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My research lies in the area of partial differential equations (PDEs). In particular, I am interested

in the mathematical analysis of equations related to fluid dynamics, such as the Navier-Stokes (NSE)

and the Euler (EE) equations, as well as equations arising from NSE and EE through various approx-

imations. These equations are used to model a broad range of phenomena in the natural sciences

including but not limited to meteorology, oceanography and engineering (aeronautical construc-

tion, plasma physics, and lasers). The solutions of these equations exhibit very complex (chaotic or

turbulent) behavior, thus rigorous mathematical treatment is crucial for a better understanding of

those models and to provide proper guidelines for numerical computations and other applications.

The Navier-Stokes equations read

∂tu− ν∆u+
3∑
j=1

∂j(uju) +∇p = f

div u = 0

where u(x, t) = (u1(x, t), u2(x, t), u3(x, t)) and p(x, t) denote the unknown velocity and the pressure,

f(x, t) is the given external force. We consider the Cauchy problem with initial data u(x, 0) = u0(x).

There are many open problems regarding the NSE when the velocity and the pressure are considered

on the whole R3 or are periodic functions (which amounts to say that u(x, t) and p(x, t) are given

on a torus T3). If the problem is considered on a bounded domain, we equip it with suitable

boundary conditions. Due to the effect of viscosity, the fluid is believed to stick to the boundary.

Mathematically, this translates into the Diriichlet boundary conditions, namely u(x, t) = 0 on the

boundary of the domain. The Euler equations are believed to describe the motion of inviscid fluids,

that is when ν = 0.

The long term goal of my research program is to broaden the analytical understanding of problems

related to the above mentioned equations and to develop general mathematical (analytical) tools

useful in the analysis of PDEs. Although the well-posedness theory of the Navier-Stokes and Euler

equations gathered great interest of mathematicians in the past decades, the ubiquity of their

applications offers a great source of unanswered analytical questions. Throughout my academic

career, individually and with a group of mentors who later became collaborators, we obtained a

variety of results concerning the above mentioned class of equations. Below, we present a brief

summary of our work in the context of present literature and contemporary research directions.

The second part of this statement contains a more detailed exposition of these results aimed at

readers who are interested in their full formulation and analytical and technical apparatus used in

the proofs.

Although the fundamental equations of the fluid dynamics have been formulated in the 18th

and 19th century, the question of their well-posedness has remained an open problem. Regarding
1



Walter M. Rusin Research Statement

the Navier-Stokes equations, it is believed that the modern mathematical theory was initiated by

J. Leray in 1934 in his seminal paper [56], where the global existence of weak solutions (potentially

not regular in the classical sense) has been proved. T. Kato and H. Fujita in 1962 ([40]) and

1983 ([29]) offered a different way of approaching the problem via mild solutions which are known

to be regular on their time of existence. The generality of the method limits however the global

existence only to the class of initial data which are small in certain scale-invariant norms. In the

1980’s and 1990’s a french group of mathematicians led by Y. Meyer (see [62] and references therein)

embarked on a quest in order to construct global solutions with large initial data. In particular,

M. Cannone and Y. Meyer in [14] were able to construct a class of data which are arbitrarily

large in the sense of spaces considered by Fujita and Kato. However those data still have to be

small in the Koch-Tataru space (BMO−1) to warrant global regularity (the data oscillate fast in

all directions making a certain scale-invariant Besov norm sufficiently small). The breakthrough

came in the early 2000’s with the works of Y. Chemain, I. Gallagher and their collaborators where

first examples of truly large (in the sense of the Koch-Tataru space) initial data leading to global

regular solutions were constructed ([18, 19, 20]). In [47, 48], in joint work with I. Kukavica and

M. Ziane, we provide very general conditions on the initial data which guarantee that the resulting

solution is global in time. In particular, in [48] we exhibit a class of initial data, oscillating only

in one direction, whose BMO−1 norm has algebraic dependence on 1/h, where h is the period of

oscillation. Since our methods allow for inclusion of external forces, the resulting solutions do not

decay in time. This greatly extends other results in this direction present in the literature. For

instance, the results of I. Gallagher and J.Y. Chemin allow data of the size | log 1/h|. Conditions

presented in [48] admit data of order (1/h)1/2. In addition, methods used by Gallagher and Chemin

in [18, 19, 20] necessitate the absence of external forces and require a rapid decay of corresponding

solutions. Since our proofs are based on new anisotropic estimates and a careful analysis of the

effect of incorporating oscillations into the original system of equations, they allow non-zero forcing

and thus non-decaying solutions. Finally in [49] we prove that the solutions of NSE are smooth

under some structural conditions and some natural conditions on the horizontal derivatives of the

horizontal components of the velocity and the derivative in the vertical direction. The obtained

conditions admit data whose vertical average is large in BMO−1. In this case, unlike previously, our

data do not need to oscillate in any direction. The results also allow non-zero external forces and

lead to solutions which do not decay in time. A more detailed exposition of the result is contained

in the Section 1.1.

With V. Šverák, under the assumption that the NSE admit solutions which become singular

in finite time, we prove in [85] that there exists a non-empty set of initial data which lead to

singularities, and whose norm is minimal in the sense of the Kato-Fujita condition. Moreover

the set of such data is strongly compact modulo translations and dilations consistent with the

scaling of the equations. In the same spirit but using different techniques, in [82] we consider the

stability of global solutions, where we analyze sets of minimal perturbations, which cause finite time

singularities. There is strong evidence that the described properties do not hold for many equations
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with the same scaling as NSE, thus analysis of this problem sheds new light on features specific

to NSE. Interested readers may find more details in Section 1.2.

A different way of tackling the problem of regularity of weak solutions of the NSE was proposed

in 1976 by V. Sheffer [86, 87] and later in 1984 by L. Cafarelli, R. Kohn and L. Nirenberg [12]. The

goal is to estimate the size of the set of possible singular points. This approach has been dubbed as

the partial regularity. The inherent feature of this theory is that it is local, that is the considered

scale-invariant quantities are localized to a space-time cylinder Qr(x0, t0) in some sense centered at

the point of interest (x0, t0). Apart of estimating the measure of the possible singular set, one of

the main results of this theory are regularity criteria which state that if a certain scale-invariant

quantity is sufficiently small on Qr(x0, t0) then (x0, t0) is a regular point. The partial regularity

of the Navier-Stokes equations has been addressed in various contexts and many regularity criteria

have been proposed. Motivated by the work on anisotropic estimates, with I. Kukavica and M. Ziane

in [50] we propose a local regularity criterion which takes into account only one component of the

velocity field, say u3(x, t). In addition, we prove a partial regularity criterion based on the pressure

p(x, t). The presented approach and obtained criteria allow also for improvement of the possible

blow-up rates described by Leray in [56]. For the precise statement of the results and methodology

of the proof please refer to Section 1.3.

In order to exhibit specific features of certain physical situations and capture only the relevant

dynamics of the model not obscured by phenomena unrelated to the considered setting, one often

makes an ansatz transforming the full system of Navier-Stokes equations into a related system

suitable for further analysis. A particular example of this procedure are the primitive equations

(PE) used in meteorology and climate modeling. The main mathematical difference between the

PE and NSE is that the pressure is two-dimensional, however the third component of the velocity

field is more singular. The mathematical theory of the primitive equations dates back to the works

of P. Lions, R. Temam and S. Wang. In terms of global well-posedness of solutions, the state of

the art result proved by C. Cao and E.Titi concerns solutions with initial data in H1, that is with

square-integrable gradient. In [46] we address the question whether there exists a class of initial

data which does not require differentiability (even in the weak sense), yet still yields global unique

solutions. The answer is affirmative and we are able to prove that the primitive equations are

well-posed for initial data in the class of continuous functions. We note that the choice of this class

is mostly motivated by the uniqueness questions. Section 1.4 contains a more extensive description

of the result and its place in literature.

In order to describe physical phenomena, the fluid dynamics equations (in particular NSE) are

often coupled with equations describing the evolution of other physical quantities relevant to the

considered model. In the case of the geodynamo, which is the essential process by which the

rotating, convecting, electrically conducting molten iron in the Earth’s fluid core maintains the

geomagnetic field counteracting the ohmic decay, NSE are coupled with the magnetic Maxwell

equations to obtain the magneto-hydrodynamic equations (MHD). The full MHD system is very
3



Walter M. Rusin Research Statement

hard to tract mathematically and numerically, thus Moffat and Loper [63, 64, 65] proposed an

appropriate model known as the magneto-geostrophic equation. Physically the model postulates

that slow cooling of the Earth leads to slow solidification of the liquid metal core onto the solid inner

core and releases latent heat of solidification that drives compositional convection in the fluid core.

In [27], S. Friedlander, V. Vicol, and I address the problem of the well-posedness of an active scalar

equation (MG) arising in the study of the magneto-geostrophic turbulence. The equation shares a

number of properties with the extensively studied surface quasigeostrophic equation (SQG) and the

incompressible porous media equation (IPM). However it has also a number of novel features due to

the strong singularity and anisotropy of the operator via which the drift velocity is obtained from

the underlying scalar. In comparison to SQG and IPM, the singular character of the symbol of the

nonlinearity presents additional significant analytical difficulties. The diffusion in this equation is

introduced via the fractional Laplacian (−∆)γ. In [27], we consider the mathematically challenging

super-critical regime γ < 1. We show that there exists another “critical” threshold value (γ = 1/2),

with respect to which the properties of the corresponding solutions may change drastically. In

particular, for γ > 1/2, we obtain a local well-posedness result for arbitrarily large data in Sobolev

spaces and global well-posedness if we impose a smallness condition on the size of the data. For

γ < 1/2 the equations are ill-posed in the sense of Hadamard. For the transitional case γ = 1/2, we

show that, while the small data result is still true, there exist data, whose size is large, and for which

the associated linear operator has arbitrarily large unstable eigenvalues. This information is used to

prove that, in this case, the equation is Hadamard ill-posed. Such dichotomy is not known for other

active scalar equations. In turn, recent works of S. Friedlander and A. Suen concern the case where

the multiplier symbol incorporates a viscous effect making it a smoothing operator of degree −2.

They show in [28] that the non-diffusive case exhibits features better than the three-dimensional

Euler equations, in particular they attempt to address the problem of the single versus double

exponential growth of the norms and persistence of regularity of solutions. The growth estimate

is based on the L3-norm of the gradient of the initial data. In a recent paper (see [84]), using

frequency localization techniques, we show that the regularity is controlled only by the L3-norm

of the initial data (not the gradient) and obtain a much sharper growth estimate of all norms. A

technical exposition of the above mentioned results is contained in Section 1.5.

For nonlinear PDEs, the well-posedness questions may depend not only on the actual structure

of the equation but also on the choice of the functional setting of the analysis. In order to gain

insight into the dynamics described by the equations it is often beneficial to know the functional

analytic properties of the nonlinearity as a mapping between Banach spaces. In the context of

fluid dynamics such problems date back to the works of Y. Meyer, P. Germain, J. Bourgain and

N. Pavlović. In [26], S. Friedlander and I consider an iterative resolution scheme for critically

diffusive active scalar equations, where the drift velocity is obtained from the scalar via a Fourier

multiplier of order zero. The particular examples of physical and mathematical problems we have

in mind are the surface quasigeostrophic equation (SQG) and the porous media equation (IPM).

The critical regime for such active scalar equations has been extensively studied and a number of
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fundamental properties has been addressed (see for instance [13, 23, 41]). In particular, the well-

posedness in the critical setting has been established. However, most of the results in literature

involve quantities which are subcritical with respect to the inherent scaling of the equation.The

goal of our analysis is to gain insight into the behavior of the nonlinearity in order to understand

if the well-posedness may be pushed further into the supercritical realm. If the answer is negative,

what is the mechanism preventing it. We focus on the second iterate and analyze the properties of

the associated bilinear form. The results presented in [26] involve only critical (scale-invariant) or

super-critical norms. A more detailed description can be found in Section 1.6.

Another fundamental problem regarding the Navier-Stokes and Euler equations is the question of

the inviscid limit. Note that formally, the Euler equations can be obtained from the Navier-Stokes

equations via a singular limit (viscosity ν → 0). In the presence of the boundary the dynamics

of inviscid fluids (described by the Euler equations) versus the viscous fluids (described by the

Navier-Stokes equations) can be diametrally different. In the case of Dirichlet boundary conditions

(the fluid is believed to stick to the boundary due to viscosity), we observe the formation of the

boundary layer satisfying the Prandtl equations, which seem to be generally ill-posed. There exists

an extensive body of literature on this topic. We address the inviscid limit problem for the Navier-

Stokes equations in [80], and with P.B. Mucha in [69]. In [69, 80], we consider the Navier slip-type

boundary conditions and show that under suitable assumptions the convergence holds. In particular,

in [80] we admit the situation where the vorticity is not bounded. In [69], we obtain an explicit

algebraic rate of convergence, previously unknown for general settings. The inviscid limit for active

scalar equations is the subject of [83]. We show that convergence in the energy norm holds under

much lower regularity assumptions than those considered in literature (c.f. [99]), allowing for mild

singularities of gradients of solutions. As in the case of the NSE, we obtain an explicit algebraic

rate of convergence.

The equations of fluid dynamics find their applications also in combustion theory which we address

in [3], jointly with S. Benachour, I. Kukavica, and M. Ziane. We obtain criteria which guarantee

global existence of solutions to the two-dimensional Kuramoto-Sivashinsky (KS) equation. Careful

analysis of the anisotropy introduced to the problem by the geometry of the non-homogeneous

rectangular domain allows us to obtain results which admit much larger initial data than previously

known.

In [81] we analyze the partial regularity of a parabolic approximation of NSE. The considered

system falls into the category of artificial compressibility methods and shares a number of important

features with the NSE. In particular, the energy estimate or the skew-symmetry of the nonlinearity

are preserved. The NSE can be recovered as a singular limit, very similar to low-mach limits

for compressible Navier-Stokes equations (the speed of sound becomes infinite). We show that this

limiting process is rigorous in the regime of both mild and weak solutions. This result is particularly

interesting from the point of view of numerical simulations since such penalization models are used

in the context of finite element methods.
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1. Technical Exposition of Research

1.1. Global well-posedness of NSE with large initial data. In [47, 48], we consider the three-

dimensional incompressible Navier-Stokes system

∂tu−∆u+ (u · ∇)u+∇p = f (NSE)

div u = 0

u(x, 0) = u0(x),

on the domain Q = [0, 1]3 with periodic boundary conditions. These equations arise from applying

Newton’s second law and the law of conservation of mass to the fluid motion. The unknown functions

are the velocity vector field u(x, t) and the scalar pressure function p(x, t), while the external force

f(x, t) is given.

Beginning with the seminal paper of J. Leray [56] the mathematical properties of solutions of

NSE, such as regularity and uniqueness, have been extensively studied and there exists a vast body

of literature on that topic (see [55] and references therein). In particular, H. Fujita and T. Kato

in [29] showed that the global existence holds if ‖u0‖Ḣ1/2 is sufficiently small. This result has

been subsequently extended to other functional spaces. In particular, M. Cannone, Y. Meyer, and

F. Planchon [15] obtained global solutions in Besov spaces Ḃ
−1+3/p
p,∞ (allowing for big oscillatory L3

data). In [42], H. Koch and D. Tataru constructed solutions in the space BMO−1. In the sense of

inclusion, this is the biggest space in which one can hope for well-posedness of the Navier-Stokes

equations. On the other hand, a negative result of J. Bourgain and N. Pavlović [4] establishes

ill-posedness in the space Ḃ−1
∞,∞.

It has been discovered by G. Raugel and G. Sell that high oscillations in one or more directions

regularize the solutions. In the papers [74, 75], they proved that global existence holds for a large

class of data R(ε), oscillating with the frequency 1/ε in the vertical direction (c.f. also [34, 35]).

Subsequent works [1, 18, 19, 20, 31, 37, 38, 52, 53, 67, 68, 92, 93] complemented and extended these

results.

Except in the two-dimensional case, it is extremely difficult to construct global solutions with

large BMO−1 data and non-zero force. Namely, even if the H1 norm is large, the BMO−1 norm

can be small, especially if a solution oscillates in one direction. J.Y. Chemin and I. Gallagher in

[18, 19] explored the oscillatory character of the initial data to produce a specific class of data with

large Ḃ−1
∞,∞ norm yet admit the existence of a global solution. We would like to point out that due

to the oscillations, the solutions in [18, 19] decay vary rapidly to zero.

In [47], in collaboration with I. Kukavica and M. Ziane, we obtain global regularity of the Navier-

Stokes equations for a wide class of initial data oscillating with a period 1/h in the third direction.

The only subcritical condition we require is ‖∇Tu0‖L2(Q) ≤ Ch−1| log h|−1/2 where ∇T represents a

tangential gradient. Compared to earlier results, there is no restriction on the Fourier support of

solutions and the data are genuinely three-dimensional, i.e., the third component does not need to
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vanish. Also, in [18], the condition is nonlinear, whereas the one presented in [47] is based solely

on the size of the data. The proofs are based on delicate anisotropic estimates which explore the

effect of the oscillatory ansatz on the considered problem. We introduce averaging operators in the

horizontal and vertical directions (MT [·] and M [·], respectively) and we use certain cancellations

between such operators in the estimates of ‖∇Tu‖L2 , ‖MT [uT ]‖L2 , and ‖M [u3]‖Lp for certain p ≥ 3.

In [48], we choose a set of quantities more consistent with the effects of oscillations. Using

techniques similar to those in [47], we obtain estimates on ‖∇TuT‖L2 , ‖∂3u‖L2 , and ‖M [u3]‖Lp , for

certain p ≥ 3. The main result of [48] states that the solution is regular if ‖∇TuT (0)‖L2 ≤ C−1h−1,

‖∂3u(0)‖L2 ≤ C−1h−1, ‖M [u3](0)‖Lp ≤ C−1h2/p−1, where p ∈ [3,∞). The proof relies on special

cancellations which occur when considering the set of the chosen quantities. The choice of these

functionals is particularly suitable for the study of 2.5-dimensional Navier-Stokes equations and their

(possibly large) perturbations, which is the main heuristics behind our results. Estimates obtained

in the proof dictate a balance between the size of tangential derivatives of the horizontal components

of velocity and the vertical derivative of the velocity. In [48] we also take advantage of new estimates

which furthermore allow for the difference in order of the size of the above mentioned quantities.

We prove that the solution is regular if ‖∇TuT (0)‖L2 ≤ C−1h2/3p−1, ‖M [u3](0)‖Lp ≤ C−1h3/p−1,

and ‖∂3u(0)‖L2 ≤ C−1h−1−1/3p, where p ∈ [4,∞). We exhibit a class of initial data which generate

global regular solutions and whose size is ‖u0‖BMO−1 ∼ h−1+2/3p or ‖u0‖BMO−1 ∼ h−1+ε (which can

be generalized to ‖u0‖BMO−1 ∼ h−1 up to a logarithm). Currently, we are working on the extension

of our results to the domain R3.

The results presented in [49] surprisingly do not require any fast oscillations. We consider a class

of functions u = (u1, u2, u3) on Q = [0, 1]3 such u1(x1, x2, x3) is an odd function of x1 and an even

function of x2, u2(x1, x2, x3) is an even function of x1 and an odd function of x2 and u3(x1, x2, x3) is

an even function of x1 and x2. The considered quantities are the same as in [48]. The main result

states that the solution is regular if ‖∇Tu0k‖L2 ≤ Cη2, ‖∂3u0‖L2 ≤ Cη3, and ‖M [u03]‖Lp ≤ Cη−1,

where p ∈ [3,∞), η ∈ (0, 1), and the operator M [·] is the average in the x3-direction. The proof

relies on special cancellations which occur when considering the set of the chosen quantities and

their even/odd character as functions of the horizontal variables.

1.2. Minimal initial data for potential Navier-Stokes singularities. In [85], with V. Šverák,

we consider the Cauchy problem for the Navier-Stokes equations with the initial condition in the

homogenous Sobolev space Ḣ1/2(R3). The Ḣ1/2 norm is invariant under the natural scaling of

the initial data u0(x) → λu0(λx), and the Cauchy problem is known to be globally well-posed for

sufficiently small u0 ∈ Ḣ1/2, and locally well-posed for any u0 ∈ Ḣ1/2, as proved by H. Fujita and

T. Kato in [29]. More precisely, there exists ρ > 0 such that for all u0 ∈ Ḣ1/2 with ‖u0‖Ḣ1/2 < ρ

there exists a global solution. For Sobolev spaces with higher regularity (Ḣs(R3) with s > 1/2),

scaling properties of the equation allow to match coarse-scale behavior of solutions with the one at

fine-scales thus providing valuable information for the latter. However, this principle breaks down
7
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for s = 1/2 or more generally for any other choice of a critical space, for instance L3(R3) or the

Morrey space Ṁ3
2(R3). These norms are invariant under the natural scaling of the equations and

the scaling procedure seems to loose its value, thus making work in those scale invariant spaces

more challenging. Therefore, we define ρmax as the supremum of all ρ > 0 such that for data

‖u0‖Ḣ1/2(R3) < ρ the corresponding u(t, x) is a global mild solution. It is not known if ρmax is finite

or infinite. In [77] and [82] we are interested in a hypothetical situation when ρmax is finite. In

fact ρmax could be finite for various reasons, which depend on the exact notion of the solution.

However, one can show that with the natural definition of the mild solution, the only reason ρmax
could be finite is the appearance of finite-time singularities in the solution u(t, x) for some initial

data u0(x). Such initial data u0(x) would then necessarily satisfy the condition ‖u0‖Ḣ1/2 ≥ ρmax.

This motivates the following question:

If ρmax is finite, does there exist an initial datum u0 ∈ Ḣ1/2 with ‖u0‖Ḣ1/2 = ρmax, such that the

solution u(x, t) of the Cauchy problem for NSE develops a singularity in finite time?

For many equations with the same scaling as NSE, there is strong evidence that this is not the

case (for instance the cubic nonlinear heat equation analyzed by Poláčik and Quittner in [73] or the

complex Ginzburg-Landau equations). Hence, analysis of questions similar to the one above, takes

into account properties specific for NSE and poses an interesting problem.

In [77] we were able to give an affirmative answer using suitable weak solutions of L. Caffarelli,

R. Kohn and L. Nirenberg (c.f. [12]) and local Leray solutions as constructed by P.G. Lemarié-

Rieusset (c.f. [55]). In the subsequent paper [82], using the techniques of profile decomposition, we

extend the result to a general situation, where ρmax is the distance from given non-zero initial data

generating a global solution.

1.3. Anisotropic partial regularity criteria for the NSE. The theory of partial regularity for

the NSE , whose aim is to estimate the Hausdorff dimension of the singular set and development of

interior regularity criteria, was initiated by Scheffer in [86, 87]. In a classical paper [12], Caffarelli,

Kohn, and Nirenberg proved that for a suitable weak solution the one-dimensional parabolic Haus-

dorff measure (parabolic Hausdorff length) of the singular set equals zero. Recall that a point is

regular if there exists a neighborhood in which u is bounded (and thus Hölder continuous); other-

wise, the point is called singular. Their interior regularity criterion reads as follows: There exist

two constants εCKN ∈ (0, 1] and α ∈ (0, 1) such that if∫
Q1

(|u|3 + |p|3/2) dxdt ≤ εCKN

then

‖u(x, t)‖Cα(Q1/2) <∞

where Qr = {(x, t) : |x| < r,−r2 ≤ t ≤ 0}. Alternative proofs were given by Lin [57], Ladyzhenskaya

and Serëgin [54], Kukavica [43, 44], Vasseur [94], and Wolf [97, 98]. The problem of partial regularity

of the solutions of the Navier–Stokes equations has since then been addressed in various contexts
8
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[45, 77, 78, 79, 89, 90] and a variety of interior regularity criteria has been proposed. In particular

Wolf proved in [98] the following: There exists εW > 0 such that if∫
Q1

|u|3 dxdt ≤ εW

then the solution u(x, t) is regular at the point (0, 0).

In a recent paper [96], Wang and Zhang proved an anisotropic interior regularity criterion, which

states: For every M > 0 there exists εWZ(M) > 0 such that if∫
Q1

(|u|3 + |p|3/2) dxdt ≤M

and ∫
Q1

|uh|3 dxdt ≤ εWZ(M)

where uh = (u1, u2), then the solution u(x, t) is regular at the point (0, 0). Their result can be

viewed as a local version of the component-reduction regularity. Regularity is obtained by imposing

conditions only on some components of the velocity, rather that of three.

In [50], with I. Kukavica and M. Ziane, we prove an interior regularity criterion involving only one

component of the velocity. Using arguments different than in [96], we prove the following stronger

statement: For every M > 0 there exists a constant ε(M) > 0 such that if∫
Q1

(|u|3 + |p|3/2) dxdt ≤M (1)

and ∫
Q1

|u3|3 dxdt ≤ ε(M)

then u(x, t) is regular at the point (0, 0).

Note that every suitable weak solution satisfies (1) for M sufficiently large. The applied contra-

diction argument may be also used to prove a new interior regularity criterion based on the pressure.

Namely, we prove that if (1) holds and if∫
Q1

|p|3/2 dxdt ≤ ε(M) (2)

then the solution is regular at (0, 0).

As a corollary we obtain a stronger version of the Leray’s regularity criterion concerning weak

solutions. Namely, by [30, 56], if T is an epoch of irregularity, then for any q > 3 there is a

sufficiently small ε > 0 such that ‖u(·, t)‖Lq ≥ ε
(T−t)(1−3/q)/2 for t < T sufficiently close to T . Recall

that T is an epoch of irregularity if T is a singular time for u, while the times t < T sufficiently

close to T are regular. We prove that if T > 0 is the first singular time, then for all q ≥ 3

‖(u1, u2)(·, t)‖Lq ≥
M

(T − t)(1−3/q)/2

9
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or

‖u3(·, t)‖Lq ≥
ε(M)

(T − t)(1−3/q)/2
,

for t < T sufficiently close to T . (A similar statement holds when T is an epoch of irregularity.)

Similarly,we show that if T is the first singular time, then

‖u(·, t)‖Lq ≥
M

(T − t)(1−3/q)/2

or

‖p(·, t)‖Lq/2 ≥
ε(M)

(T − t)1−3/q
.

for t < T sufficiently close to T . The proofs are based on a contradiction argument and the regularity

of certain limit systems.

1.4. Well-posedness of primitive equations with continuous initial data. The primitive

equations of the atmosphere and the ocean are widely considered to be the fundamental model for

meteorology and climate prediction. Indeed, the full compressible Navier-Stokes equations, which

govern the dynamics of the atmosphere and the ocean, are very complicated and contain phenomena

which are not interesting from the geophysical point of view, such as shocks and sound waves. The

Boussinesq approximation along with the hydrostatic balance lead to the primitive equations

∂tvk − ν∆vk +
2∑
j=1

∂j(vjvk) + ∂3(wvk) + ∂kp = 0, k = 1, 2

2∑
k=1

∂kvk + ∂3w = 0. (3)

The main part of the system consists of the momentum equations and the conservation of mass, a

simplified version of which is given above. The full primitive equations contain also the thermody-

namic equations (diffusion of temperature), as well as the diffusion of humidity (for the atmosphere)

and diffusion of salinity for the ocean, c.f. [70, 91].

The mathematical theory started with the work of P. Lions, R. Temam, and S. Wang [58, 59, 60]

who set the analytical foundation for the equations and established the global existence of weak

solutions for square integrable initial data in the spirit of Leray. The H2 regularity of the associated

stationary linear problem was obtained in [102, 103]. This result implied the local existence of strong

solutions with initial data in H1, which was established by Bresch et al [5, 6, 7, 8] and independently

by Hu et al [36]. The global existence of strong solutions with initial data in H1 was first proven by

Cao and Titi in [11] in the case of Neumann boundary conditions on the top and bottom and for

cylindrical domains. The case of the physical boundary conditions, including the Dirichlet boundary

condition on the bottom of the ocean with the general bottom topography, was settled in [51, 52]

with uniform gradient bounds obtained in [53]. In conclusion, the global existence of weak solution

without uniqueness is known for both two and three space dimensions. Imposing the H1 regularity

for initial data leads leads to global existence and uniqueness of solutions (2D and 3D).
10
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The state of analysis for the primitive equations seems to be much better than the one for

the Navier-Stokes equations. However, when considering the uniqueness of weak solutions of the

primitive equations in 2D, a classical and elementary fact for the 2D Navier-Stokes equations, we

face the obstacle of a derivative loss in the nonlinearity, leading to an outstanding open problem.

Furthermore, for the same reason, the well-posedness in Lp for the primitive equations remains

open in both the 2D and 3D cases for any p ≥ 1. We note the derivative loss in the nonlinearity

constitutes a primary reason for the ill-posedness and finite time blow-up for the inviscid primitive

equations in Sobolev spaces [76, 10].

In [46] we consider the well-posedness problem of the primitive equations for data in a class

larger than H1 for uniqueness of weak solutions, and thus well-posedness. In this spirit Bresch et

al proved in [9] the uniqueness in 2D for weak solutions with ∂x3v0 ∈ H1/2. In [46], we establish

the well-posedness (existence and uniqueness) of solutions with only continuous initial data that

require no differentiability. Our approach relies on the splitting of the initial data into a smooth

finite energy part and a small bounded part. In our reasoning, we exploit the fact that this splitting

is preserved by the equation, the main difficulty being caused by the pressure and the derivative

loss terms. We note that the main reason for the choice of the space in which we seek solutions is

the possibility of establishing uniqueness.

1.5. Well-posedness versus instability of the geodynamo. In [27], we address the well-

posedness of a nonlinear active scalar equation (MG) arising in the study of magnetogeostrophic

turbulence. The equation in three dimensions reads

∂tθ + u · ∇θ + κ(−∆)γθ = S, (MG)

where κ ≥ 0 and S(x, t) is a given external force. An explicit operator M [θ] encodes the physics

of the underlying physical process and produces the divergence-free velocity u(x, t) from the scalar

“buoyancy” field θ(x, t). More precisely, the velocity field is obtained from the scalar via the

relationship

uj = Mj[θ],

where Mj[·] are Fourier multiplier operators with explicit symbols.

In the past decade, active scalar equations have received considerable attention due to their

prevalent presence in many physical models. The MG equation has some features in common with

the much studied surface quasigeostrophic equation (SQG) and the incompressible porous media

equation (IPM) (c.f. [13, 16, 17, 22, 23, 39, 41, 100]). However MG has also a number of novel and

distinctive features due to the strong singularity and anisotropy of the operator M [·] as well as the

even nature of its Fourier symbol. Well-posedness of the critical case γ = 1 has been proven by

S. Friedlander and V. Vicol in [24]. In [25], Friedlander and Vicol showed that the corresponding

non-dissipative model (κ = 0) is ill-posed in the sense of Hadamard. In [27], we consider the

fractionally dissipative MG equation in the super-critical regime 0 < γ < 1. We show that for
11
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γ > 1/2 the equation is locally well-posed, while for γ < 1/2 it is ill-posed, in the sense that there

is no Lipschitz solution map. We also explore the anisotropy of the constitutive law for the velocity

in order to obtain an improvement in the regularity of the solutions when the initial data and the

force have thin Fourier support. For certain data we prove local existence and uniqueness for all

values 0 < γ < 1.

In [28] S. Friedlander and A. Suen initiated the analysis of the case where a certain viscous effect is

incorporated in the constitutive law defining the drift velocity from the active scalar. In particular,

they prove the existence of weak solutions with initial data in L3 as well as the persistence of

regularity for solutions with initial data in W s,3, where s > 0. In particular, in case s = 1, they

obtain an explicit growth estimate of the Sobolev norm

‖∇θ(t, ·)‖L3 ≤ C‖∇θ0‖L3 exp(Ct‖θ0‖W 1,3).

In [84], we prove that in fact for any initial data in L3 ∩ Bs
p,∞, where s > 0 and p ∈ [1,∞], the

regularity is preserved and moreover we have

‖θ(t, ·)‖L3∩Bsp,∞ ≤ C‖θ0‖L3∩Bsp,∞ exp(Ct‖θ0‖L3).

The proof is based on a commutator estimate which takes into account that the drift velocity is

two orders more regular than the active scalar.

1.6. Active scalars and the second iterate. The singular behavior of solutions of active scalar

equations is an outstanding open problem. Such results are particularly interesting because of

close ties of the active scalar equations and the three-dimensional incompressible Euler and Navier-

Stokes equations. For the latter, well-posedness questions in a variety of scale-invariant spaces have

been considered in order to separate features resulting from the structure built into the equation,

from the properties of solutions resulting from the particular choice of functional spaces. In [32],

P. Germain considered the second iterate for (NSE) and showed that while the corresponding

bilinear form is continuous from BMO−1(R3)× BMO−1(R3) to BMO−1(R3), it is not continuous

from Ḃ−1
∞,q(R3) × Ḃ−1

∞,q(R3) to S ′(R3), q > 2. The same feature of the NSE nonlinearity used by

Germain allowed Bourgain and Pavlović [4] to prove the norm inflation phenomenon for NSE in

Ḃ−1
∞,∞. They constructed initial data, whose size in the space Ḃ−1

∞,∞ is arbitrarily small, however

the resulting solution becomes arbitrarily large in an arbitrarily short time. In [26], we consider

the case of critically dissipative active scalar equations where the Fourier symbol, with which the

drift velocity is obtained from the scalar, is of order zero. Through analysis of the second iterate,

we show that if the Fourier symbol is even, the corresponding bilinear form is not continuous from

Ḃ
−1/2
∞,q (R2) × Ḃ−1/2

∞,q (R2) to S ′(R2). This is particularly interesting from the point of view of weak

solutions. We would like to note that the bilinear form is continuous from Ḃ0
∞,1(R2)× Ḃ0

∞,1(R2) to

Ḃ0
∞,1(R2). The proofs are based on the use of Coifman-Meyer-type theorems and a careful analysis

of interactions between different frequency regions. The main difficulties stem from the fact that

the nonlinearity in the equation and the diffusion provided by the fractional Laplacian are exactly

in balance. This is the reason that an elementary perturbation result for small L∞ initial data fails.
12
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This balance is especially visible in the interaction of lower frequencies where the lack of sufficient

diffusion dictates the choice of the space Ḃ0
∞,1 rather than L∞ or BMO. The results obtained in

[26] are a first step to proving the norm inflation for active scalar equations which, due to the scalar

nature of the problem, may be used to construct singular solutions. The results apply to a broader

class of active scalar equations which preserve the L∞ scaling.

1.7. Vanishing viscosity limits. In [80], we consider the inviscid limit of the two-dimensional

incompressible Navier-Stokes equations when the Navier slip-with-friction conditions are prescribed

on the impermeable boundaries of a bounded domain Ω.

The question of convergence of the non-stationary incompressible Navier-Stokes flow to the Euler

flow as the kinematic viscosity ν → 0 has been an outstanding open problem for bounded domains.

The main difficulty lies in the fact that strong solutions are known to exist only for a short time

interval that tends to zero as ν → 0. Weak solutions exist for all time but the proof of uniqueness

of such solutions presents major challenges. The situation is furthermore strongly influenced by

the type of assumed boundary conditions. In the case of the Dirichlet condition u(x, t) = 0, where

x ∈ ∂Ω, T. Kato showed in [40] that the above convergence holds in L2(Ω) uniformly in time on the

interval of existence [0, T ] of the Euler flow if and only if ν
∫ T

0
‖∇uν‖2

L2(Ωcν) → 0 as ν → 0, where

Ωcν is the boundary strip of width cν.

In 1823, C. L. M. H. Navier proposed slip-type boundary conditions, which claim that the com-

ponent of the fluid velocity tangent to the surface should be proportional to the rate of strain at the

surface. The velocity component normal to the surface is naturally zero as mass cannot penetrate

an impermeable solid surface. Recent experiments, generally with typical dimensions microns or

smaller, have demonstrated that the phenomenon of slip actually occurs. For example, the Dirichlet

condition is no longer true, when moderate pressure is involved, such as in high altitude aerody-

namics. We also stress that the Navier slip-type condition was derived in the kinematic theory of

gases by Maxwell. Under such boundary conditions, T. Clopeau, A. Mikelić and R. Robert in [21]

proved the convergence to the Euler equations with wall conditions for an L∞ initial vorticity and

for an L∞ forcing vorticity. This result was extended to Lp initial vorticity but without forcing

term, for p > 2, by M. C. Lopes Filho, H. J. Nussenzveig Lopes and G. Planas [61].

In [80] we present the case of a C1 initial velocity with a forcing vorticity in L1((0, T ), Lq(Ω)),

for q > 4. The idea is to perform some estimates in L∞((0, T ), Lq(Ω)) of the vorticity, uniformly

with respect to the viscosity coefficient. Because of the boundary term an estimate in L∞t,x of

the tangential velocity is needed. Thanks to some elliptic basic results in Sobolev spaces and

an embedding theorem of some (parabolic) Hölder spaces in some (parabolic) Sobolev spaces, we

estimate in return the L∞ norm of the tangential velocity as a function of the L∞((0, T ), Lq(Ω))

norm of the vorticity. These estimates allow us to apply the Banach fixed point theorem and prove

the existence and uniqueness of a solution with suitable estimates on vorticity, enabling – via a

compactness method – passage to the inviscid limit. This method – more precisely the use of the
13
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(Besov-Nikolskii-Ladyzhenskaya) embedding theorem – requires q > 4. Let us stress that this need

for an L∞t,x estimate of the tangential velocity is also the reason for the restriction to p > 2 in [61].

In [69], jointly with P.B. Mucha, we consider the Cauchy problem for Euler equations and prove

the uniqueness of weak solutions of the two and three dimensional incompressible Euler equa-

tions when the velocity u(x, t) belongs to L∞((0, T ), L2+ε(Ω)) (for some ε > 0) and ∇u lies in

L1((0, T );BMO(Ω)). This improves a classical result due to V.I. Yudovich [101], as well as a result

due to M.M. Vishik [95]. The key point in the analysis is an estimate on the difference between

L1 and the Hardy space H1 based on properties of the Zygmund space L lnL. We also analyze the

inviscid limit, assuming the Navier slip-type boundary conditions, and obtain an explicit algebraic

rate of convergence.

In addition, in [83], we address the question of inviscid limits for a class of active scalar equations.

The classical approach to the inviscid limit problem relies on energy methods to the equation

governing the difference θ(x, t) = θκ(x, t) − θ0(x, t), where θκ(x, t) and θ0(x, t) are the solutions of

the viscous and inviscid problems, respectively. Regarding the energy estimates, the nonlinearity

in the equation creates the term ∫ T

0

∫
Rn
θ · ∇θ0θ dxdt, (4)

which needs to be controlled. The most direct condition which enables us to estimate (4) is to

require that ∇θ0 ∈ L1((0, T ), L∞(Rn)). We then obtain the following immediate inequality∣∣∣∣∫ T

0

∫
Rn
θ · ∇θ0θ dxdt

∣∣∣∣ ≤ C‖∇θ0‖L1((0,T ),L∞(Rn))‖θ‖2
L∞((0,T ),L2(Rn)), (5)

which is the core of the energy approach. Given this estimate, Gronwall’s inequality allows us

to pass to the limit κ → 0. Note that the regularity imposed on the solution is quite high (and

it is not clear that it follows from energy methods). Moreover, for equations in 2D, the classical

existence result yields local solutions θ for data in Sobolev space Hs with s > 2. For solutions in the

borderline space H2, we have ∇θ ∈ H1. This, however, is not enough to conclude that ∇θ ∈ L∞

and motivates the choice of BMO (being the limiting space of the Sobolev embedding theorem)

rather than L∞.

Inviscid limits for active scalar equations have been considered by J. Wu in [99], where solutions

in Sobolev spaces Hs with s ≥ 3 are considered. This assumption provides enough smoothness for

the use of estimate (5). In [83] we consider a situation where∇θ = g+b with g ∈ L1((0, T ), L∞(Rn))

and b ∈ L1((0, T ), BMO(Rn)) such that the support of b(·, t) has finite measure for a.e. t ∈ (0, T ).

More precisely, we prove that under such conditions, we are able to pass to the limit κ → 0. Our

proofs are different from the usual ones encountered in the active scalar equations literature and

rely on the inequality∣∣∣∣∫
Rn
fg dx

∣∣∣∣ ≤ C‖f‖BMO‖g‖L1 [1 + | ln ‖g‖L1 |+ ln(1 + ‖g‖L∞)] . (6)
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rather than on commutator estimates based on the Littlewood-Paley decomposition. Techniques

used in [83] apply to a general class of active scalar equations with symbols of order zero. As

a byproduct of our method, we obtain an explicit rate of convergence in terms of the viscosity

coefficient κ.

1.8. Anisotropic estimates and global well-posedness of the two-dimensional KS. In [3],

we consider the two-dimensional Kuramoto-Sivashinsky equation

∂tϕ+ ∆2ϕ−∆ϕ+
1

2
|∇ϕ|2 = 0, (KS)

on the domain Ω = [0, L1] × [0, L2]. The role of KS is well known in the contemporary nonlinear

mechanics and physics. This equation arises for instance as a model in hydrodynamics (a thin film

flow down an inclined plane in the presence of an electric field), in combustion theory (propagation

of flame fronts), phase turbulence and plasma physics, as well as a model for spatio-temporal chaos

(c.f. [2, 71] for a short review of applications with key references).

Mathematically, the KS has been extensively studied in dimension one, but the main physical

interest is in the two-dimensional case, since the equation models the flame propagation fronts.

However, the global well-posedness for KS in the general 2D setting is an open problem. This is

related to the fact that, although the equation is locally well-posed in L2(Ω), it does not preserve

the L2 norm. The first global well-posedness result has been given by G. Sell and M. Taboada

in [88], who showed the existence of a bounded local absorbing set in H1
per([0, 2π] × [0, 2πε]) for ε

small enough. In [66] L. Molinet obtained a more transparent result on the local dissipativity of the

Kuramoto-Sivashinsky equation in a thin rectangular domain and gave sufficient conditions on L2,

depending on L1, so that the equation KS admits a global solution. The size of admissible initial

data depends on L1 and L2. Our result takes advantage of anisotropic estimates and allows much

larger initial data than previously known.

1.9. Singular limit and partial regularity for a model of NSE. In [81], we consider the

following system of equations

∂tu−∆u+ (u · ∇)u+
1

2
u div u− 1

ε
∇ div u = 0

u(x, 0) = u0(x). (7)

This system shares a number of features with the three-dimensional incompressible Navier-Stokes

equations. For instance, it has the same scaling, the non-linearity is skew-symmetric, and it satisfies

the energy estimate

‖u(t)‖2
L2 +

∫ t

0

‖∇u(s)‖2
L2 ds+

1

ε

∫ t

0

‖ div u(s)‖2
L2 ds ≤ ‖u0‖2

L2 . (8)

As ε→ 0, we expect from (8) that solutions of (7) converge to solutions of NSE. The main interest

of such result lies in applications to numerical computations where similar penalization schemes

have been used in context of finite element methods (c.f. [33]). The system (7) has been also
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addressed by Šverák and Plecháč in [72] in the context of finite-time blow-up of radially symmetric

solutions. In [81], we establish convergence of weak solutions and mild solutions thus validating the

above expectations. We also address the problem of regularity of solutions of (7) and obtain partial

regularity criteria.
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