
Grid

Henry Segerman
Material: PA 2200 Nylon Plastic, Selective-Laser-Sintered
Dimensions: 8 × 8 × 8 cm

The light rays from the lamp are partly blocked by the shrinking
design on the sphere; the resulting shadow is a regular tiling of the plane
by squares. This illustrates how stereographic projection transforms
the sphere, minus the north pole, into the plane. Note how shapes are
slightly distorted near the south pole, and dramatically distorted near
the north pole.

Challenge: What would happen to the pattern on the sphere if we
extended the square tiling to the entire plane?



Dodecahedral Symmetries

Saul Schleimer and Henry Segerman
Material: PA 2200 Nylon Plastic, Selective-Laser-Sintered
Dimensions: 8 × 8 × 9 cm

In the plane, the three angles of a triangle must add up to π: 180 de-
grees. However on the sphere there is a triangle with angles (π/2, π/3, π/5).
As shown in the sculpture, the sphere is tiled by 120 copies of this tri-
angle. The LED is positioned at the north pole of the sphere. The
resulting shadows are the stereographic projection of the triangles to
the plane. Note how the angles of the tiling are faithfully reproduced.

Challenge: How does the triangle with angles (π/2, π/2, π/2) tile the
sphere? How about the triangle with angles (π/2, π/3, π/4)?



24–cell

Saul Schleimer and Henry Segerman
Material: Colour 3D printed zp R©150 powder
Dimensions: 18 × 18 × 18 cm
On loan from the Museum of Mathematics

The 24–cell is one of the six regular four-dimensional polytopes. Af-
ter radial projection, its spherical version gives a tiling of the three-
sphere by regular octahedra. This is stereographically projected into
three-space, giving the sculpture.

All of the regular four-dimensional polytopes, other than the 5–cell,
can be obtained from symmetries in dimension three. One starts with
a subgroup of SO(3), lifts to the binary group in the three-sphere,
and then takes Voronoi domains. Starting with the binary tetrahedral
group, T∗, the result is the spherical 24–cell. Since the 24–cell is self-
dual, its one-skeleton also gives a Cayley graph for T∗. Each edge
corresponds to a one-third rotation of the tetrahedron about a face or
about a vertex.

Since every edge is an arc of a great circle, there is a unique quater-
nion that rotates the edge along itself, sending one endpoint to the
other. Normalizing, this quaternion gives us a unit tangent vector at
the identity in the three-sphere: that is, a point of the two-sphere.
We colour this two-sphere in an antipodally invariant way, and pull
back. The resulting coloring of the one-skeleton is consistent with the
labelling, by generators of T∗, of the Cayley graph.

Challenge: Are all of the vertices the same in S3?



One-half 48–cell

Saul Schleimer and Henry Segerman
Material: Colour 3D printed zp R©150 powder
Dimensions: 19 × 19 × 19 cm
On loan from the Museum of Mathematics

The 48–cell, after radial projection, gives a tiling of the three-sphere
by truncated cubes. The tiling is stereographically projected into three-
space and then cut by the unit sphere. We retain the inner half, giving
the sculpture.

If we start with a subgroup of SO(3), lift it to get a binary group in
the three-sphere, and take Voronoi domains then we obtain a spherical
polytope. For example, the cube group has 24 elements and so the
binary cube group C∗ has 48 elements. Voronoi domains about these
give non-regular, truncated cubes. The result, the 48–cell, is not a
regular polytope. The edges of the 48–cell are colored via the method
for the 24–cell. Here there seems to be no interpretation in terms of
Cayley graphs.

Challenge: Look for the truncated cube in the center. Find the
14 = 8 + 6 cells that share a face with that, and 18 = 12 + 6 half-cells
that touch those.



One-half 120–cell

Saul Schleimer and Henry Segerman
Material: PA 2200 Nylon Plastic, Selective-Laser-Sintered; Rit Dye
Dimensions: 33 × 33 × 33 cm

The 120–cell is one of the six regular four-dimensional polytopes.
After radial projection, its spherical version gives a tiling of the three-
sphere by regular dodecahedra. This is stereographically projected into
three-space and then cut by the unit sphere. We retain the inner half,
giving the sculpture.

The other half of the 120–cell is the spherical inversion of this half
across the equatorial two-sphere. Cutting allows us to see the internal
structure more clearly. The entire 120–cell, after stereographic projec-
tion, is almost 6 times larger than the sculpture shown here.

Challenge: Look for axes of symmetry. What orders do they have?



Dual half 120– and 600–cells

Saul Schleimer and Henry Segerman
Material: Colour 3D printed zp R©150 powder
Dimensions: 15 × 15 × 15 cm

The 120–cell (blue) and 600–cell (red) are two of the six regular four-
dimensional polytopes. After radial projection, their spherical versions
give tilings of the three-sphere by regular dodecahedra or tetrahedra,
respectively. These are stereographically projected into three-space and
then cut by the unit sphere. We retain the interlinking inner halves,
giving the sculpture.

The 120–cell is obtained by taking Voronoi domains about the ele-
ments of the binary dodecahedral group D∗. Since the 600–cell is dual
to the 120, its edges give a Cayley graph for D∗. In particular, any
given edge of the 600–cell connects the centers of adjacent dodecahedral
cells of the 120–cell.

Challenge: Count the number of edges of the 120–cell by counting
the number of faces of the 600-cell.



Dodecahedron Chains

Saul Schleimer and Henry Segerman
Material: Colour 3D printed zp R©150 powder
Dimensions: 27 × 16 × 15 cm
On loan from the Museum of Mathematics

The 120–cell contains twelve rings of ten spherical dodecahedra each.
To make a ring, start at a pentagonal face of a dodecahedral cell and
move across the cell to the opposite face. Passing through this face
exits one cell and enters its neighbor. Travelling straight through do-
decahedra in this manner, after visiting ten cells we return to the start.

These rings of dodecahedra twist around each other, giving the com-
binatorial Hopf fibration. In more detail: any one ring is adjacent to
five other rings, just as any face of the dodecahedron is adjacent to five
other faces. The five rings meeting a given ring together tile a solid
torus making up half of the three-sphere.

This sculpture consists of a trio of three pairwise adjacent rings. It
is coloured via the Gauss map, in similar fashion to the Round Klein
Bottle.

Challenge: How many pentagonal faces are shared by a pair of ad-
jacent rings?



Dc30 Ring, assembled and unassembled

Saul Schleimer and Henry Segerman
Material: PA 2200 Nylon Plastic, Selective-Laser-Sintered
Dimensions: 16 × 16 × 12 cm assembled

In the combinatorial Hopf fibration, any one ring meets five others.
These six rings cannot be disentangled. To overcome this we remove
the four dodecahedra from each ring other than the “equatorial” ring.
The result is the outer 6 rib – five of these are shown, separated. It is
a bit of a puzzle to assemble these around the (missing) equator; the
result is the Dc30 Ring.

Challenge: Six copies of the outer 6 rib can be assembled into a very
different configuration.



Dc45 Meteor, assembled and unassembled

Saul Schleimer and Henry Segerman
Material: PA 2200 Nylon Plastic, Selective-Laser-Sintered
Dimensions: 13 × 13 × 13 cm (assembled)

The 12 rings of the combinatorial Hopf fibration of the 120–cell each
have ten dodecahedral cells. We delete the 75 cells closest to the north
pole, leaving 45. This deletes the equatorial ring entirely. It leaves five
cells of the “spinal” ring and four cells in each of the inner and outer
ribs (meeting the spine and the equator, respectively). The ribs are
shown unassembled and assembled.

Challenge: There are six different ways to assemble the given ribs to
get the Dc45 Meteor.



Round Möbius Band

Saul Schleimer and Henry Segerman
Material: PA 2200 Nylon Plastic, Selective-Laser-Sintered; Rit Dye
Dimensions: 60 × 25 × 43 cm

The child’s Möbius band is made by making a half twist in a strip
of paper then joining the ends. Its boundary is an unknotted loop
in space, so it can be deformed into a circle. Doing this in the most
symmetric way carries the surface to the Round Möbius Band.

The boundary of the band is now a circle in the center of the sculp-
ture, and the surface “goes through infinity”: in the ideal version the
surface extends outwards forever, becoming more and more flat. To
avoid having an infinitely large sculpture, we have removed a square.
The design is parameterised in S3, then stereographically projected to
R3. The parameterisation is as follows.

(cos θ cosφ, cos θ sinφ, sin θ cos 2φ, sin θ sin 2φ)

Challenge: Find a path in the surface that shows the surface has
only one side.



Round Klein Bottle

Saul Schleimer and Henry Segerman
Material: Colour 3D printed zp R©150 powder
Dimensions: 24 × 24 × 17 cm

Two copies of the Möbius band, glued together along their bound-
aries, makes a Klein bottle. Here we start with two copies of the Round
Möbius Band – the result is the Round Klein Bottle.

Let B be the boundary of the thickened Klein bottle in S3 – the
thickening is required for the stereographic projection to be printable
in three-space. Away from the corners of B there is exactly one outward
pointing normal. Using the quaternionic structure on S3, the normal
vector is moved to the identity, giving the Gauss map from B to the
unit sphere (again, away from the corners). We identify the unit sphere
with the sphere that is inscribed in the red/green/blue colour cube; this
gives the colouring of the sculpture.

Since the Round Möbius Band goes through infinity, the Round Klein
Bottle necessarily goes through infinity twice. Thus the Round Klein
Bottle self intersects. The self-intersections form a great circle in the
three-sphere and thus a line in three-space. The parametrisation is
exactly the same as for the Round Möbius strip, but over a domain of
twice the size.

Challenge: Look along the line of self intersection. What is the order
of symmetry?



Clifford Torus

Saul Schleimer and Henry Segerman
Material: Colour 3D printed zp R©150 powder
Dimensions: 23 × 23 × 10 cm

Like the Round Klein Bottle, the Clifford Torus is a minimal surface
in the three-sphere. This surface has the following parametrisation.

(cos θ cosφ, cos θ sinφ, sin θ cosφ, sin θ sinφ)

The grid lines on the surface correspond to constant values of θ and
φ. The surface is stereographically projected from the three-sphere to
three-space to allow 3D printing – as usual we have placed the projec-
tion point on the surface. To avoid having an infinitely large sculpture,
we have removed a square from the surface. The piece is coloured via
the Gauss map, in similar fashion to the Round Klein Bottle.

Challenge: The Clifford Torus, extended to infinity, separates three-
space into two identical halves. Can the two sides be swapped by a
rigid motion of three-space?



Knotted Cog

Saul Schleimer and Henry Segerman
Material: Colour 3D printed zp R©150 powder
Dimensions: 22 × 19 × 8 cm
On loan from the Museum of Mathematics

This sculpture is based on the following parametrisation of the trefoil
knot in S3, where θ is fixed and φ varies.(

cos θ cosφ, cos θ sinφ, sin θ cos
3

2
φ, sin θ sin

3

2
φ

)
Here, in a playful reference to steampunk semiotics, we have added
intermeshing cog teeth. All of the teeth are identical in S3, the three-
sphere. The apparent differences in size are due to the distortion com-
ing from stereographic projection. The sculpture is coloured using the
colour wheel, parametrized by arclength around the the knot – thus
complementary colours are adjacent.

Challenge: How many cog teeth are there? Is any number of teeth
possible?



(5, 3) Seifert Surface

Saul Schleimer and Henry Segerman
Material: Colour 3D printed zp R©150 powder
Dimensions: 20 × 20 × 16 cm
On loan from the Museum of Mathematics

A knot is a loop, without beginning or end, in three-space. A torus
is the mathematician’s term for the surface of a donut. A knot K that
lives on the torus is called a torus knot. If we count the number of
times, p, that K goes through the hole of the torus, and the number
of times, q, that K goes around the torus we get a fraction p/q that
specifies the torus knot (up to a choice of handedness).

A Seifert surface for a knot L is a surface in three-space, with bound-
ary equal to K. Any torus knot has a canonical choice of Seifert surface,
namely the Milnor fiber : the points of the three-sphere solving

arg(zp + wq) = 0,

where z and w are complex coordinates in C2. We parametrise the
Milnor fiber, following the work of Tsanov, via fractional automorphic

forms. These give a map from ˜PSL(2,R), the canonical geometry of the
torus knot complement, to the three-sphere. The pattern of triangles in
each fundamental domain come from two applications of the Schwarz-
Christoffel theory in complex analysis, turning a Euclidean triangle
into a hyperbolic one.

Challenge: The Seifert surface can be realized topologically as a
family of p disks, a family of q disks, and a collection of p · q copies of
a very small quarter-twisted band. Find the families of five and three
disks.



(4, 4) Seifert Surface

Saul Schleimer and Henry Segerman
Material: PA 2200 Nylon Plastic, Selective-Laser-Sintered
Dimensions: 14 × 14 × 15 cm

A link is a collection of loops in three-space, each without beginning
or end, that do not intersect each other. As with torus knots, a torus
link is a link that lives on the torus. As for torus knots, Milnor fibers
provide canonical Seifert surfaces for torus links.

Here, since p = q = 4, a highly symmetric pattern is possible for the
fundamental domain of the tiling of the surface.

Challenge: Find any fundamental domain for the tiling of the Seifert
surface. How many copies are there in the Seifert surface?



(3, 3) Seifert Surface

Saul Schleimer and Henry Segerman
Material: PA 2200 Nylon Plastic, Selective-Laser-Sintered; Rit Dye
Dimensions: 16 × 14 × 15 cm

The basic construction technique here is the same as for the other
Seifert surfaces: we use fractional automorphic forms to give a parametri-
sation of the Milnor fiber. However, the surface is thickened using the
so-called elliptic flow. This flow comes from the action of SO(2) sub-

group on ˜PSL(2,R), pushed down to S3. The flow is transverse to the
Seifert surface away from the boundary. As a point x approaches the
boundary the flow line through x topples; finally the boundary is a
union of flow lines.

Since p = q = 3, a highly symmetric pattern is possible for the
fundamental domain of the tiling of the surface.

Challenge: Look through the windows in the thickened surface. Find
the places where the toppling is as small as possible. What is special
about those points?



(3, 3) Seifert Surface with Fibers

Saul Schleimer and Henry Segerman
Material: PA 2200 Nylon Plastic, Selective-Laser-Sintered; Rit Dye
Dimensions: 21 × 19 × 21 cm

When p = q, the flow lines of the elliptic flow are all fibers of the
Hopf fibration: the fibration of S3 coming from intersecting S3 with all
complex lines in C2. In this piece we add to the (3, 3) Seifert Surface
all flow lines through the small hexagons of the tiling of the Seifert
surface. Flow lines going too close to infinity are cut off.

Challenge: Follow the fibers to see that they are round circles.



Twisted Earth

Saul Schleimer and Henry Segerman
Material: Colour 3D printed zp R©150 powder
Dimensions: 25 × 23 × 20 cm

Here we revisit the Seifert surface for the (3, 3) torus link, this time
using it as a canvas for a distorted map of the Earth. Before project-
ing to three-space, the Seifert surface sits in S3. The Hopf fibration
maps from S3 to S2, the ordinary sphere, which we colour using the
continents and oceans of the Earth. We then colour each point of S3,
including the Seifert surface, the same as the corresponding point on
the Earth.

Challenge: Find all copies of Stony Brook.



Developing Hilbert Curve

Henry Segerman
Material: PA 2200 Nylon Plastic, Selective-Laser-Sintered
Dimensions: 10 × 10 × 10 cm

This sculpture shows the first few steps in the construction of the
Hilbert curve, a space-filling curve in R2. The curve is constructed
recursively: we start with very simple curve (at the top) and replace
each of its arcs with a copy of the topmost curve. Each curve is given
two bands below the previous – that is, the sculpture replaces motion
through time with motion through space. Every other horizontal band
follows one of the curves.

Challenge: How many steps in the construction of the Hilbert curve
are shown here?



Developing Sierpińksi Arrowhead Curve

Henry Segerman
Material: PA 2200 Nylon Plastic, Selective-Laser-Sintered
Dimensions: 13 × 11 × 14 cm

This sculpture shows the first few steps in the construction of the
Sierpińksi arrowhead curve, a fractal curve in R2 that “fills” the Sierpińksi
triangle, discovered by Mandelbrot. The curve is constructed by a re-
cursive process that starts with a simple curve and replaces it with
successively more complicated curves. These steps are shown here us-
ing the third dimension – every other horizontal band follows one of
the curves.

Challenge: The first curve in the construction of the Sierpińksi ar-
rowhead curve consists of three line segments that make up half of a
hexagon. How many line segments are in the second curve? What is
the general formula?



Developing Terdragon Curve

Henry Segerman
Material: PA 2200 Nylon Plastic, Selective-Laser-Sintered; Rit Dye
Dimensions: 65 × 52 × 22 cm

This sculpture shows the first few steps in the construction of the
terdragon curve, a space-filling curve with fractal boundary in R2 dis-
covered by Davis and Knuth. The curve is constructed by a recursive
process that starts with a simple curve and replaces it with successively
more complicated curves. These steps are shown here using the third
dimension.

Challenge: A square can be subdivided into four squares, each half
the size of the original. Similarly, the bottom of the sculpture can be
divided into three identical pieces; what is the ratio of sizes?



Umbilic Rolling Link

Helaman Ferguson
Material: Bronze
Dimensions: 16 × 16 × 10 cm
On loan from Tony Phillips

“This is a dynamic piece: The deltoid umbilic torus rolls through
the dual cardioid umbilic torus and vice-versa, each piece free to turn.
The umbilic refers to the deltoid as a hypocycloid of three cusps; the
cardioid as an epicycloid of one cusp.

Each torus is the dual of the other, an outside-in instantiation: The
compactification of the exterior of one is topologically the interior of
the other.

Each is the inside out of the other/ Each is the outside in of the
other/ Together they form a yin-yang pair;/ yang is the deltoid torus,
and/ yin is cardioid torus.

As solid tori they can be viewed as an instantiation of a three-
sphere.”

— Helaman Ferguson



Knotted Gear

Oskar van Deventer
Material: PA 2200 Nylon Plastic, Selective-Laser-Sintered; Rit Dye
Dimensions: 6 × 4 × 4 cm

“These are two knots linked together. The two knots turn through
each other in a gearing motion in a 2 : 3 ratio.”

— Oskar van Deventer



Triple Gear

Saul Schleimer and Henry Segerman
Material: PA 2200 Nylon Plastic, Selective-Laser-Sintered;

motorized base.
Dimensions: 7.0 × 7.4 × 4.5 cm without base

Three ordinary gears can be arranged into a triangle on the plane, so
that each meshes with the other two. However, such an arrangement
is frozen in place because meshing gears must rotate in opposite direc-
tions. This sculpture gives a non-planar, and non-frozen, arrangement
of three linked gears. We were inspired by existing arrangements with
two linked gears, due independently to Helaman Ferguson and Oskar
van Deventer.

The gears are powered by a motor in the base of the sculpture, which
rotates a central axle. We thank Adrian Goldwaser and Stuart Young
for prototyping and designing the motorised base.

Challenge: Relate this piece to the (3, 3) Seifert Surface sculpture.



Triple Helix

Saul Schleimer and Henry Segerman
Material: PA 2200 Nylon Plastic, Selective-Laser-Sintered; Dye
Dimensions: 6.5 × 6.5 × 6.5 cm

This sculpture, consisting of a gearbox and three perpendicular axles,
gives another, much simpler, solution to the problem of finding three
pairwise meshing gears that are not frozen.

Challenge: Find a mechanism in which three gears are pairwise mesh-
ing, not frozen in place, with all three axes of rotation parallel.



Borromean Racks

Saul Schleimer and Henry Segerman
Material: PA 2200 Nylon Plastic, Selective-Laser-Sintered; Dye
Dimensions: 10 × 10 × 10 cm

This sculpture consists of three identical pieces: each a loop with six
racks on its inner, upper, and lower faces respectively. The racks of
each piece mesh with one or two of the racks of the others. The loops
interlink in the fashion of the Borromean rings.

This gives another example of a triple of gears that intermesh, but
still move.


