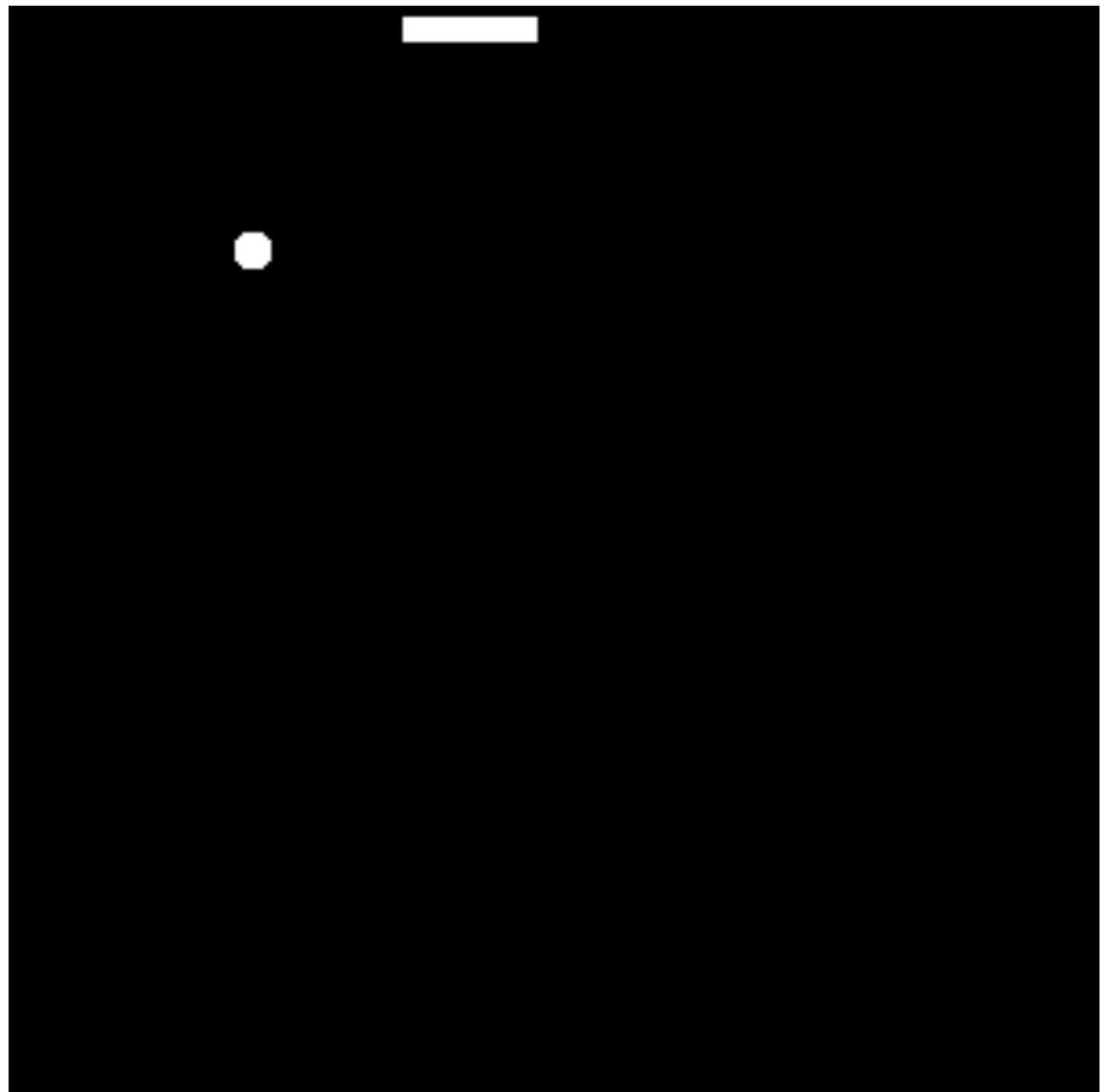
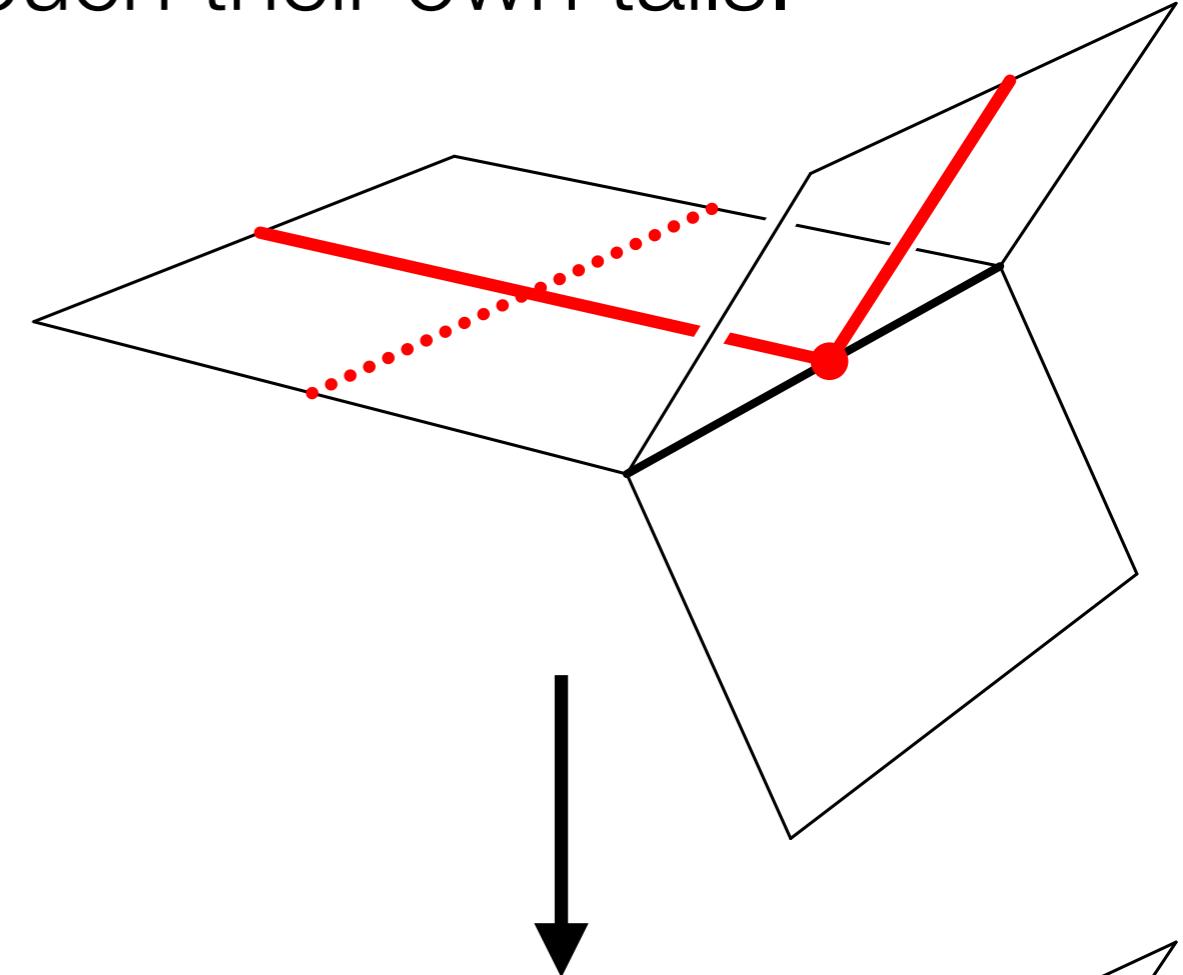
If you need to do a bubble move...

Find a “distant” complementary region (\widetilde{M} has infinitely many).

Build a *snake* out of 0-2 moves that connects to that distant region and makes a “fake bubble”.



As is well known, snakes cannot touch their own tails.

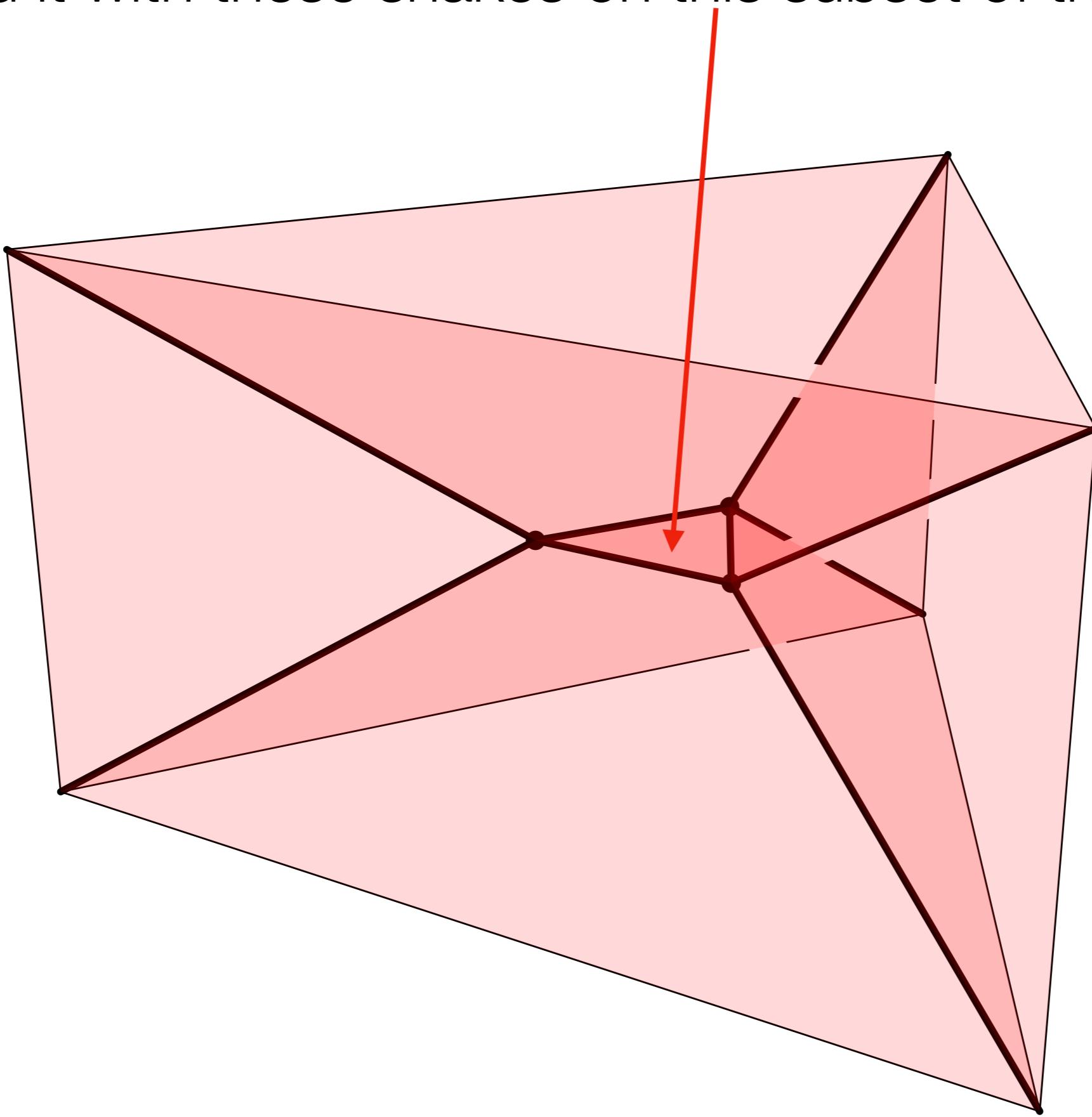


We process along an input path in M , detouring around previous segments. Eventually this produces a path with no self-intersections.

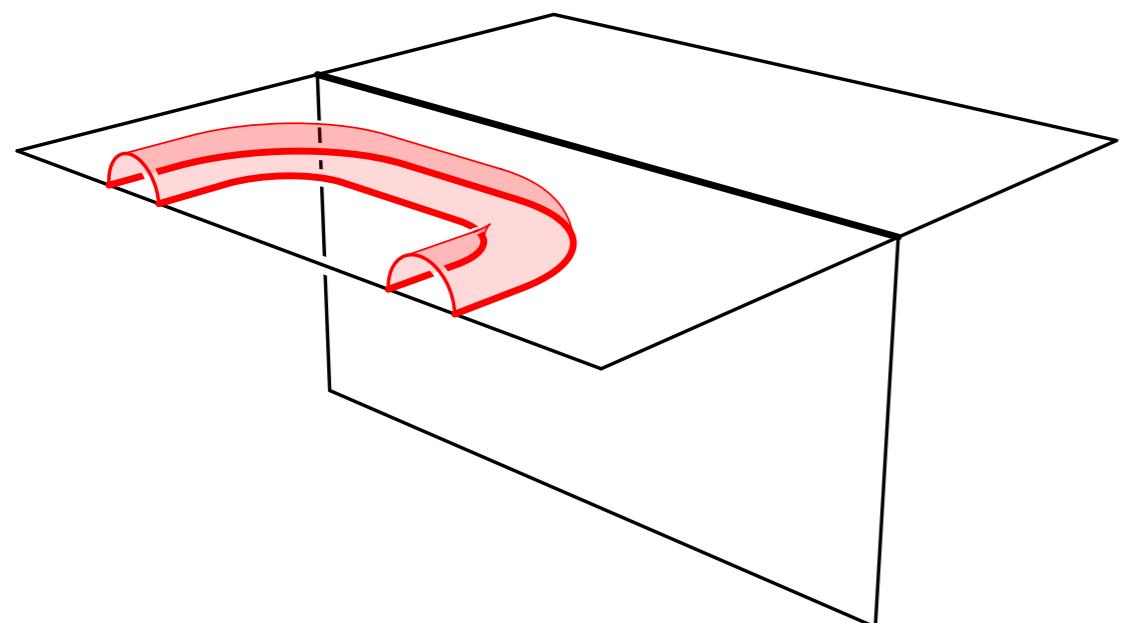
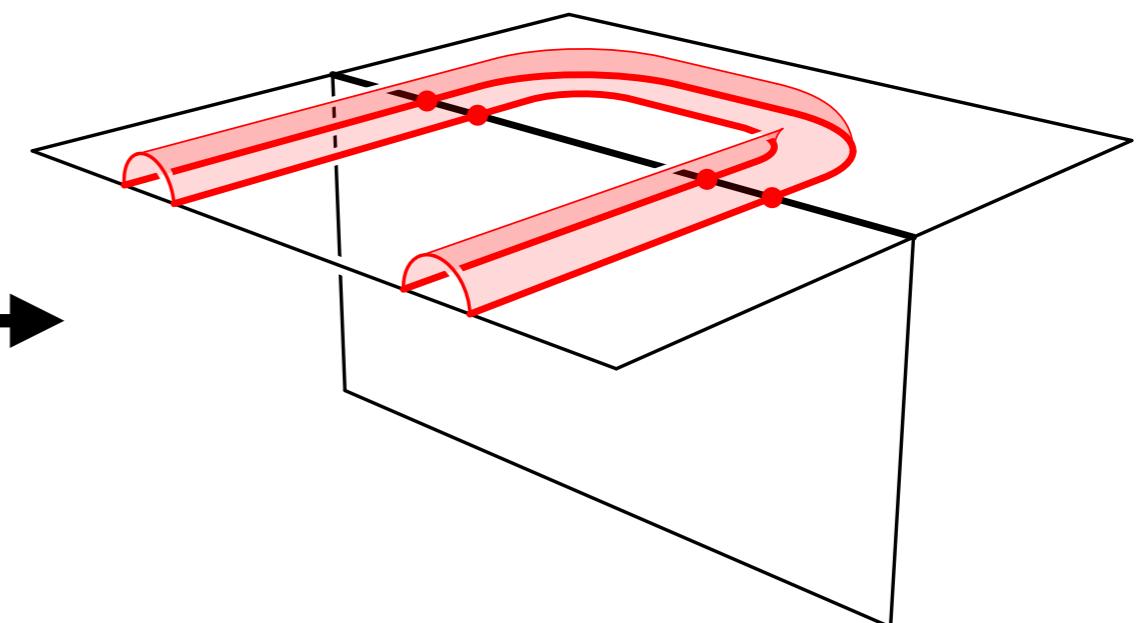
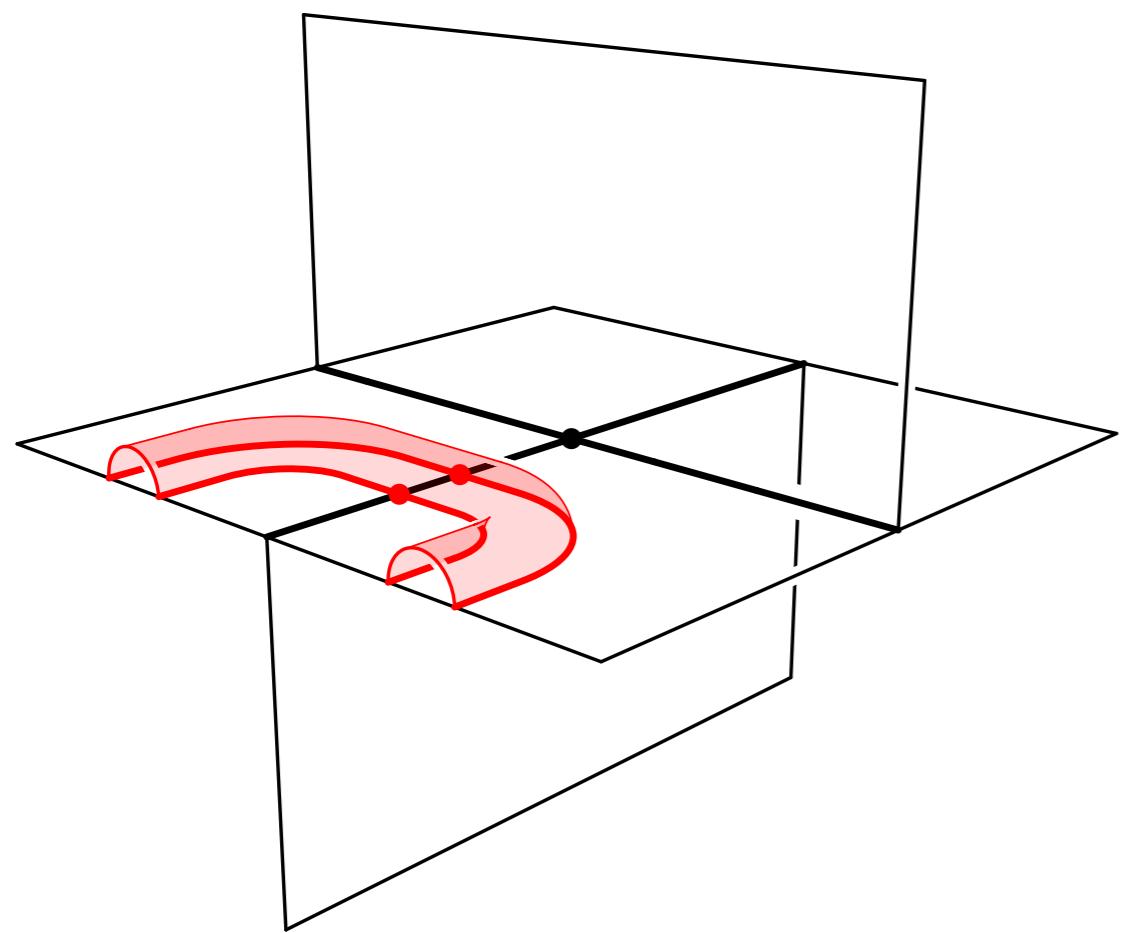
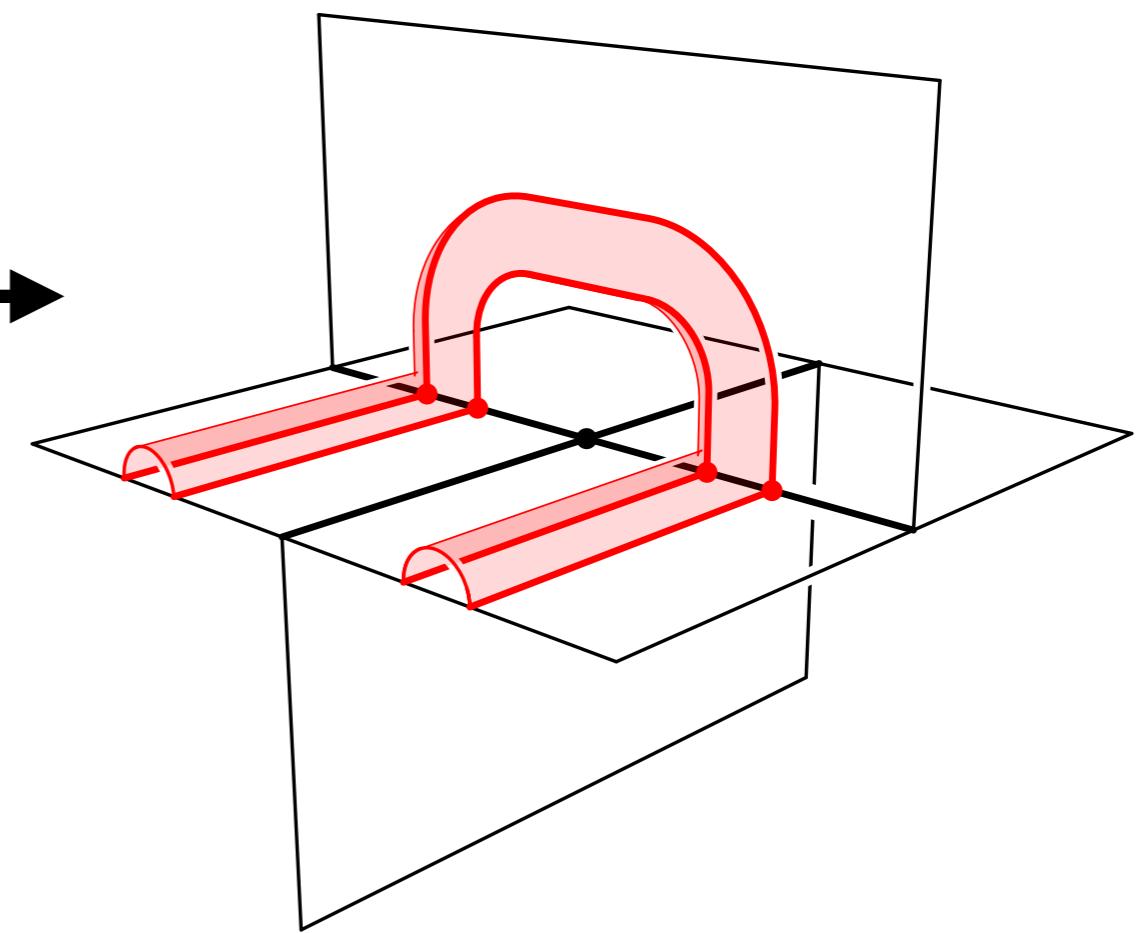
By User:Ustone07 - Own work, CC BY-SA 3.0, <https://commons.wikimedia.org/w/index.php?curid=25527034>

If you need to do a 3-2 move...

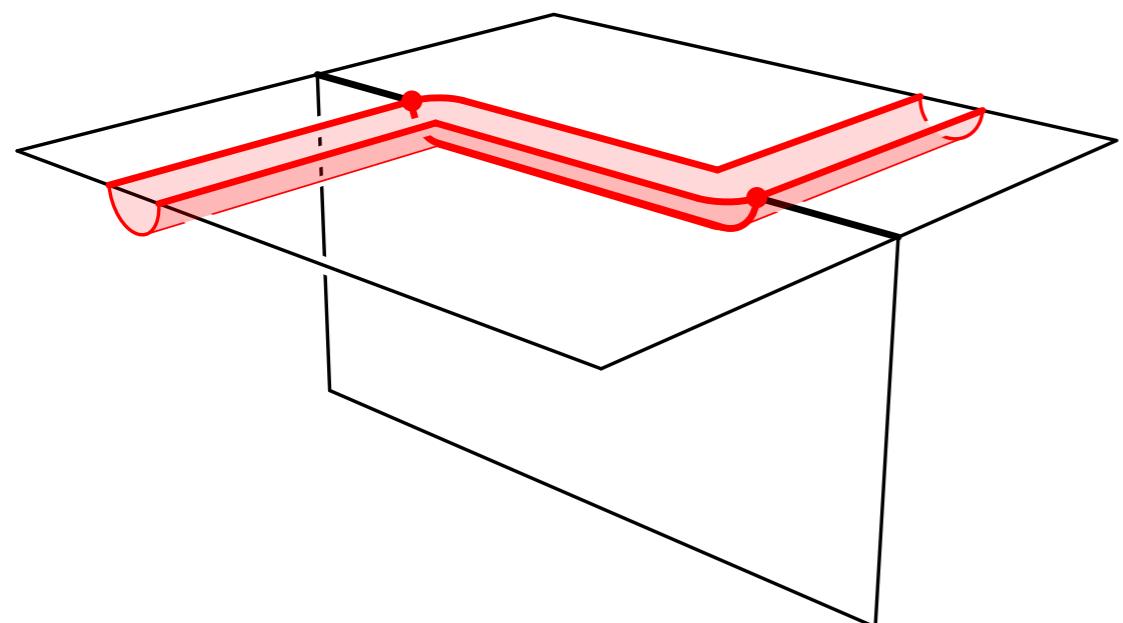
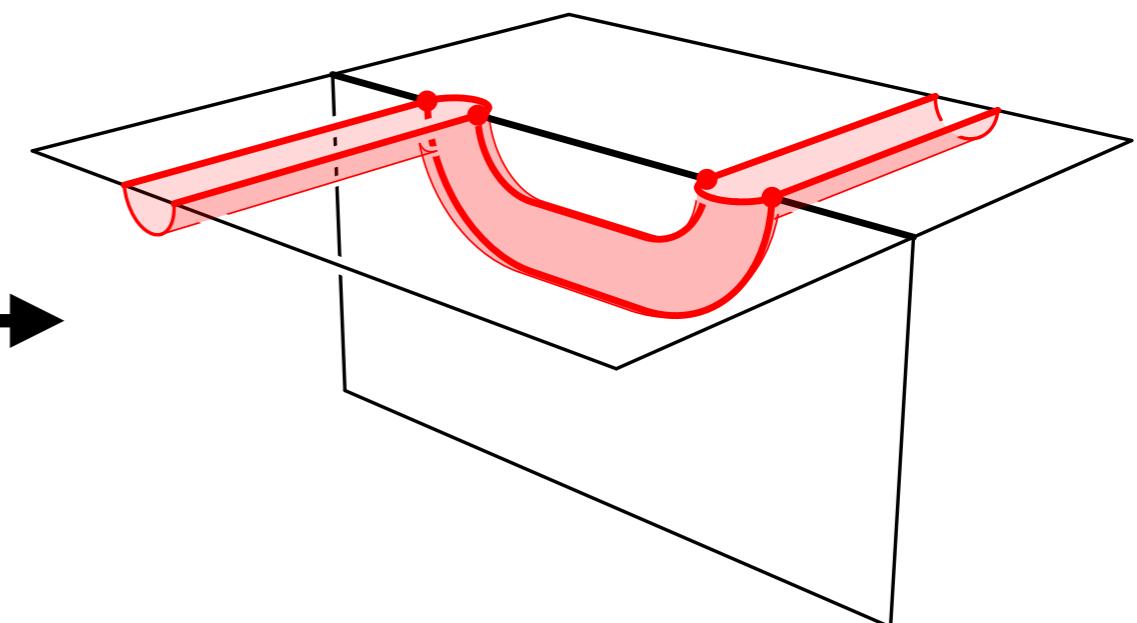
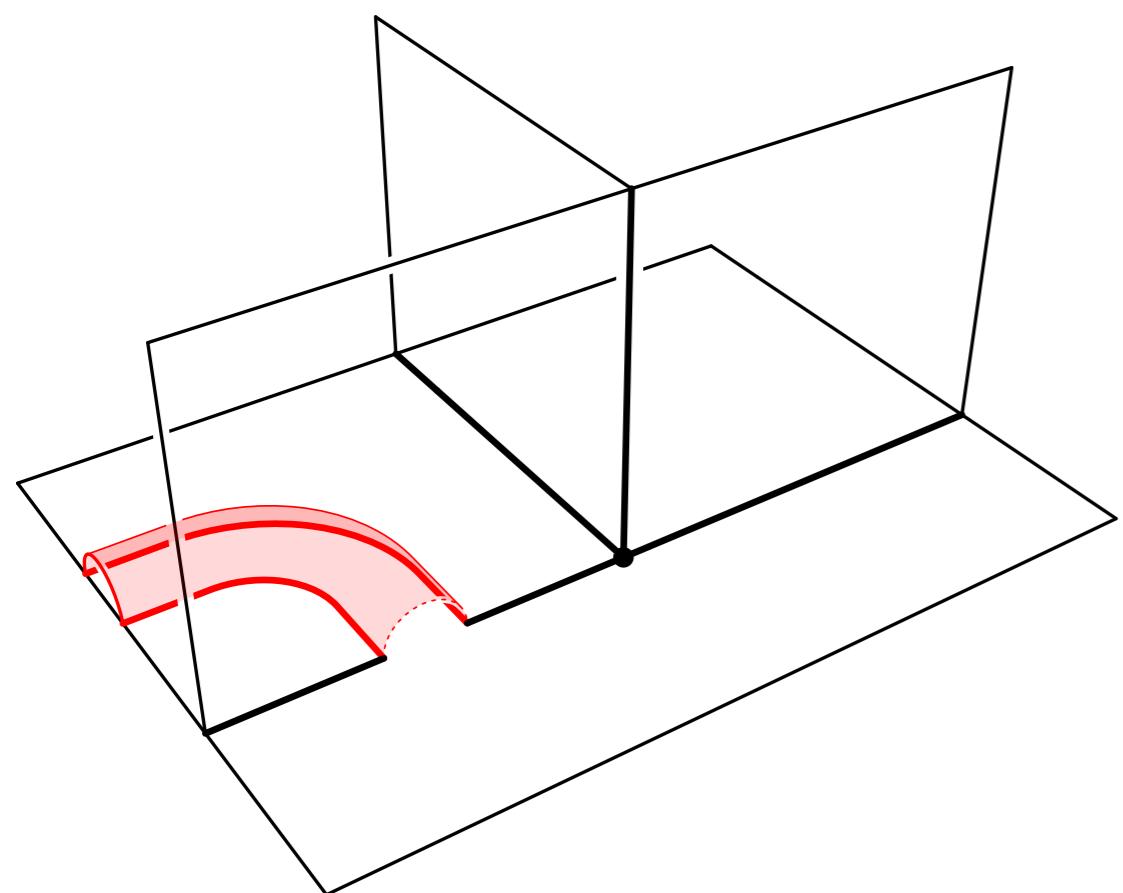
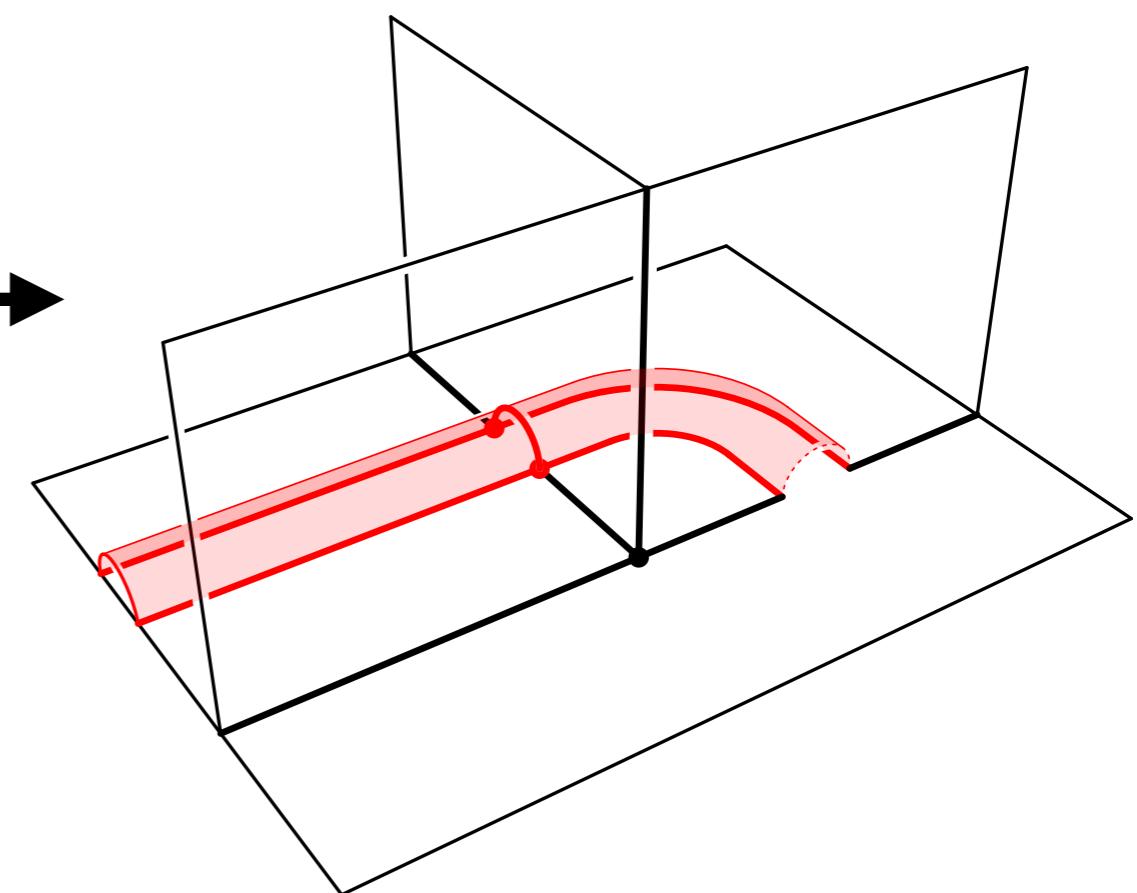
I've had it with these snakes on this subset of the plane



Slithering snakes



Slithering snakes



so that \widetilde{M} has infinitely many boundary components

Theorem (Kalelkar, Schleimer, S):

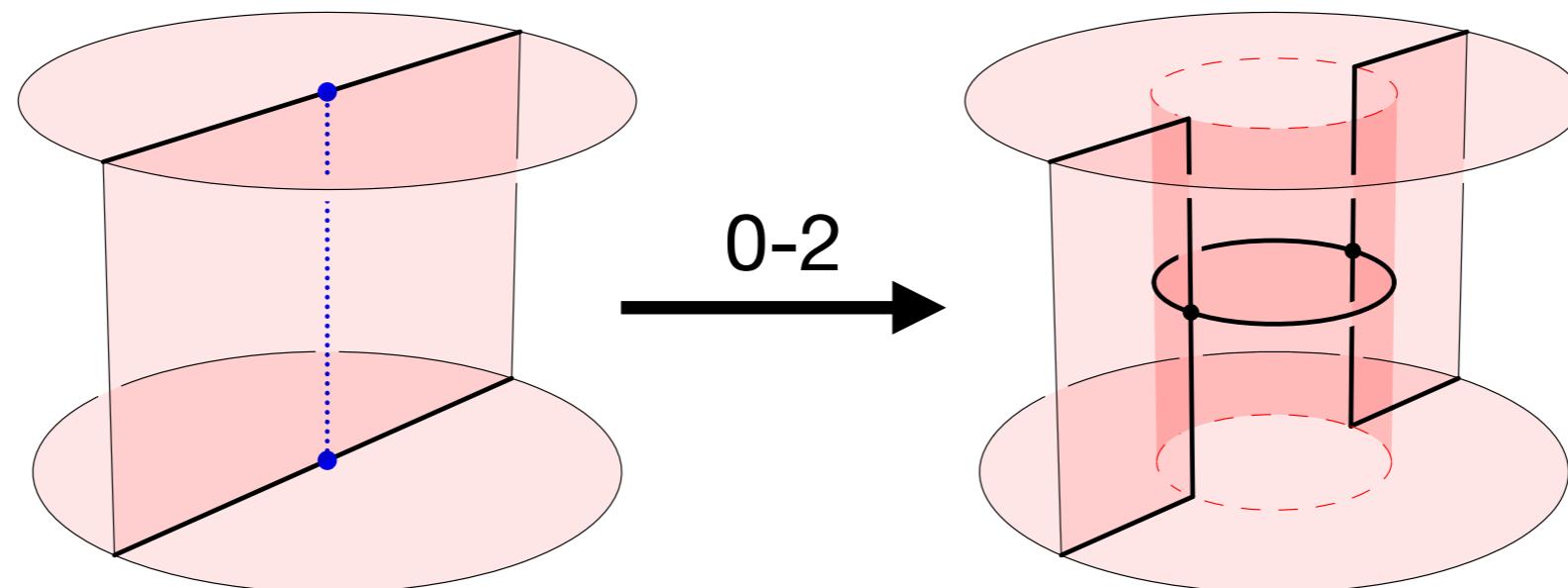
Let M be a three-manifold with non-empty boundary.

Suppose that T and T' are essential ideal triangulations of M .

Then there is a sequence of essential ~~partially~~ ideal

triangulations connecting T to T' , where consecutive

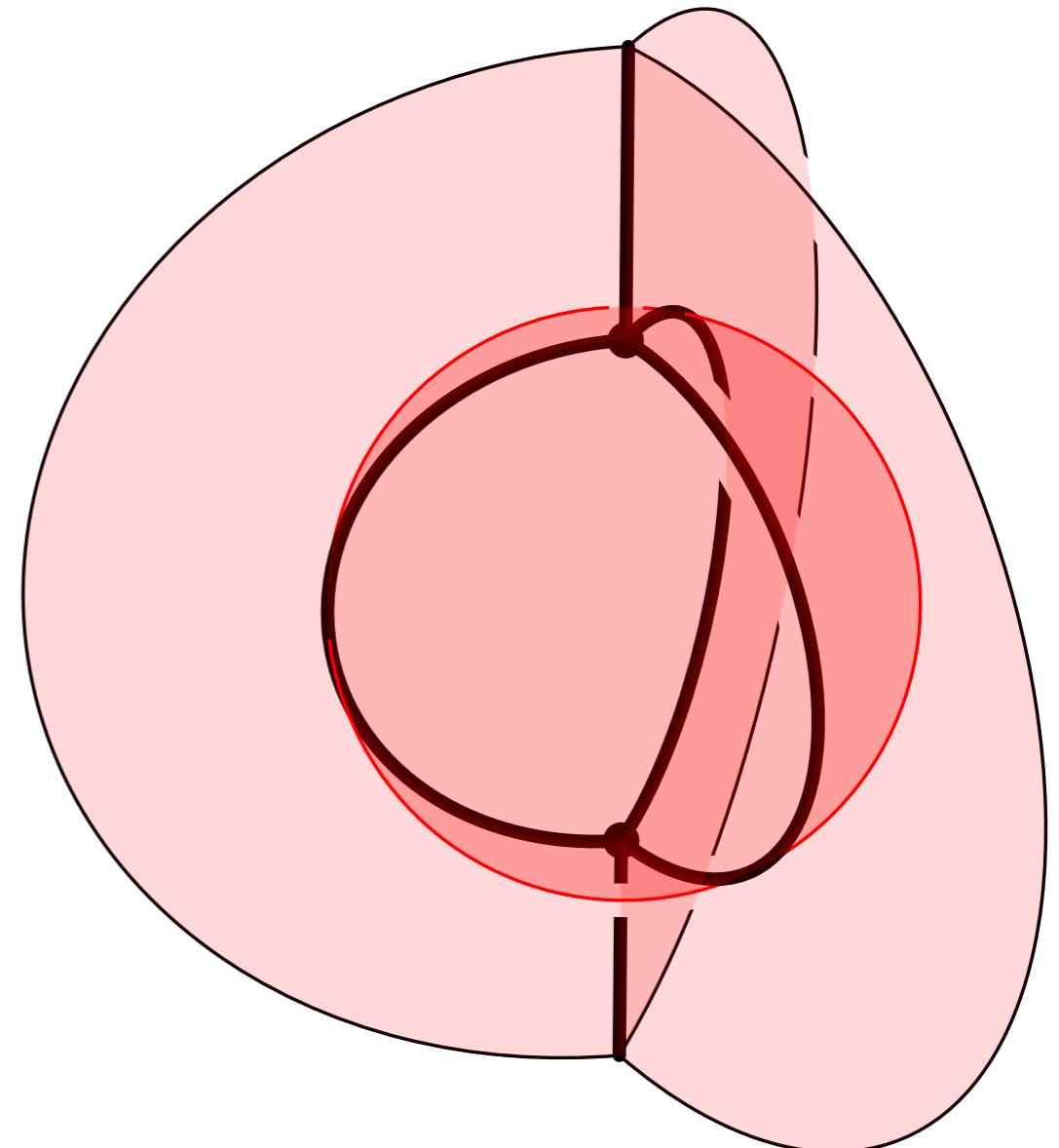
triangulations are related by 2-3, 3-2, ~~1-4~~, and ~~4-1~~ bubble and reverse bubble ~~0-2~~ and ~~2-0~~ moves.



Can we remove the 0-2 and 2-0 moves as well?

This foam of S^3 has two vertices and four complementary regions.

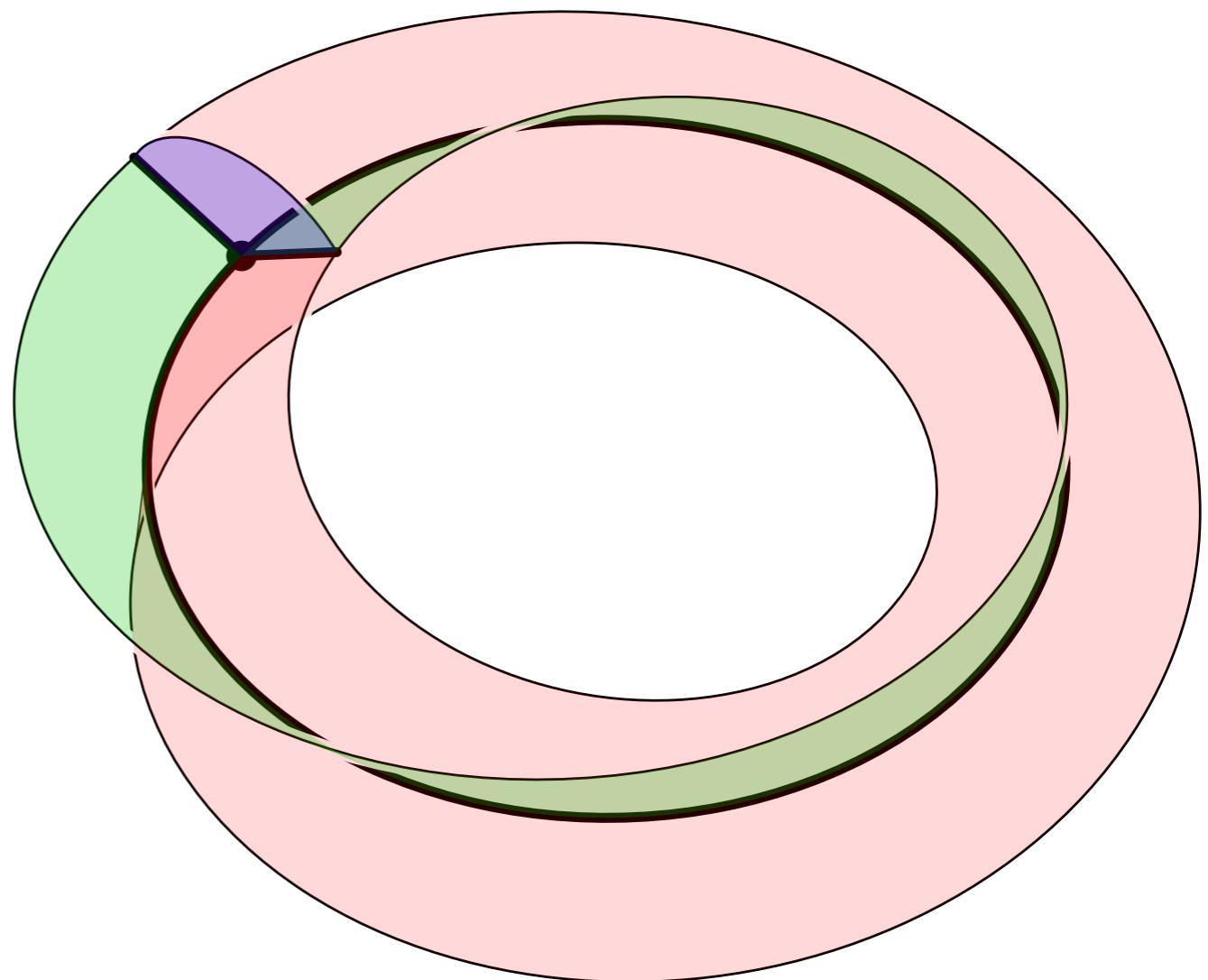
All faces are essential (have different regions either side) but any 2-3 move makes an inessential face.



Can we remove the 0-2 and 2-0 moves as well?

Mirror this across a torus to get a foam of $S^2 \times S^1$ with two vertices.

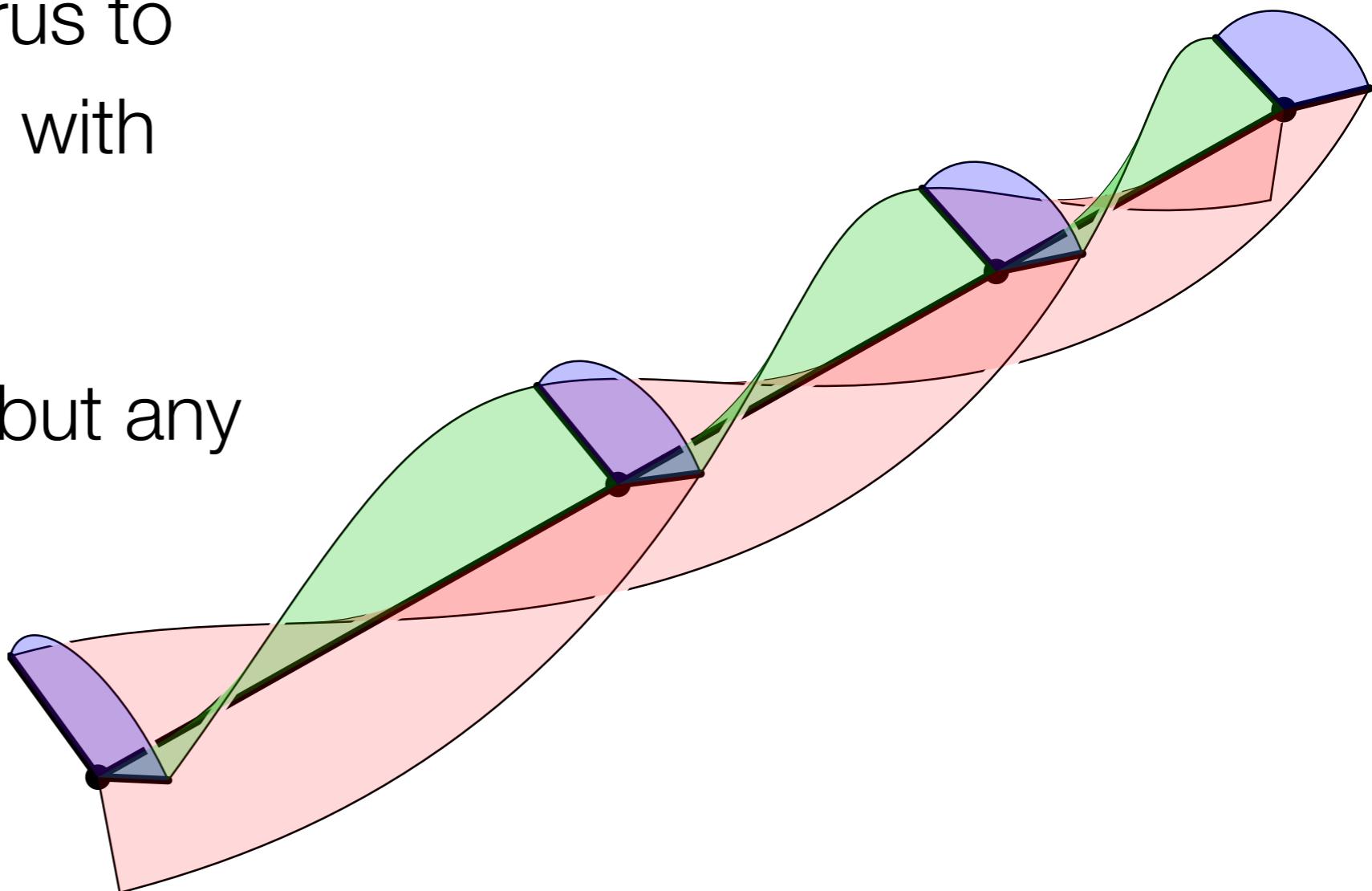
All faces are essential but any 2-3 move makes an inessential face.



Can we remove the 0-2 and 2-0 moves as well?

Mirror this across a torus to get a foam of $S^2 \times S^1$ with two vertices.

All faces are essential but any 2-3 move makes an inessential face.



Can we remove the 0-2 and 2-0 moves as well?

so that \tilde{M} has infinitely many boundary components

Theorem* (Kalelkar, Schleimer, S, '24?):

Let M be a three-manifold with non-empty boundary.

Then the set of essential ideal triangulations of M is connected via 2-3 and 3-2 moves, excepting any isolated ideal triangulations.

The general result

Let Δ_M be the set of boundary components of \tilde{M} . Let $\tilde{\mathcal{T}}$ be the induced triangulation of \tilde{M} . Given any set of *labels* \mathcal{L} , a *labelling* is a $\pi_1(M)$ -equivariant function $L : \Delta_M \rightarrow \mathcal{L}$. We say that a triangulation is *L-essential* if no edge of $\tilde{\mathcal{T}}$ has the same label at either end.

For example, if L is the identity function then a triangulation is *L-essential* if and only if it is essential.

Theorem (Kalelkar, Schleimer, S):

Suppose that L is a labelling of Δ_M with infinite image. Then:

1. There is an *L-essential* ideal triangulation of M .
2. The set of *L-essential* ideal triangulations of M is connected via 2-3, 3-2, 0-2, and 2-0 moves.

The general result

Let Δ_M be the set of boundary components of \widetilde{M} . Let $\widetilde{\mathcal{T}}$ be the induced triangulation of \widetilde{M} . Given any set of *labels* \mathcal{L} , a *labelling* is a $\pi_1(M)$ -equivariant function $L : \Delta_M \rightarrow \mathcal{L}$. We say that a triangulation is *L-essential* if no edge of $\widetilde{\mathcal{T}}$ has the same label at either end.

Suppose that $\rho : \pi_1(M) \rightarrow \mathrm{PSL}(2, \mathbb{C})$ is a representation. We can define a labelling L by equivariantly choosing, for each $c \in \Delta_M$, a fixed point at infinity of $\rho(\mathrm{Stab}(c))$.

Then a triangulation \mathcal{T} is *L-essential* if and only if there is a solution to Thurston's gluing equations on \mathcal{T} that recovers ρ .

Thanks!