
Algebraic Number Theory

Fall 2014

These are notes for the graduate course Math 6723: Algebraic Number Theory taught
by Dr. David Wright at the Oklahoma State University (Fall 2014). The notes are taken
by Pan Yan (pyan@okstate.edu), who is responsible for any mistakes. If you notice any
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1 Introduction I (08/18)

N,Z,Q,R,C denote natural numbers, integers, rational numbers, real numbers and com-
plex numbers respectively.

For two sets A,B, A ⊂ B means A is a subset of B, and A ( B means A is a proper
subset of B.

We assume every ring R is commutative with a 1, unless otherwise indicated. S ⊂ R
is a subring if: 1) S is closed under multiplication and addition; 2) S,R have the same
multiplicative identity. R∗ = R× = group of unity of R. x ∈ R is a unit if ∃ y such that
xy = 1.

A subset of a ring I ⊂ R is an ideal if: 1) it is closed under addition and scalar
multiplication by R; 2) I contains 0.

Let A,B,C be R−modules, a sequence of R−module homomorphism

A
f
> B

g
> C

is exact if imf = kerf . The diagram

B

A

f

∧

h
> C

g

>

commutes if h = g ◦ f .
For two groups H ⊂ G, the index [G : H] is the number of cosets in G/H. For two

fields K ⊂ L, (L : K) is the degree of L/K, which is the dimension of L as a K-vector
space.

Z[x] is the ring of polynomials in one indeterminate x with coefficients in Z, i.e.,
Z[x] = {p(x) = c0x

n + c1xn−1 + · · · + cn : c0, c1, · · · , cn ∈ Z}. (Z can be replaced by any
ring R.)

Definition 1.1. A complex number z ∈ C is an algebraic number if there exists a poly-
nomial p(x) ∈ Z[x], p(x) 6= 0, such that p(z) = 0. An algebraic integer is an algebraic
number z such that there is a monic polynomial p(z) ∈ Z[x] with p(z) = 0.

Remark 1.2. A complex number is transcendental if it is not algebraic, for example, e, π.
eπ are transcendental, which follows from the Gelfond-Schneider theorem (which states
that if a and b are algebraic numbers with a 6= 0, 1 and b is not a rational number, then
ab is transcentental) since eπ = (−1)−i.

The structure of algebraic integers allows one to prove things about ordinary integers.

Theorem 1.3 (Fermat’s Two Square Theorem (Lagrange)). An odd prime p = x2 + y2

for x, y ∈ Z iff p ≡ 1 (mod 4).
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Proof. (⇒) Assume p = x2 + y2, x, y ∈ Z. Notice that x2 ≡ 0 or 1 (mod 4), hence
p = x2 + y2 ≡ 0 or 1 or 2 (mod 4). But p is an odd prime, hence p ≡ 1 (mod 4).

(⇐) Assume p ≡ 1 (mod 4). Fp = Z/pZ is a finite field of p elements, and F×p is a
cyclic group of order p − 1 ≡ 0 (mod 4). So F×p has an element of order 4. That is to
say, there exists an integer m ∈ Z/pZ such that m4 ≡ 1 (mod p), and m2 6≡ 1 (mod p).
Hence m2 ≡ −1 (mod p). Then p|m2 + 1 = (m+ i)(m− i) in Z[i]. Notice that Z[i] is an
Euclidean domain with norm N(x + iy) = x2 + y2. If p is a prime in Z[i], then p|m + i
or p|m − i. If p|m + i or p|m − i, then p divides both (suppose m + i = p(x + iy), then
m− i = p(x− iy). The reverse is also true). Then p|(m+ i)− (m− i) = 2i. But p is an
odd prime, so p > 3, hence N(p) ≥ 9 while N(2i) = 2i(−2i) = 4. This is a contradiction.
So p is not prime in Z[i], hence p = (x+ iy)(x′ + iy′) where x+ iy, x′ + iy′ are not units.
Then N(p) = p2 = (x2 + y2)(x′2 + y′2), hence p = x2 + y2 = x′2 + y′2.

There are more examples, such as primes of p = x2 − 2y2, p = x2 + 6y2.

2 Introduction II (08/20)

Theorem 2.1. An odd prime p = x2 − 2y2 for x, y ∈ Z iff p ≡ ±1 (mod 8).

To prove this theorem, we first recall the Law of Quadratic Reciprocity.

Theorem 2.2 (Law of Quadratic Reciprocity). For odd prime p,

(
a

p

)
=


0, if p|a
1, if a ≡ m2 (mod p)

−1, if a 6≡ m2 (mod p)

is the Legendre symbol. Then(
−1

p

)
=

{
1, if p ≡ 1 (mod 4)

−1, if p ≡ 3 (mod 4)
,

(
2

p

)
=

{
1, if p ≡ ±1 (mod 8)

−1, if p ≡ ±3 (mod 8)
.

If p, q are odd primes, then

(
p

q

)
=


(
q
p

)
, if p or q ≡ 1 (mod 4)

−
(
q
p

)
, if p ≡ q ≡ 3 (mod 4)

Now we prove Theorem 2.1.
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Proof. (⇒) Suppose p = x2 − 2y2 for x, y ∈ Z is an odd prime. For x ∈ Z, x2 ≡ 0, 1, 4
(mod 8). Since p is odd, x2 ≡ 1 (mod 8). Hence, p = x2 − 2y2 ≡ 1 − 2 · {0, 1, 4}
(mod 8) ≡ 1,−1 (mod 8).

(⇐) Suppose p ≡ ±1 (mod 8). (In Fermat’s Two Square Theorem, when p ≡ 1
(mod 4), we first show there is an integer m such that m2 ≡ −1 (mod p)) Here we have
to show that there is an integer m such that m2 ≡ 2 (mod p). This follows from the
Law of Quadratic Reciprocity. Hence, p|m2 − 2 = (m −

√
2)(m +

√
2) in Z[

√
2]. If p

is prime in Z[
√

2], then p|m −
√

2 or p|m +
√

2. By conjugation, then p divides both
m −

√
2 and m +

√
2. Then p|(m +

√
2) − (m −

√
2) = 2

√
2. Then N(p) = p2 divides

N(2
√

2) = (2
√

2) · (−2
√

2) = −8. This contradiction proves that p is not prime in Z[
√

2].
Z[
√

2] is a UFD, so p = (x +
√

2y)(x′ +
√

2y′) for some nonunits. By taking norm, we
get p2 = (x2 − 2y2)(x′2 − 2y′2). Note that x +

√
2y is a unit iff x2 − 2y2 = ±1. Since

x +
√

2y, x′ +
√

2y′ are nonunits, we have x2 − 2y2 = p or −p. If x2 − 2y2 = −p, replace
x+
√

2y by (x+
√

2y)(1+
√

2) = (x+2y)+(x+y)
√

2, then we get N((x+
√

2y)(1+
√

2)) =
(x2 − 2y2) · (1− 2) = −(x2 − 2y2) = p.

Remark 2.3. x2−2y2 = ±1 is true if and only if x+
√

2y = ±(1 +
√

2)n for some n ∈ Z.

3 Introduction III (08/22)

Next question: which primes are of the form p = x2 + 6y2?

Theorem 3.1. An odd prime p = x2 + 6y2 for x, y ∈ Z iff p ≡ 1, 7 (mod 24).

Proof. (⇒) If p = x2+6y2, then x2 ≡ −6y2 (mod p), hence −6 ≡ m2 (mod p) since x, y 6≡
0 (mod p). Therefore, (−6p ) = 1 since (abp ) = (ap )( bp) (residue symbol is a homomorphism
(Z/pZ)∗ → {±1}). The squares form a subgroup H in G = (Z/pZ)∗ of index 2. G/H =
{H,xH} where x is any non-square, it has order 2), then we have (−6p ) = (−1p ) · (2p) · (3p).
We have (

3

p

)
=

{
(p3) if p ≡ 1 (mod 4)

−(p3) if p ≡ 3 (mod 4)(p
3

)
=

{
1 if p ≡ 1 (mod 3)

−1 if p ≡ 2 (mod 3).

(Reference for this formula: Hardy and Wright, Introduction to the Theory of Numbers).
Moreover, by Quadratic Reciprocity Law,(

−1

p

)
=

{
1 if p ≡ 1 (mod 4)

−1 if p ≡ 3 (mod 4).
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So (3p) = (−1p )(p3). So (−6p ) = (−1p )(2p)(−1p )(p3) = (2p)(p3). Then

(
−6

p
) = 1⇔ (

2

p
) = (

p

3
) = 1 or (

2

p
) = (

p

3
) = −1

⇔ p ≡ ±1 (mod 8), p ≡ 1 (mod 3) or p ≡ ±3 (mod 8), p ≡ 2 (mod 3)

The Chinese Remainder Theorem implies

(
−6

p
) = 1⇔ p ≡ 1, 5, 7, 11 (mod 24).

(⇐) Conversely, if p ≡ 1, 5, 7, 11 (mod 24), then ∃m such that m2 ≡ −6 (mod p), so
p|m2 + 6 = (m +

√
−6)(m −

√
−6). Same proof as before shows that p is not a prime in

Z[
√
−6]. Z[

√
−6] is not a UFD. However, the ideals in Z[

√
−6] have unique factorization

as a product of prime ideals. Every p in Z has a prime ideal factorization in Z[
√
−6]:

(p) is prime or (p) = pp. (p) = pp happens for p ≡ 1, 5, 7, 11 (mod 24). In addition,
p = (x+ y

√
−6) is a principal ideal iff p ≡ 1, 7 (mod 24).

More generally, for an algebraic number field K/Q, OK is the set of algebraic integers
in K. We say two ideals a, b ⊂ OK are equivalent if there exists α, β ∈ OK\{0} such that

αa = βb.

Under multiplication ab of ideals, the equivalence classes form a group, called the class
group of K. a is principal iff a ∼ (1) = OK . The class group CK is always a finitely
generated abelian group, its size is the class number of K, denoted as hK .

A big open question is that there exists infinitely many d such that Q(
√
d) has class

number 1.

4 Introduction IV (08/25)

The Riemann zeta function is defined as

ζ(s) =

∞∑
n=1

1

ns

where s is a complex variable. It converges locally uniformly for Re(s) > 0. It has
a meromorphic continution to the whole complex plane C which is holomorphic except
for a single pole at s = 1 with residue Ress=1ζ(s) = 1. If Γ(s) =

∫∞
0 ts−1e−t dt, then

Λ(s) = π−
s
2 Γ( s2)ζ(s) satisfies the functional equation

Λ(1− s) = Λ(s).
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It has an Euler product expansion

ζ(s) =
∏

primes p

(1− 1

ps
)−1.

By taking logarithms and a lot of work, we get a formula (Von Mangoldt’s Prime Power
Counting Formula):∑

primes p,m≥1,pm<x
(log p) = x−

∑
ζ(ρ)=0,0≤Re(ρ)≤1

xρ

ρ
− ζ ′(0)

ζ(0)
− 1

2
log(1− x−2)

for x > 0.
All the zeroes ρ of ζ(s) are either

ρ = −2,−4,−6, · · ·

or in the critical strip 0 ≤ Re(ρ) ≤ 1. The Prime Number Theorem

π(x) =
∑
p<x

1 ∼ li(x) =

∫ ∞
2

dt

ln(t)

was derived by proving all the nontrivial zeroes are in 0 < Re(ρ) < 1. The Riemann
Hypothesis is that all nontrivial zeroes have Re(ρ) = 1

2 . Riemann based this on detailed
numerical calculations which were uncovered only after nearly a century after his paper
appeared.

For a complex variable s, the Dedekind zeta function is

ζK(s) =
∏

prime ideals p in OK

(1− (Np)−s)−1

where Np = [OK : p] is the absolute norm of ideal p.
ζK(s) is holomorphic at all s except for s = 1. Moreover,

lim
s→1

(s− 1)ζK(s) =
2r1(2π)r2hKRK

wK |dK |
1
2

where r1 is the number of real embeddings K ↪→ R, r2 is the number of conjugate pairs
of embeddings K ↪→ C which are not real, dK is the discriminant of K (measurement of
size of OK), RK is the regulator of K (measurement of size of unit group UK = O∗K), wK
is the number of x ∈ K with xn = 1 for some n. This formula gives an effective numerical
procedure for calculating hK , that is used in number theory software.
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5 Group Rings, Field Algebras, Tensor Products (08/27)

Definition 5.1. Let G be a group and R a commutative ring with identity. The group
ring R[G] is the set of all formal finite sums

∑
g∈G xgg with each xg ∈ R.

Define addition by (∑
xgg
)

+
(∑

ygg
)

=
∑

(xg + yg) g

and multiplication by

(∑
xgg
)(∑

ygg
)

=
∑
g∈G

∑
h∈G

xgyh(gh) =
∑
g∈G

(∑
h∈G

xgh−1yh

)
g.

One can show that R[G] is a ring.

Example 5.2. For the quaternion group

Q8 = {±1,±i,±j,±k} where ij = k = −ji, i2 = j2 = −1,

we have the group algebra R[Q8] which is an 8-dimensional vector space over R. It has a
subgroup H of dimension 4, which is the kernel of the linear map

R[Q8]→ R[Q8]

q 7→ q + (−1)q

where −1 ∈ Q8. H is a 4-dimensional division algebra over R (Every q ∈ H, q 6= 0 is a
unit).

Definition 5.3. Let F be a field. An algebra A over a F is a ring that contains F in its
center (So za = az for all a ∈ A, z ∈ F ).

A finite algebra over F is a finite-dimensional vector space over F . A division algebra
is one in which every nonzero element is a unit.

If R = K is a field, K[G] is an algebra where K ↪→ K[G] by x 7→ x · 1.
Suppose K/F is a finite separable field extension, and suppose L/F is any field exten-

sion. Then the tensor product K ⊗F L is an L-algebra.

Theorem 5.4. K ⊗F L has dimension (K : F ) over L. K ⊗F L is isomorphic to a direct
sum ⊕ti=1Li where each Li is a field extension of L and (K : F ) =

∑t
i=1 (Li : L).

We need to review tensor product to prove the Theorem 5.4.
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Definition 5.5. For a commutative ring R, the tensor product M⊗RN of two R-modules
M,N is the unique R-module such that every R-bilinear map

M ×N ϕ→ P

(m,n) 7→ ϕ(m,n)

(P is another R-module) factors through M ⊗R N :

M ×N c→M ⊗R N
h→ P

(m,n) 7→ m⊗ n

such that ϕ = h ◦ c where h is a linear map.

If K/F is a finite separable field field extension, then K = F (α) for a root α of an
irreducible polynomial f(x) ∈ F [x]. Then K = F (α) ∼= F [x]/(f(x)F [x]).

Proof of Theorem 5.4. Suppose we have a bilinear map ϕ : K × L→ P where L is a field
extension of F . Define g : K × L→ L[x]/(f(x)L[x]) by

g(p(x) + f(x)F [x], y) = yp(x) + f(x)L[x].

This is well-defined and bilinear. Then define h : L[x]/(f(x)L[x])→ P by

h(c0 + c1x+ · · ·+ cmx
m + f(x)L[x]) = ϕ(1 + f(x)F [x], c0) + · · ·+ ϕ(xm + f(x)F [x], cm).

This is F -linear and ϕ = h ◦ g. By uniqueness that proves

K ⊗F L = L[x]/(f(x)L[x]).

f(x) may factor in L[x] as a product of distinct coprime irreducible factors f(x) =∏t
i=1 fi(x) (since f is separable). Chinese Remainder Theorem implies that

L[x]/(f(x)L[x]) ∼= ⊕ti=1L[x]/(fi(x)L[x]).

Since fi is irreducible, Li = L[x]/(fi(x)L[x]) is a field. Since
∑

deg(fi) = deg(f), we have
(K : F ) =

∑
(Li : L).

Example 5.6. For d ∈ Z, d is square-free, Q(
√
d) ⊗Q R = ⊕ti=1Li for extensions Li/R.

These can be R or C. Since
∑

(Li : R) = (Q(
√
d : Q)) = 2, these are two possibilities

R⊕ R or C. The former happens iff
√
d ∈ R.
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6 More on Tensor Products, Polynomials (08/29)

Remark 6.1. Here is another application of tensor products. Consider the following
tensor product

Z[
√
d]⊗Z (Z/7Z) ∼= Z[

√
d]/7Z[

√
d].

Even though Z/7Z is a field, this tensor product is not always a field. For example, for
d = 2, Z[

√
2]/7Z[

√
2] has zero divisors

(3 +
√

2)(3−
√

2) = 7 = 0.

F [x] is a F -vector space with basis {1, x, x2, · · · , }. We may define a unique linear
map D : F [x] → F [x] by D(xn) = nxn−1. D is not a ring homomorphism since D(ab) 6=
D(a)D(b).

Definition 6.2. A derivation on an algebra A over F is a linear map d : A → A such
that d(ab) = d(a)b+ ad(b).

Remark 6.3. (i) The formal derivative D is a derivation. It suffices to check on basis
elements:

D(xmxn) = D(xm)xn + xmD(xn).

If char(F ) = 0, then D(f) = f ′ = 0 if and only if f is constant. If char(F ) = p,
D(
∑
anx

n) =
∑
annx

n−1 = 0 if and only if p|n or an = 0 if and only if f(x) =
∑
bnx

pn =
g(xp).

(ii) All the derivative of an algebra form a ring D (the theory of D-modules).

Since F [x] is Euclidean and thus a UFD, then the greatest common divisorGCD(f, g) =
(f, g) is defined.

Theorem 6.4. The following statements are equivalent.
(i) f is separable.
(ii) f ′(αj) 6= 0 for all roots αj of f .
(iii) (f, f ′) = 1.

Proof. (i)⇒(ii) In a splitting field L/F , f(x) = c(x − α1) · · · (x − αn) for c 6= 0, αi 6= αj
for i 6= j, all c, α’s are in L. Then

f ′(x) = c

n∑
k=1

n∏
i=1,i 6=k

(x− αi).

So f ′(αj) = c
∏
i 6=j(αj − αi) 6= 0.

(ii)⇒(iii) If g = (f, f ′) 6= 1, then g(αj) = 0 for some root αj of f . Since g|f ′, that
implies f ′(αj) = 0, contrary to (ii).

(iii)⇒(i) Suppose f is not separable. Then αi = αj for some i 6= j. Then f =
(x − αi)2g(x) for some g(x). Then f ′(x) = 2(x − αi)g(x) + (x − αi)2g′(x) is divisible by
x− αi, so (f, f ′) 6= 1.
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7 Discriminant, Separable Extensions (09/03)

Definition 7.1. Let f(x) = (x−ασ1) · · · (x−ασn) be an irreducible polynomial of α over
F and E = F (α). Then the discriminant of f is defined as

Disc(f) =
∏

1≤i<j≤n
(ασj − ασi)

= (−1)
n(n−1)

2 · f ′(ασ1) · · · f ′(ασn).

Corollary 7.2. f is separable iff Disc(f) 6= 0.

Remark 7.3. The Vandermonde determinant of T1, T2, · · · , Tn is

V (T1, · · · , Tn) = det


1 T1 · · · Tn−11

1 T2 · · · Tn−12
...

...
. . .

...
1 Tn · · · Tn−1n

 =
∏

1≤i<j≤n
(Tj − Ti).

Hence, Disc(f) = V (ασ1 , · · · , ασn)2.

Definition 7.4. A field F is perfect if every irreducible polynomial f ∈ F [x] is separable.

Theorem 7.5. F is perfect if either (i) char(F ) = 0 or (ii) char(F ) = p and x 7→ xp is
a field automorphism of F .

Proof. Suppose f(x) ∈ F [x] is irreducible and monic. If f is not separable, then d = (f, f ′)
is a nonconstant polynomial. Since d|f and f is irreducible and monic, we have d = f .
Then f |f ′ and since deg(f ′) < deg(f), this means f ′ = 0 identically. That cannot happen
in characteristic 0, except f is a constant. Hence, if char(F ) = 0, then F is perfect. In
characteristic p, f(x) = g(xp) for some polynomial g(x). Since x 7→ xp is an automorphism,
we can find a polynomial g1(x) such that

g(xp) = (g1(x))p

= (c0 + c1x+ · · ·+ clx
l)p

= cp0 + cp1x
p + · · · cpl x

lp.

This contradicts the assumption that f is irreducible.

For any field K and for an “indeterminant” T , the function field is the field of rational
functions

K(T ) =

{
p(T )

q(T )
: p, q ∈ K[T ]

}
where K[T ] is the set of polynomials in T over K.
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Example 7.6 (Example of non-perfect field). If K is characteristic p, then K(T ) is not
perfect.

Proof. We claim f(x) = xp − T ∈ K(T )[x] is irreducible and inseparable. Since f ′(x) =
pxp−1 − 0 = 0, (f, f ′) 6= 1, and so f is inseparable. Let F = K(T ), and let α be a root
of f in the algebraic closure F . Let E = F (α). Then (x − α)p = xp − αp = xp − T . We
have to prove (x− α)r ∈ F [x] and r ≥ 1 iff r = p. If (x− α)r ∈ F [x], then (−α)r (where
x = 0) is in F . So αr ∈ F and αp ∈ F . If 1 ≤ r < p, then (r, p) = 1 and so ru + pv = 1
for integers u, v. Then α = αru+pv = (αr)u(αp)v ∈ F . So

T = αp =
h(T )p

g(T )p
=
h1(T

p)

g1(T p)
.

Hence Tg1(T
p) = h1(T

p), but this is impossible in K[T ].

Suppose E/F is a finite extension of fields. E/F is separable iff for any embedding
σ : F ↪→ L where L is algebraic closure of F , there exists exactly (E : F ) distinct
embeddings σj : E ↪→ L such that σj |F = σ.

Remark 7.7. In general, there are ≤ (E : F ) such embeddings.

Theorem 7.8. For F ⊂ E ⊂ H, H/F is separable ⇔ both E/F , H/E are separable.

Theorem 7.9. F (α)/F is separable iff the minimal irreducible polynomial mF,α(x) satis-
fied by α has distinct roots in an algebraic closure of F .

Theorem 7.10 (Primitive Element Theorem). Suppose E/F is a finite extension of fields,
then there exists α ∈ E such that E = F (α) iff there are at most finitely many fields K
with F ⊂ K ⊂ E. If E/F is separable, then E = F (α) for some α ∈ E.

8 Trace and Norm, Commutative F -algebras (09/05)

Let E/F be separable finite extension, L algebraic closure of F . The distinct embedding
of E ↪→ L over F are σ1, · · · , σn, n = [E : F ]. If (u1, · · · , un) is a basis of E over F , define

V ∗(u1, · · · , un) = det([uσij ])1≤i,j≤n.

Theorem 8.1.
V ∗(u1, · · · , un) 6= 0.

Proof. If det([uσij ]) = 0, then the columns are linearly dependent. So there is a
−→
l =l1...

ln

 6= −→0 (li ∈ L) such that

[uσij ]
−→
l =
−→
0 .
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Then for each i,
n∑
j=1

u
σj
i lj = 0.

For any c1, · · · , cn ∈ F ,
n∑
i=1

ci

n∑
j=1

u
σj
i lj = 0.

Hence,
n∑
j=1

(
n∑
i=1

ciui)
σj lj = 0

where
∑n

i=1 ciui is any element of E. Hence,
∑n

j=1 (α)σj lj = 0 for all α ∈ E. This
contradicts linear independence of characters.

If (w1, · · · , wn) is another basis of E over F , then

wi =
n∑
j=1

cijuj

for some cij ∈ F and det [cij ] 6= 0 since this is invertible. Then

[wσki ] = [cij ][u
σk
i ].

Therefore,
V ∗(w1, · · · , wn) = det([cij ])V

∗(u1, · · · , un).

Example 8.2. If E = F (α), α is separable over F , σi ∈ Gal(E/F ) and we take the basis
to be (1, α, · · · , αn−1), then

V ∗(1, α, · · · , αn−1) = V (ασ1 , · · · , ασn) (Vandermonde determinant)

=
∏

1≤i<j≤n
(ασi − ασj )

6= 0.

Definition 8.3. Trace and norm are defined as

tE/F (α) =
n∑
i=1

ασi ,

NE/F (α) =
n∏
i=1

ασi .

14



Both of trace and norm are in F . If H is the Galois closure of E over F (smallest
Galois extension over F containing E. If E = F (α), H = F (ασ1 , · · · , ασn)), Gal(H/F )
fixes tE/F (α), NE/F (α). Hence they are in F .

For a basis (u1, · · · , un) of E/F ,

tE/F (uiuj) =
n∑
k=1

uσki u
σk
j =

(
[uσki ][uσki ]T

)
ij
.

So
[tE/F (uiuj)] = [uσki ][uσki ]T ,

det[tE/F (uiuj)] = (V ∗(u1, · · · , un))2 = d(u1, · · · , un) ∈ F.

If f(x) is minimal polynomial of α such that E = F (α), then d(1, α, · · · , αn−1) =
Disc(f).

Theorem 8.4 (Tower Laws). If K ⊂ F ⊂ E are separable finite extension, then

tE/K(α) = tF/K(tE/F (α)),

NE/K(α) = NF/K(NE/F (α)).

Suppose A is a finite commutative F -algebra. Each a ∈ A defines an F -linear map

la : A→ A by lc(b) = ab.

Suppose (v1, · · · , vn) is a basis of A over F . Then

avi =
∑

cijvj

for some cij ∈ F . So [cij ] is a matrix of la relative to (v1, · · · , vn).

Trace(la) =
n∑
i=1

cii = tA/F (a),

Norm(la) = det[cij ] = NA/F (a).

If A = E is a separable field extension of F of degree n and E = F (α), then this agrees
with previous definitions.
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9 Idempotent and Radical (09/08)

Definition 9.1. An idempotent e ∈ A is an element satisfying e2 = e.

Remark 9.2. (i) e = 0, 1 are both idempotent.
(ii) If e2 = e, then

(1− e)2 = 1− 2e+ e2 = 1− 2e+ e = 1− e.

Therefore, 1− e is also an idempotent. Also,

e(1− e) = e− e2 = e− e = 0.

So e, 1− e are orthogonal idempotents.

Definition 9.3. An idempotent e is primitive if e = e′ + e′′ for two idempotents e′, e′′

with e′e′′ = 0 implies e′ = 0 or e′′ = 0.

Remark 9.4. If e 6= 0 is an idempotent, then Ae is a subalgebra of A since (ae)(be) =
(ab)e2 = (ab)e. Ae is a vector space over F , and 1 ≤ dimF Ae ≤ dimF A.

Theorem 9.5. There exists a maximal finite collection of nonzero orthogonal idempotents
e1, · · · , en with 1 = e1 + · · ·+ en and then A = ⊕ni=1Aei.

Remark 9.6. (i) e is primitive iff Ae is indecomposible, meaning Ae cannot be written
as B ⊕ C for nonzero algebras B,C.

(ii) If A = ⊕ni=1Ai =
∏n
i=1Ai where Ai = Aei, then for c = (c1, · · · , cn) ∈ A, we have

tA/F (c) =
n∑
i=1

tAi/F (ci),

NA/F (c) =
n∏
i=1

NAi/F (ci).

Definition 9.7. The radical of A is the set

Rad(A) = {a ∈ A : an = 0 for some n ≥ 1}.

Theorem 9.8. Rad(A) is an ideal of A.

Proof. Clearly 0 ∈ Rad(A). If an = 0, then for any c ∈ A,

(ca)n = cnan = 0.

If an = 0 and bm = 0, then
(a+ b)m+n = 0.
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Theorem 9.9. If A = A/Rad(A), then Rad(A) = 0.

Proof. Suppose (a + Rad(A))n = 0 in A, then an ∈ Rad(A). Then anm = (an)m = 0 for
some integer m ≥ 1 and so a ∈ Rad(A).

Theorem 9.10. If A is an indecomposible finite F -algebra and Rad(A) = 0, then A is a
field.

Theorem 9.11. Suppose A is a finite commutative F -algebra, then the following (i) and
(ii) are equivalent:
(i) Rad(A) = 0.
(ii) A = ⊕ti=1Ai where each Ai is a field extension of F .
Moreover, if F is perfect, then (i), (ii) are equivalent to (iii), (iv):
(iii) d(v1, · · · , vn) 6= 0 for some basis v1, · · · , vn of A over F .
(iv) d(v1, · · · , vn) 6= 0 for all basis v1, · · · , vn of A over F .

Theorem 9.12. tA/F (a) = 0 if a is nilpotent.

Proof. Let la : A → A be the linear map la(b) = ab. If v1, · · · , vn is a basis of A over F ,
then avi =

∑n
i=1 cijvj for cij ∈ F . So [cij ] is the matrix of la with respect to v1, · · · , vn.

Let p(x) = det(xIn − [cij ]) = xn + u1x
n−1 + · · · + un. By Cayley-Hamilton Theorem,

A = [cij ] satisfies p(A) = An + u1A
n−1 + · · · + unI = 0. Since am = 0 for some m ≥ 1,

then lma (b) = 0 for all b, and [cij ]
m = 0. Also, all the eigenvalues of [cij ] are 0 in some

algebraic closure F of F , we have

det(xIn − [cij ]) =
n∏
i=1

(x− λi) = xn.

Since tA/F (a) is the coefficient of xn−1 in det(xIn − [cij ]), we have tA/F (a) = 0.

10 Integrality (09/10)

Theorem 10.1. For an integral domain o and an extension ring O of o, a ∈ O is integral
over o iff o[a] is a finitely generated o−module.

Theorem 10.2. a ∈ O is integral over o iff a ∈ R ⊂ O where R is a subring of O
containing o and is a finitely generated o−module.

Proof. (⇒) By Theorem 10.1, R = o[a] is a subring that works.
(⇐) Suppose R = (r1, · · · , rn)o = r1o + · · ·+ rno. Then

ari =
n∑
j=1

cijrj
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for some cij ∈ o. Then p(x) = det (xIn − [cij ]) = xn + terms of smaller degree ∈ o[x] (so
it is monic). By Cayley-Hamilton Theorem, p([cij ]) = 0. This implies that p(a)ri = 0 for
all i (since ari = [cij ][rj ]

n
j=1). Some ri 6= 0 because 1 ∈ R. So p(a) = 0. So a is integral

over o.

Definition 10.3. The integral closure of o in O is the set of a which are integral over o.

Definition 10.4. o is integrally closed if it equals to its integral closure in its field of
fractions.

Example 10.5. Z[
√
−3] is not integrally closed. a = 1+

√
−3

2 lies in the field of fractions
Q[
√
−3], and is integral (a2 − a+ 1 = 0) over Z[

√
−3], but it is not in Z[

√
−3].

Example 10.6. o = F [T 2, T 3] = {c0 + c2T
2 + c3T

3 + · · · + cnT
n|c0, c2, · · · , cn ∈ F} for

any field F is not integrally closed. Its field of fractions is K = {p(T )q(T ) |p(T ), q(T ) ∈ o}.
a = T 3

T 2 is integral over o (since a2 − T 2 = 0), but a is not in o.

Let o be an integral domain which is integrally closed, K the field of fractions, E
a separable finite extension of K of degree n, L is some algebraic closure of E. Let
σ1, σ2, · · · , σn : E → L be the distinct embeddings over K.

Proposition 10.7. If a ∈ E is integral over o, then so is aσj for 1 ≤ j ≤ n.

Proof. Suppose a satisfies a monic polynomial p(x) ∈ o[x], so p(a) = 0 and 0 = (p(a))σj =
p(aσj ) because coefficients of p(x) are in o ⊂ K. Then p(x) =

∏n
j=1 (x− aσj ). so aσj is

integral over o.

11 Noetherian Rings and Modules (09/12)

Definition 11.1. An o-module M is Noetherian if it satisfies the following equivalent
conditions:
(i) All o-submodules of M are finitely generated;
(ii) (Ascending Chain Condition) Every strictly increasing o-submodules N1 ( N2 ( · · · (
M is finite;
(iii) Every nonempty family of o-submodules of M has a maximal element.

Remark 11.2. (i) An o-module M is Artinian module if it satisfies Descending Chain
Condition.
(ii) o is a Noetherian ring if it is a Noetherian o-module (⇔ Every ideal of o is finitely-
generated).
(iii) Every finitely-generated module over a Noetherian ring is a Noetherian module.

Theorem 11.3. If 0 → M → N → P → 0 is an exact sequence of o-modules, then N is
Noetherian iff M and P are Noetherian.
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Theorem 11.4. If o is a Noetherian ring and M is a finitely-generated o-module, then
M is a Noetherian o-module.

Theorem 11.5. If φ : o → R is a surjective ring homomorphism and o is Noetherian,
then R is Noetherian.

Theorem 11.6 (Hilbert Basis Theorem). If o is Noetherian, then o[X] is Noetherian.

Proof. Let a be an ideal in o[x]. Let

b = {c ∈ o|∃f(x) = cxn + c1x
n−1 + · · ·+ cn ∈ a for some n}.

b is an ideal in o, hence it is finitely generated, and so b = (b1, · · · , bn)o. Let f1, · · · , fn ∈ a
be such that the leading coefficient of fj is bj . Let d = max(deg(fi)). Let

c = {f ∈ a|f = 0 or deg(f) ≤ d}.

Thus, c ⊆ (1, x, · · · , xd)o is a submodule of a finitely generated module over o. So c
is finitely generated with generators g1, · · · , gm. Then we claim (f1, · · · , fn, g1, · · · , gm)
generate a. We use induction on k = deg(f(x)) for f ∈ a. If k ≤ d, f is a linear
combination of g1, · · · , gm. If k > d, let f(x) = cxk + c1x

k−1 + · · · + ck. Then c ∈ b and
so c = a1b1 + · · ·+ anbn where ai ∈ o. Then

f(x)− a1f1(x)xk−deg(f1) − · · · − anfn(x)xk−deg(fn)

has degree < k. By induction, a is generated by (f1, · · · , fn, g1, · · · , gm).

Corollary 11.7. If o is Noetherian, then o[X1, X2, · · · , Xn] is Noetherian.

12 Dedekind Domains I (09/15)

An integral domain o is not usually a UFD. But under slightly some general conditions o
will have unique factorization of ideals into products of prime ideals.

Definition 12.1. o is a Dedekind domain if
(i) o is Noetherian;
(ii) o is integrally closed;
(iii) All prime ideals p 6= 0 are maximal.

Example 12.2. Here is an example of a ring where we have a prime ideal 6= 0 which is
not maximal. Let K be a field, R = K[X,Y ], p = RX = (X)R,m = (X,Y )R = XR+Y R,
then 0 ( p ( m ( R.

Definition 12.3. The Krull dimension of an integral domain o is the maximal l such that
there is a sequence of prime ideals p0 ( p1 ( · · · ( pl in o.
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Theorem 12.4. Every nonzero ideal a of a Dedekind domain may be written as a product
of prime ideals a = p1p2 · · · pn which is unique up to rearrangement.

Theorem 12.5. Any PID is a Dedekind Domain.

Proof. Suppose o is a PID. Then o is Noetherian, since every ideal is generated by 1
element.

Let K be the field of fractions of o, and suppose α ∈ K is integral over o. Then

(12.1) αn + cn−1α
n−1 + · · ·+ c1α+ c0 = 0

for ci ∈ R. Suppose α = a/b for a, b ∈ K and a, b have no non-unit common divisor.
Substituting α with a/b in equation (12.1) and multiplying each side by bn, we get

(12.2) an + cn−1a
n−1b+ · · ·+ c1ab

n−1 + c0b
n = 0

If b is a non-unit, we can always find a prime element p which is a divisor of b since o is a
PID, and hence a UFD. From equation (12.2), we must have p also divides a since p divides
the rest terms of the equation (12.2). Then p divides both a and b. This contradiction
shows that b is a unit. Hence α = a/b is actually in o. Therefore, o is integrally closed.

Suppose (p) ( (m) ( o. Then p = mx for some x ∈ o, x 6∈ o∗ (x is not a unit). Since
(m) ( o, m 6∈ o∗. If m ∈ (p), then m = pu, so p = mx = pux. Therefore, ux = 1, and so
x ∈ o∗. But x 6∈ o∗, so m 6∈ (p). Then mx ∈ (p) and m,x are not in (p). That contradicts
(p) being a prime ideal.

Remark 12.6. The prime ideal factorization theorem will prove that a PID is a UFD.

Definition 12.7. Let o be an integral domain, K its field of fractions. Then an o-
submodule b ⊂ K is a fractional ideal if there exists c ∈ K∗ and a nonzero ideal a ⊂ o
such that b = ca.

Theorem 12.8 (D1). Suppose o is Noetherian and integrally closed, and a is any fractional
ideal of o, then

{x ∈ K|xa ⊂ a} = o.

Proof. Clearly o ⊂ {x ∈ K|xa ⊂ a}, since a is fractional ideal of o. For the reverse
inclusion, since o is Noetherian, a = (c1, c2, · · · , cm)o. If ba ⊂ a, then bcj =

∑m
j=1 aijcj for

some aij ∈ o. Then by Cayley-Hamilton Theorem b satisfies det(xIm − [aij ]) = 0. This is
a monic polynomial in o[x]. Since o is integrally closed, b ∈ o.

Remark 12.9. If o is Noetherian, a ⊂ K is a fractional ideal if and only if it is a finitely
generated o-submodule.

Theorem 12.10 (D2). Suppose all the prime ideals of an integral domain o are maximal,
then if p ⊃ p1 · · · pn for nonzero prime ideals p, p1, · · · , pn, then p = pj for some j.
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Proof. By induction on n. For n = 1, if p ⊃ p1, then since prime ideals are maximal, we
have p = p1.

Assume the theorem is true for n − 1. Suppose p ⊃ p1 · · · pn and p 6= pn. Then
there exists c ∈ pn\p. (Again since prime ideals are maximal) Let b ∈ p1 · · · pn−1. Then
bc ∈ p1 · · · pn ⊂ p. Since c 6∈ p, we must have b ∈ p, since p is prime. Thus p ⊃ p1 · · · pn−1
and by the induction assumption p = pj for some 1 ≤ j ≤ n− 1.

Let a be a (nonzero) fractional ideal of o. Define the inverse of a fractional ideal to be

a−1 = {x ∈ K|xa ⊂ o}.

Then a−1 is clearly an o-submodule of K. If α ∈ a and α 6= 0, then a−1α = b ⊂ o is an
ideal of o. So a−1 = 1

αb is a fractional ideal . Also aa−1 ⊂ o.

For any fractional ideals a, b, ab
def
= {

∑t
i=1 aibi|ai ∈ a, bi ∈ b} is also a fractional ideal.

Definition 12.11. a is invertible iff aa−1 = o.

Theorem 12.12. Every fractional ideal in a Dedekind domain o is invertible.

Remark 12.13. If o is a field, there are only two ideals: 0 and o.

Let S be the set of integral ideals a 6= 0 ∈ o, such that there is a c ∈ K\o such that
ca ⊂ o. If o is not a field, there is an a 6= 0 such that a ∈ o\o∗. Then 1

a 6∈ o and 1
a(ao) = o.

So S 6= ∅ because ao is in S. If o is Noetherian and not a field, S has a maximal element
m.

Theorem 12.14 (D3). Let o be a Dedekind domain and not a field. Then any maximal
element m of S is an invertible prime ideal.

Proof. Suppose ab ∈ m and a ∈ o\m and b ∈ o. Consider m + ao ) m. Since m ⊂ S,
∃c ∈ K\o such that cm ⊂ o. Then c(m + ao) = cm + cao. m + ao can not be in S
because m is maximal in S. So ca 6∈ o. Now consider m + bo ⊇ m (bo ⊂ o). Then
ac(m + bo) = acm + c(ab)m ⊂ o (cm ∈ o, ab ∈ m). By maximality, m + bo is in S and
contains m and so m + bo = m. So b ∈ m. That proves m is prime.

m is maximal by definition of Dedekind domain. Then mm−1 is an ideal containing m
and so mm−1 = m or mm−1 = o. If mm−1 = m, then by theorem 12.8 that {x ∈ K|xa ⊂
a} = o then we’d have m−1 ⊂ o. Since m ⊂ S, there is a c ∈ m−1\o. That contradiction
proves mm−1 = o.

13 Dedekind Domains II (09/17)

Theorem 13.1 (D4). Let o be a Dedekind domain. A nonzero ideal a in o is invertible
iff a = m1 · · ·mr for some invertible prime ideals m1, · · · ,mr.
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Proof. (⇐) Ideal multiplication is associative and commutative:

ab = ba, (ab)c = c(bc).

Hence,
(m−11 · · ·m

−1
r )(m1 · · ·mr) = (m−11 m1) · · · (m−1r mr) = o.

Thus, a−1 = m−11 · · ·m−1r satisfies a−1a = o.
(⇒) Assume a 6= 0 is a proper invertible ideal. Then a ⊂ o\o∗. Since a−1a = o, there

are a1, · · · , an ∈ a and b1, · · · , bm ∈ a−1 such that a1b1 + · · ·+ anbn = 1. Some bj is not in
o (otherwise 1 ∈ a). Thus a−1 6= o and o belongs to the family of ideals S. Then there is
a maximal m1 in S such that a ⊂ m1. Since m1 is invertible by Theorem 12.14, we have
m−11 a ⊂ o and a ⊂ m−11 a. If m−11 a = o, then m1(m

−1
1 a) = a = m1. Otherwise repeat the

process with the nonzero proper ideal m−11 a to produce another m2 and so on. Then we
get a sequence

a ⊂ m−11 a ⊂ m−11 m−12 a ⊂ · · · ⊂ o.

Since o is Noetherian, this ascending sequence must terminate with a = m1m2 · · ·mr.

Theorem 13.2 (D5). Every prime ideal p of a Dedekind domain is invertible.

Proof. Pick a ∈ p\{0}. Then ao is invertible because (ao)−1 = 1
ao and (ao)(ao)−1 = o. By

Theorem 13.1, ao = m1 · · ·mr where m1, · · · ,mr are invertible prime ideals. So p ⊃ ao =
m1 · · ·mr. So by Theorem 12.10, p = mj for some j.

Theorem 13.3 (D6). Every nonzero ideal a in a Dedekind domain o is a product of prime
ideals a = p1 · · · pr.

Proof. If a = o, then we are donw with r = 1. If a ( o, then a is contained in a maximal
(hence prime) ideal a ⊂ p1 ⊂ o. Then a ⊂ p−11 a ⊂ o. If p−11 a = o, then a = p1(p

−1
1 a) = p1.

Otherwise, repeat the process for a ⊂ p−11 a ⊂ p−11 p−12 a ⊂ · · · . Since o is Noetherian, we
must have a = p1p2 · · · pr at some point.

Theorem 13.4 (D7). For every a 6= 0 in a Dedekind domain o, the prime ideal factor-
ization in Theorem 13.3 is unique up to rearrangement.

Proof. Suppose a = p1 · · · pr = q1 · · · qs for prime ideals p1, · · · , pr, q1 · · · qs with r ≥ 0
as small as possible. Then by Theorem 12.10 p1 = qj for some j. Renumber so that
j = 1 and p1 = q1. Then by Theorem 13.2, p−11 (p1 · · · pr) = q−11 (q1 · · · qs) reduces to
p2 · · · pr = q2 · · · qs. That contradicts r being minimal.

Corollary 13.5. In a Dedekind domain, every fractional ideal a can be uniquely written
as a = pa11 · · · parr for distinct prime ideals p1, · · · , pr and nonzero integers a1, · · · , ar up to
rearrangement.
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14 Dedekind Domains III (09/19)

Example 14.1. Z[
√
−5] is not a PID. 6 can be written as

6 = 2 · 3 = (1 +
√
−5)(1−

√
−5)

as ideals. All of these factors are irreducible.

Definition 14.2. Let o be a Dedekind domain. We say a|b if there is an ideal c ⊂ o such
that b = ac.

Proposition 14.3. a|b ⇔ a ⊃ b.

Definition 14.4. The greatest common divisor of two ideals a, b ⊂ o is the minimal ideal
c such that c|a and c|b.

Remark 14.5. gcd(a, b) = a + b.

Definition 14.6. The least common multiple of two ideals a, b ⊂ o is the maximal ideal
m such that a|m and b|m.

Remark 14.7. lcm(a, b) = a ∩ b.

Definition 14.8. a, b are relatively prime iff a + b = o.

15 Chinese Remainder Theorem for Rings(09/22)

Theorem 15.1 (Chinese Remainder Theorem for Rings). Let R be a ring with 1. Let
a1, · · · , an be two-sided ideals in R such that ai + aj = o for any i 6= j. Then the map

R/(a1 ∩ · · · ∩ an)→
n∏
i=1

R/ai

defined by
x+ (a1 ∩ · · · ∩ an) 7→ (x+ ai)

is an R-module isomorphism.

Proof. This map is clearly well-defined and a module homomorphism. It is injective since
if x ∈ ai for all i, then x ∈ a1 ∩ · · · ∩ an. To prove surjectivity, we use induction on n, and
then it suffices to prove the theorem for n = 2 ideals. Since a1 + a2 = R, there are a1 ∈ a1
and a2 ∈ a2 such that a1 + a2 = 1. Suppose we are given (y1 + a1, y2 + a2) ∈ R/a1×R/a2.
Let x = y2a1 + y1a2. Then

x = y2a1 + y1(1− a1) = y1 − y1a1 + y2a1 ≡ y1 (mod a),
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and
x = y2(1− a2) + y1a2 = y2 − y2a2 + y1a2 ≡ y2 (mod a2).

For n > 2 assume the theorem is true for n− 1 ideals, since it is true for 2 ideals, we can
say

R/a1 ∩ · · · ∩ an ∼= (R/a1 ∩ · · · ∩ an−1)×R/an
if a1 ∩ · · · ∩ an−1 + an = R. Since ai + an = R for 1 ≤ i ≤ n − 1, then ui + vi = 1 for
some ui ∈ ai, vi ∈ an. So 1 = (u1 + v1) · · · (un + vn) = u1u2 · · ·un + multiple of v’s ∈
a1 ∩ · · · ∩ an−1 + an.

Theorem 15.2. For every proper prime ideal p in a Dedekind domain o, o ) p ) p2 )
p3 ) · · · .

Proof. The inequalities follow from unique factorization into prime ideals.

Corollary 15.3. For any nonzero ideals a, b ∈ o, there exists α ∈ a such that αa−1+b = o.

Proof. Let b = pm1
1 · · · p

mt
t . For each j, suppose p

nj
j exactly divides a. Pick αj ∈ p

nj
j \p

nj+1

j .

Pick α ≡ αj (mod p
nj+1

j ) for all j, by Chinese Remainder Theorem. Then α ∈ p
nj
j for

all j. Hence, α ∈
∏k
j=1 p

nj
j , then αo =

(∏k
j=1 p

nj
j

)
is a product of primes q 6= any

pj . Since αo ⊂ a, a|αo, and together with the assumption that p
nj
j exactly divides a,

(αo)a−1 = αa−1 is a product of primes q 6= any pj . So αa−1 is relatively prime to b, and
so αa−1 + b = o.

Corollary 15.4. If a is a nonzero integral ideal in a Dedekind domain o and α 6= 0 is in
a, there is an α′ ∈ a such that a = (α, α′) = αo + α′o.

Proof. Take b = α−1a in Corollary 15.3. Then there is an α′ ∈ o such that α′a−1+αa−1 =
o. Then (α′, α) = a.

16 Valuation (09/24)

Definition 16.1. For a prime p and an ideal a 6= 0, we define the p-adic valuation of a
to be

vp(a) = exponent of p in the prime factorization of a.

Remark 16.2. Properties of valuation:
(i) vp(ab) = vp(a) + vp(b).
(ii) If a|b, then vp(a) ≤ vp(b).
(iii) vp(a ∩ b) = max{vp(a), vp(b)}.
(iv) vp(a + b) = min{vp(a), vp(b)}.
(v) vp(a ∩ b) + vp(a + b) = vp(a) + vp(b).
(vi) a + b = o ⇔ a ∩ b = ab.
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Example 16.3. In a noncommutative ring, we may have a + b = o but a ∩ b 6= ab. For
example, let R = R[X,Y ] with XY 6= Y X be a noncommutative polynomial ring, let
a = (X), b = (XY + 1), then a + b = o, a ∩ b 6= ab.

Definition 16.4. We can define an absolute value | · |p : K∗ → (0,∞). Pick some number
c > 1. Define |α|p = c−vp(α).

Remark 16.5. Properties of absolute value:
(i) |αβ|p = |α|p|β|p.
(ii) |α+ β|p ≤ max(|α|p, |β|p) ≤ |α|p + |β|p.

| · |p is a p-adic absolute value. Extend | · |p to |0|p = 0, | · |p defines a metric on K. The
completion of K relative to this metric is Kp (the field of p-adic numbers).

Theorem 16.6. For a Dedekind domain o and a prime ideal p, o/p is a field, and o/p ∼=
pn/pn+1 for all n ∈ Z.

Proof. Define an isomorphism
f : o/p→ pn/pn+1.

Pick a ∈ pn/pn+1. Define f(x+ p) = ax+ pn+1 for all x ∈ o.
It is well-defined: If x+ p = x′ + p, then x− x′ ∈ p. Then a · (x− x′) ∈ pn · p = pn+1.

Therefore, f(x+ p) = ax+ pn+1 = ax′ + pn+1 = f(x′ + p).
It is injective: If ax ∈ pn+1, then vp(ax) ≥ n + 1. On the other hand, vp(ax) =

vp(a) + vp(x) = n+ vp(x). Therefore, vp(x) = 1 and so x ∈ p.
It is surjective: Since a ∈ pn\pn+1, (a) = pnb where p - b. Then p + b = o, and so

pn+1 + pnb = pn. For y ∈ pn, there exists x ∈ o and a z ∈ pn+1 such that y = z + ax.
Then y + pn+1 = f(x+ p).

Theorem 16.7 (Chinese Remainder Theorem for Dedekind Domains). For an ideal a in
a Dedekind domain o with prime factorization a = pm1

1 · · · pmrr where each pj is distinct.
Then o/a ∼=

∏r
i=1 o/p

mj
j .

Definition 16.8. If K/Q is a finite extension, we will see o/p is a finite field where o is
the ring of integers in K. Then we define absolute norm

N(p) = [o : p].

Remark 16.9. N(a) = [o : a] =
∏r
j=1N(pj)

mj for a = pm1
1 · · · pmrr .

17 Ideal Class Group in a Dedekind Domain (09/26)

Let Io be the group of fractional ideals a in the Dedekind domain o, Po be the subgroup
of principal ideals (α) = αo, Cl(o) = Io\Po be the class group. Then 1 → o∗ ↪→ K∗ →
Io → Cl(o)→ 1 is exact.
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Corollary 17.1. Cl(o) = 1 if and only if o is a PID.

If L is a finite separable extension of K, o is the ring of integers of K, and OL is the
integral closure of o in L, then for any ideal a ⊂ o, aOL is an ideal in OL. aOL is called
the lift of a to OL.

Theorem 17.2 (Principal Ideal Theorem (Furtwungler, 1929)). For any algebraic number
field K/Q, there is a finite extension L/K such that every ideal a in oK lifts to a principal
ideal in OL. The smallest degree extension HK with this property is uniquely determined,
it’s Galois over K, and Gal(H/K) ∼= Cl(oK). HK is called the Hilbert Class Field of K.

Remark 17.3. A prime p = x2 + 6y2 for some integers x, y iff (−6p ) = 1 and for any

integers u, v such that p|u2 + 6v2, the ideal p = (p, u+
√
−6v) is principal. It will turn out

that Cl(Q(
√
−6)) ∼= C2. p is 1 in Cl(Q(

√
−6)) if and only if p ≡ 1, 7 (mod 24).

18 Extensions of Dedekind Domain I (09/29)

Let o be a Dedekind domain, K be its field of fractions, L be a finite separable extension
of K, and OL be the integral closure of o in L. Consider the trace

tL/K(x) =
∑

embeddings σ of L into K

xσ.

We have tL/K(x) ⊂ o. This is because the embeddings σ generate the Galois group of the
Galois closure N of L/K. tL/K(x) =

∑
σ x

σ is just permuted by applying any particular
σ. So tL/K(x) is invariant under Gal(N/K). So tL/K(x) ∈ K for all x ∈ L. Each xσi is
an algebraic integer. So tL/K(x) ∈ K ∩ OL = o since o is integrally closed.

Definition 18.1. For any o-submodule X ⊆ L, the dual module of X is defined as

XD = {x ∈ L|tL/K(xy) ∈ o for all y ∈ X}.

Remark 18.2. (i) (XD)
D

= X.
(ii) If X ⊂ Y , then Y D ⊂ XD.
(iii) tL/K(OL) ⊂ o implies that OLD ⊇ OL.

Proposition 18.3. Suppose {x1, · · · , xn} is a basis of L/K. Let X = x1o + · · ·+ xno be

a free o-submodule of L. For every j, ∃ yi ∈ L with tL/K(xiyj) = δij =

{
1, if i = j

0, if i 6= j.

Proof. We have a K-linear map L→ Kn defined by y 7→ (tN/K(yxi))
n
i=1. The kernel is 0

due to the fact that tN/K is nonsingular ⇔ the embeddings are linear independent. Since

26



(L : K) = n, dimK L = n = dimK(Kn). Since the kernel is 0, the map is surjective. So
there is some yi such that

(
tN/L(xiyj)

)n
i=1

= ~ej =


0
· · ·
1
· · ·
0



Remark 18.4. {y1, · · · , yn} is the dual basis.

Proposition 18.5. For X = x1o + · · ·+ xno with dual basis {y1, · · · , yn}, we have

XD = {c1y1 + · · ·+ cnyn|ci ∈ o}

is a free module spanned by y1, · · · , yn.

Proof. Suppose y = c1y1 + · · · + cnyn ∈ L with ci ∈ K. Then tL/K(yxi) = ci ∈ o for all
i.

Example 18.6. Let K = Q, o = Z, L = Q(
√
−6). Then OL = Z[

√
−6],

ODL = {x+y
√
−6|x, y ∈ Q such that tL/K

(
(x+ y

√
−6)(u+ v

√
−6)

)
∈ Z where u, v ∈ Z}.

Since tL/K
(
x+ y

√
−6
)

= 2x, tL/K
(
(x+ y

√
−6)
√
−6
)

= −12y, then ODL = Z1
2 + Z

√
−6
12 ,

and [ODL : OL] = 2 · 12 = 24.

Theorem 18.7. Let o be a Dedekind domain, K be its field of fractions, L be a finite
separable extension of K, and OL be the integral closure of o in L. Then OL is a Dedekind
domain.

Proof. (i) OL is integrally closed by the theorem that integral closures are integrally closed.
(ii) Let A be a non-zero ideal of OL. Let x1, · · · , xn be a basis of L over K. Then ∃

c1, · · · , cn 6= 0 such that c1x1, · · · , cnxn ∈ OL. For any a ∈ A, a 6= 0, then ac1x1, · · · , acnxn
is a basis of L over K contained in A. Suppose x1, · · · , xn is a basis of L over K contained
in A. Then

OL ⊇ A ⊇ X = x1o + · · ·+ xno.

Then
XD ⊇ AD ⊇ ODL ⊇ OL ⊇ A.

So XD is a finitely-generated o-module containing A. Since o is Noetherian, then A is
finitely-generated o-module, then OL is Noetherian.

(iii) Let P be a prime ideal in OL. Then P ∩ o = p is a prime ideal in o. pOL is an
ideal in OL.
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We claim that pOL 6= OL. In K, we know that p−1 ) o because o is a Dedekind
domain. Then p−1 6⊇ OL because OL ∩K = o by integral closure. Then pOL 6⊂ OL.

Then OL/pOL = A is a commutative algebra over o/p = k. Since OL is finitely-
generated as o-module, A is a finite dimensional algebra over k. Every commutative finite
dimensional algebra A over a field is isomorphic to a direct sum A =

∏t
i=1Ai where Ai

is an decomposable algebra. Ai is a field iff Rad(Ai) = 0. The radical is an ideal and if
A = A/Rad(A) then Rad(A) = 0. Also A =

∏t
i=1Ai with Ai = Ai/Rad(Ai). So each Ai

is a field. The maximal ideals in Ai are

J i =
t∏

j=1,j 6=i
Aj .

The maximal ideals in A are the lifts

Ji =
t∏

j=1,j 6=i
Aj .

From the map OL → OL/pOL = A the inverse images of the Ji’s are all the maximal ideals
Pi that contain pOL. This proves there are only finitely many maximal ideals containing
pOL.

If P is a prime ideal in OL that contains pOL, then OL/P is a finite dimensional
commutative k-algebra (k = o/p) and OL/P is an integral domain. That means that
OL/P is indecomposable. Since P is prime, if xn ∈ P, then x ∈ P for some n ≥ 1. That
means Rad(OL/P) = o. Then OL/P is a field. Then P is maximal.

19 Extensions of Dedekind Domain II (10/01)

Example 19.1. Let K = Q, o = Z. Theorem 18.7 implies that for any finite extension
L/Q, OL is a Dedekind domain. Because Z is a PID, OL is a free Z-module. Since OL
spans L over Q, OL is a free Z-module of rank n, and has an integral basis

{w1, · · · , wn}.

The discriminant is
dL = det([tL/Q(wiwj)]) = det([w

σj
i ])2 6= 0

where σ1, · · · , σn are the distinct embeddings L ↪→ Q. Suppose {u1, · · · , un} is another
basis of OL. Then there exists integers aij , bij ∈ Z such that

wi =
n∑
j=1

aijui, ui =
n∑
j=1

bijwi.
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Then [w
σj
i ] = [aij ][u

σj
i ], [u

σj
i ] = [bij ][w

σj
i ] as n × n matrices. This implies [aij ][bij ] = I.

Hence det([aij ] det([bij ]) = I. Both determinants are integers, then det([aij ] = det([bij ]) =
±1. Hence, det([w

σj
i ]) = ±det([u

σj
i ]). So

dL = det([w
σj
i ])2 = det([u

σj
i ])2.

Theorem 19.2 (Stickelberger-Schur Theorem). For any finite extension L/Q, dL ≡ 0, 1
(mod 4).

Proof. We use the permutation definition of determinant:

det(w
σj
i ) =

∑
π∈Sn

sign(π)w
σπ(1)
1 · · ·wσπ(n)n

=
∑
π even

w
σπ(1)
1 · · ·wσπ(n)n −

∑
π odd

w
σπ(1)
1 · · ·wσπ(n)n

= E −O.

If we apply any embedding σ to these terms,

(w
σπ(j)
j )σ = w

σλπ(j)
j

for some permutation λ ∈ Sn determined by σ. So either

Eσ = E,Oσ = O, if sgn(λ) = 1

or
Eσ = O,Oσ = E, if sgn(λ) = −1.

Then (E + O)σ = E + O for all σ. So E + O ∈ Q ∩ OL = Z. Also dL = (E − O)2 ∈ Z.
Then

dL = (E −O)2 = E2 − 2EO +O2 = (E +O)2 − 4EO.

Since E −O ∈ Z, E +O ∈ Z, we have EO ∈ Q ∩ OL = Z. Then

dL = (E +O)2 − 4EO ≡ 0, 1 (mod 4).

20 Extensions of Dedekind Domain III (10/03)

Theorem 20.1. For K = Q(
√
m) where m 6= 1 is square-free,

OK =

{
Z[
√
m] if m ≡ 2, 3 (mod 4),

Z[1+
√
m

2 ] if m ≡ 1 (mod 4).
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Also, the fundamental discriminant is

dK =

{
4m if m ≡ 2, 3 (mod 4),

m if m ≡ 1 (mod 4).

In all cases, OK = Z[dK+
√
dK

2 ].

Proof. The minimal polynomial of α = u+v
√
m ∈ K = Q(

√
m) is x2−tK/Q(α)+NK/Q(α).

So
α ∈ OK ⇔ tK/Q(α) ∈ Z and NK/Q(α) ∈ Z.

tK/Q(α) = 2u,NK/Q(α) = u2−mv2. So Z[
√
m] ⊂ OK with finite index l = [OK : Z[

√
m]].

In general,
In general, OK has a free integral basis {w1, · · · , wn}. Suppose ∧ = Z{u1, · · · , un} ⊂

OK . So ui =
∑n

i=1 aijwi for some integers aij . Then [OK : ∧] = |det([aij ])| from module
theory over a PID. OK/∧ is a finite abelian group. We can choose a basis α1, · · · , αn of
OK so that d1α1, · · · , dnαn is a basis of ∧ with d1|d2| · · · |dn. [OK : ∧] = d1d2 · · · dn. Also,

det([u
σj
i ])2 = det([aij ])

2 · det([w
σj
i ])2,

so
d(u1, · · · , un) = [OK : ∧] · dK .

In our quadratic case, u1 = 1, u2 =
√
m, because Z[

√
m] ⊂ OK .

d(
√
m) =

∣∣∣∣1 √
m

1 −
√
m

∣∣∣∣2 = 4m

and d(OK) · l2 = d(
√
m), we have l2|4m. Since m is squarefree, l = 1 or 2. If l = 2, then

1

2
Z[
√
m] ⊃ OK ⊃ Z[

√
m].

All we have to check are representatives of 1
2Z[
√
m]/Z[

√
m]. Try α = 1

2 ,
√
m
2 , 1+

√
m

2 , and
we will see t(α), N(α) ∈ Z iff m ≡ 1 (mod 4).

Theorem 20.2. Let o be a Dedekind domain with field of fractions K. Assume o/p is
finite for all prime ideals p. Then o/a is finite for all ideals a 6= 0 in o.

Proof. First, we have shown o/p ∼= pn/pn+1 for all n ∈ Z. Then

[o : pn] = [o : p][p : p2] · · · [pn−1 : pn] = [o : p]n <∞.

For general ideals a 6= 0, Dedekind Theorem implies that a = pm1
1 · · · pmrr for distinct prime

ideals pj . Then

o/a ∼=
r∏
j=1

o/p
mj
j

by Chinese Remainder Theorem. That proves [o : a] =
∏r
j=1[o : pj]

mj .
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Definition 20.3. We define the absolute norm of a to be

N(a) = [o : a] ∈ N.

N extends to a homomorphism N : Io → Q∗:

N(ab) = [o : ab] = [o : a][a : ab] = [o : a][o : b] = N(a)N(b).

Let L/K be a finite separable extension with OL as the integral closure of o. Then
for any prime ideal P ⊂ OL lying over p ⊂ o, OL/P is an extension of finite degree over
o/p. So if o/p is finite for all p for all p in o, then OL/P is finite for all primes P in OL.
If |o/p| = NK(p) = q = pf for a prime p ∈ Z, then |OL/P| = NL(P) = qfL/K(P) where
fL/K(P) is the residue degree of P over p in L/K. Also, pOL = Pe11 · · · Perr for distinct
prime ideals Pj in OL. The ej is the ramification degree of Pj over p.

21 Valuation Theory I (10/06)

Definition 21.1. Let K be a field. A discrete valuation is a map v : K∗ → Z such that
(i) v(xy) = v(x) + v(y), ∀x, y ∈ K∗;
(ii) v(x+ y) ≥ min(v(x), v(y));
(iii) v is surjective.

Extend v to K by v(0) =∞ with ∞+∞ =∞,∞+ n =∞,∞ > n,∀n ∈ Z. Define

ov = {x ∈ K|v(x) ≥ 0},
Pv = {x ∈ K|v(x) > 0}.

ov is a subring of K and Pv is an ideal of ov.

Remark 21.2. From the definition, we know that v(1) = v(−1) = 0.

Theorem 21.3. ov is a PID with a unique maximal ideal Pv.

Proof. If x ∈ ov, then x is in o∗v iff x−1 is in ov iff v(x) = 0. Since xx−1 = 1, v(x)+v(−x) =
v(1) = 0. Since if x ∈ o∗v, then x−1 ∈ o∗v, and v(x) ≥ 0, v(x−1) ≥ 0. So x ∈ o∗v iff
v(x) = v(x−1) = 0. That proves o∗v = {x ∈ K∗|v(x) = 0} = ov/Pv. So Pv is maximal and
is the only maximal ideal. There exists π ∈ Pv such that v(π) = 1 because v is surjective.
We claim that Pv = πov = (π) and every non-zero ideal in ov equals Pmv = (πm) for some
integer m ≥ 0. Suppose x ∈ Pv. Then v(x) > 0 and v(x) is an integer, and so v(x) ≥ 1
by definition. Then x = (xπ−1)π and v(xπ−1) = v(x)− v(π) ≥ 1− 1 = 0. So xπ−1 ∈ ov.
For any non-zero ideal a ⊂ ov, choose a ∈ a with minimal valuation v(a) = m. We claim
a = Pmv = (πm). For any b ∈ a, b = (bπ−m)πm and again v(bπ−m) = v(b)−m ≥ m−m = 0.
That proves a ⊂ (πm). By similar reasoning, v(aπ−m) = 0, and so aπ−m ∈ o∗v. So
π−m ∈ a.
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For a general Dedekind domain, we had an exact sequence

1→ o∗ → K∗ → Io → Cl(o)→ 1.

For a discrete valuation domain ov, this reduces to

1→ o∗v → K∗ → Z→ 0.

Let U
(n)
K = 1 + Pnv for n ≥ 1. Then

o∗v ⊇ U
(1)
K ⊇ U (2)

K ⊇ U (3)
K · · ·

and
o∗v/U

(1)
K
∼= (ov/Pv)∗,

U
(n)
K /U

(n+1)
K

∼= Pnv /Pn+1
v
∼= ov/Pv = kv.

Here is the proof. Define the homomorphism: o∗v = ov/Pv → (ov/Pv)∗: x 7→ x + Pv.
Suppose x maps to 1 + Pv in (ov/Pv)∗, then x ∈ 1 + Pv. The kernel of the map is

1 + Pv = U
(1)
K , so o∗v/U

(1)
K
∼= (ov/Pv)∗. U

(n)
K = 1 + Pnv = 1 + πnov = 1 + πn(a + πov)

for some a ∈ ov. Consider the map U
(n)
K → ov/Pv : 1 + πna + πn+1b 7→ a + Pv. This is

well-defined and is actually a homomorphism. The kernel is when a ∈ Pv and in that case
1 + πna ∈ Pn+1

v . That proves (1 + Pnv )/(1 + Pn+1
v ) ∼= ov/Pv.

22 Valuation Theory II (10/08)

Theorem 22.1. Let o be the ring of algebraic integers in a finite extension K/Q. If v is
a discrete valuation of K, then o ⊂ ov.

Proof. Since v(−1) + v(−1) = v(1) = 0, v(−1) = v(1) = 0. For positive n ∈ N,

v(n) = v(1 + 1 + · · ·+ 1) ≥ min(v(1), v(1), · · · , v(1)) = 0.

For negative n ∈ N,

v(n) = v(−1− 1− · · · − 1) ≥ min(v(−1), v(−1), · · · , v(−1)) = 0.

So we conclude that v(n) ≥ 0 for all n ∈ N. Suppose x ∈ o and satisfies xn + a1x
n−1 +

· · ·+ an = 0 where a1, · · · , an ∈ Z. Then xn = −a1xn−1 − · · · − an and so

v(xn) = nv(x) ≥ min
1≤j≤n

(v(aj) + (n− j)v(x))

≥ min
1≤j≤n

((n− j)v(x)).

If v(x) < 0, then nv(x) ≥ (n − 1)v(x), which is a contradiction. Hence v(x) ≥ 0, and so
x ∈ ov. Therefore, o ⊂ ov.
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Theorem 22.2. If o is a Dedekind domain and v is a valuation such that o ⊂ ov, then
(i) pv = Pv ∩ o is a prime ideal in o,
(ii) pvov = Pv,
(iii) o/pv ∼= ov/Pv.

We first give an example to illustrate Theorem 22.2, then give the proof.

Example 22.3. o = Q, valuations correspond to prime numbers p, where v(p) equals the
exponent of p in the prime factorization of x ∈ Q∗. Then

Zv = {all fractions
r

s
where p - s},

Pv = {all fractions
r

s
where p - s, p|r},

Zv/Pv ∼= Z/pZ.

Proof of part (i) of Theorem 22.2. Suppose a, b ∈ o and ab ∈ pv = Pv ∩ o. We know that
o ⊂ ov, so v(a) ≥ 0, v(b) ≥ 0. Since ab ∈ pv, v(ab) = v(a) + v(b) ≥ 1. So v(a) ≥ 1 or
v(b) ≥ 1 since v(a), v(b) ∈ Z≥0. That proves pv is a prime ideal in o.

Example 22.4 (Example of v where o 6⊂ ov). Let F be a field, K = F (x) be a field of
rational functions over F , then o = F [x] is the ring of polynomials over F which is a PID.
The prime ideals p of o corresponds to monic irreducible polynomials f(x) ∈ F [x]. So
these correspond to all valuations v where ov ⊃ o, by previous theorem. There is one more
valuation defined by

v∞ :K∗ → Z
f(x)

g(x)
7→ −deg(f) + deg(g)

for f, g ∈ F [x]. By definition,

v∞

(
f(x)

g(x)
· r(x)

s(x)

)
= −deg(f(x))− deg(r(x)) + deg(g(x)) + deg(s(x))

= v∞

(
f(x)

g(x)

)
+ v∞

(
r(x)

s(x)

)
,

v∞

(
f(x)

g(x)
+
r(x)

s(x)

)
= v∞

(
f(x)s(x) + r(x)g(x)

g(x)s(x)

)
= −deg (f(x)s(x) + r(x)g(x)) + deg(g(x)) + deg(s(x))

≥ −max {deg(f(x)s(x)), deg(r(x)g(x))}
= min {− deg(f(x)) + deg(g(x)),−deg(r(x)) + deg(s(x))}

= min {v∞
(
f(x)

g(x)

)
, v∞

(
r(x)

s(x)

)
}.
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Note that deg(x) = −1, deg( 1x) = 1, and 1
x 6∈ o. Moreover, we have the following sum

formula

v∞

(
f(x)

g(x)

)
+

∑
prime p(x)

vp

(
f(x)

g(x)

)
· deg (p(x)) = 0.

23 Valuation Theory III (10/10)

Proof of part (ii) of Theorem 22.2. pvov is an ideal of ov. Because ov is a discrete valua-
tion domain, pvov = Pev for some e ≥ 1. Since pv is a prime ideal of o, we can define a
valuation vpv : K∗ → Z by vpv(x) = n where xo is a product of pnv and other prime ideal
powers. vpv is surjective on Z because pnv 6= pn+1

v .
We claim that for z ∈ K∗, if vpv(z) = 0, then v(z) = 0. Here is the proof. Write

z = a
b for some a, b ∈ o. Then ao = plva and bo = plvb for some ideal a, b with pv - a,

pv - b. The same power occurs because vpv(z) = 0 = vpv(a)− vpv(b). Pick c ∈ p−lv \p−l+1
v .

Then ca ∈ (p−lv plva)\(p1−lv plva) = a\(pva). That proves vpv(ca) = 0. Similarly, vpv(cb) = 0.
Since z = a

b = ca
cb , so we proved that we can assume z = a

b with vpv(a) = vpv(b) = 0.
So a, b ∈ o\pv. Then a, b ∈ ov\Pv (if not, a ∈ Pv implies a ∈ o ∩ Pv = pv). Then
v(a) = v(b) = 0 and so v(z) = 0.

Now pick x ∈ o, x 6= 0. Then vpv(x) = l ≥ 0. Then xo = plva for some ideal a with
pv - a. So there exists α ∈ a, α 6∈ pv, α ∈ o. By the previous claim, v(α) = 0. Then

αov = ov, then aov = ov. So xov = plvaov = plvov = (pvov)
l = (Pev)l = Pefv . That proves

v(x) = el = evpv(x). Since v(K∗) = Z, we must have e = 1.

Proof of part (iii) of Theorem 22.2. By the Second Homomorphism Theorem, we have

o/pv = o/(o ∩ Pv) ∼= (o + Pv)/Pv.

We claim that o + Pv = ov. Suppose z ∈ ov, we have z = a
b where a, b ∈ o. If

v(z) > 0, then z ∈ Pv, we are done. If v(z) = 0, then by previous argument z = a
b for

some a, b ∈ o/pv. a, b correspond to non-zero elements in o/pv which is a field. So there
exists c ∈ o such that bc = 1 (mod pv). So bc− 1 ∈ pv. Then z = a

b = (ab − ac) + ac with

ac ∈ o, and a
b − ac = a(1−bc)

b . Since 1 − bc ∈ pv ⊂ Pv, we have v
(
a(1−bc)

b

)
≥ 1 and thus

a(1−bc)
b ∈ Pv. So z ∈ o + Pv.

24 Valuations of a Function Field (10/13)

Let F be a field, K = F (x) be the rational function field over F , o = F [x] be the
polynomial ring over F .

We consider valuations of K. For any prime ideal p ⊂ o,

vp(x) = exponent of p in prime factorization of xo, for x 6= 0,
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v∞(x) = −deg(f) + deg(g), for f, g ∈ F [x] = o.

If 0 6= f(x) ∈ F [x] factors as

f(x) = up1(x)a1 · · · pk(x)ak

for u ∈ F ∗, where pj(x) are irreducible monic polynomials which are distinct, then

vpj (f(x)) = aj

and

v∞(f(x)) = −deg(f(x)) = −
k∑
j=1

aj deg(pj(x)),

i.e.,

v∞(f) +
k∑
j=1

vpj (f) deg(pj(x)) = 0.

Define deg(v∞) = 1, then ∑
all valuations v

v(f) deg(f) = 0

for all f ∈ K = F (x).

Theorem 24.1. The set of all valuations on K = F (x) such that v(F ∗) = 0 consists of
v∞ and all vp for irreducible monic polynomials p ∈ F [x].

To prove Theorem 24.1, we need the following lemma.

Lemma 24.2. If v(a) < v(b), then v(a+ b) = v(a).

Proof. Since v( ba) = v(b) − v(a) ≥ 1, so b
a ∈ Pv. So 1 + b

a ∈ 1 + Pv ⊂ ov\Pv = o∗v. So

v(1 + b
a) = 0. Then

v(a+ b) = v(a(1 +
b

a
)) = v(a) + v(1 +

b

a
) = v(a).

Proof of Theorem 24.1. If v(x) ≥ 0, then v(F [x]) ≥ 0, and so o = F [x] ⊂ ov. By our
previous theorem, v = vp for some monic irreducible polynomial p ∈ F [x]. (Note that for
any two irreducible polynomials p 6= q ∈ F [x], vp(p) = 1, vp(q) = 0 and vq(p) = 0, vq(q) =
1. So vp 6= vq.) If v(x) = α < 0, then v(xn) = nα, ∀n ∈ Z. So for f(x) = a0x

n+ · · ·+an ∈
F [x] with a0 ∈ F ∗, v(f(x)) = v(a0x

n) = −nα by Lemma 24.2. Hence

v

(
f(x)

g(x)

)
= (−deg(f) + deg(g))α ∈ αZ.

Since v maps K∗ onto Z, we have α = −1. Thus v(f(x)g(x) ) = −deg(f) + deg(g).
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Definition 24.3. An absolute value on a field K is a function | · | : K → [0,∞) satisfying
(i) |x| = 0 iff x = 0;
(ii) |xy| = |x||y|;
(iii) |x+ y| ≤ |x|+ |y|

Remark 24.4. (i) Trivial absolute value is an absolute value | · | such that |x| = 1 for all
x ∈ K∗. From now on we assume our absolute values to be non-trivial.

(ii) If v is a discrete valuation on K and λ is any number with 0 < λ < 1, then

|x|v =

{
λv(x) if x 6= 0

0 if x = 0

is an absolute value on K.
(iii) If |x+ y| ≤ max(|x|, |y|), | · | is called ultrametric or nonarchimedean. If not, | · |

is called archimedean.
(iv) If v is a discrete valuation, then | · |v is nonarchimedean.

Definition 24.5. Two absolute values | · |, | · |′ on K are equivalent iff ∃a > 0 such that
|x|′ = |x|a for all x ∈ K.

25 Ostrowski’s Theorem I (10/15)

Theorem 25.1. Two absolute values | · |, | · |′ on a field K are equivalent iff

{x ∈ K : |x| > 1} ⊂ {x ∈ K : |x|′ > 1}.

Proof. (⇒) If |x|′ = |x|a for some a > 0 for all x ∈ K, then if |x| > 1, then|x|′ = |x|a > 1.
(⇐) Since we assume | · | is nontrivial, there exists x0 with |x0| > 1. So by assumption,

|x0| > 1, too. Then |x0|′ = |x0|a for some a > 0.
For any other x 6= 0 in K, suppose |x|′ < |x|a. We’ve given that if |x| > 1, then

|x|′ > 1. So if |x−1| > 1, then |x−1|′ > 1. So if |x| < 1, then |x|′ < 1. Now take logs, we
have

log |x0|′ = a log |x0|,

and
log |x|′ < a log |x|.

We can find a rational number m
n ∈ Q with m,n integers and n > 0 such that

log |x|′ < m

n
log |x0|′ < a log |x|

(by density of log |x0|′Q in R). So

n · log |x|′ −m · log |x0|′ < 0.
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So ∣∣xnx−m0

∣∣′ < 1.

Also, we have
na · log |x| −m · log |x0|′ > 0,

then
na · log |x| −ma · log |x0| > 0

since |x0|′ = |x0|a. Hence,
n · log |x| −m · log |x0| > 0.

So ∣∣xnx−m0

∣∣ > 1.

This contradicts the inclusion |y|′ > 1 ⇒ |y| < 1 proved earlier. A similar contradiction
proves |x|′ > |x|a is also impossible. Therefore, |x|′ = |x|a for all x ∈ K∗.

Theorem 25.2 (Ostrowski’s Theorem (Acta Mathematica, 1916)). Every absolute value
of Q is equivalent to exactly one of | · |R (ordinary absolute value on R) or | · |p for some
prime p in Z where |x|p = p−vp(x) (the p-adic absolute value).

26 Ostrowski’s Theorem II (10/17)

Proof of Theorem 25.2. Assume first that |n| ≤ 1 for all n ∈ Z. The nontriviality of | · |
implies that there exists a prime p with |p| < 1 (if not, then by prime factorization |x| = 1
for all x ∈ K∗). Suppose there is another prime q with |q| < 1. Choose integers a, b ≥ 1
with |p|a < 1

2 , |q|b < 1
2 . Then there are integers m,n with mpa + nqn = 1 since pa and qb

are relatively prime. So

1 = |mpa + nqb| ≤ |m||p|a + |n||p|b < 1 · 1

2
+ 1 · 1

2
= 1.

That contradiction proves no such prime q exists. So |q| = 1 for all prime q 6= p. Then
clearly |x| = |p|vp(x) by prime factorization for all x ∈ Q∗. Since |p| < 1, |p| = p−a for
some a > 0. Then |x| = |x|ap.

Now assume |n| > 1 for some integer n > 1. Then |n| = nα for some α > 0. It is
sufficient to prove that |m| = mα for all integers m ≥ 1. First, |m| = |1 + 1 + · · · + 1| ≤
1 + 1 + · · ·+ 1 = m for all integers m ≥ 1. In particular, nα ≤ n. So α ≤ 1. Write

m = c0 + c1n+ c2n
2 + · · ·+ ckn

k

for integers 0 ≤ cj < n, 0 ≤ j < k, and 1 ≤ ck < n. So

|m| ≤
k∑
j=0

|cj ||nj | ≤
k∑
j=0

cjn
jα

≤ (n− 1)
k∑
j=0

njα = (n− 1) · n
(k+1)α − 1

nα − 1
.
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Only k depends on m. That proves

|m| ≤ c · nkα ≤ c ·mα

for all m ≥ 1, for some constant c > 0. Replace m by mr for an integer r ≥ 1. Then
|mr| ≤ c ·mrα. So |m| ≤ c

1
r ·mα. Then limr→∞ c

1
r = 1. Then that proves

|m| ≤ mα

for all integers m ≥ 1.
To prove |m| ≥ mα, write

m = c0 + c1n+ c2n
2 + · · ·+ ckn

k

for integers 0 ≤ cj < n, 0 ≤ j < k, and 1 ≤ ck < n. Then m < nk+1. Also m ≥ nk. Let
b = nk+1 −m > 0. Then

nk+1 −m ≤ nk+1 − nk.
So |b| ≤ bα by our above argument. Then

|b| ≤ (nk+1 − nk)α.

On the other hand, by the Triangle Inequality, we have

|m| ≤ |nk+1| − |b| ≤ n(k+1)α − (nk+1 − nk)α

= n(k+1)α

(
1− (1− 1

n
)α
)

≥ c′ · n(k+1)α

≥ c′ ·mα

where c′ is a constant independent of m. Replace m by mr for an integer r ≥ 1. Then
|mr| ≥ c′ · (mr)α, so |m|r ≥ c′ ·mrα. Hence |m| ≥ (c′)

1
r ·mα. Since limr→∞(c′)

1
r = 1, this

proves |m| ≥ mα.

Theorem 26.1 (Ostrowski’s Theorem for Algebraic Number Fields K/Q). If K/Q is a
finite extension, then every absolute value | · | on K is equivalent to a p-adic absolute value
for a unique prime ideal p in oK , or is equivalent to an absolute value coming from a real
or complex embedding of K.

Definition 26.2. Equivalence classes of absolute values of K are called places of K.

An absolute value | · | on K defines a topoloty on K by means of the basis of neigh-
borhoods:

B(a, r) = {x ∈ K||x− a| < r}
for all a ∈ K, r > 0, r ∈ R.

U ⊂ K is open if for every a ∈ U , there exists r > 0 such that B(a, r) ⊂ U . Addition,
multiplication, and | · | are all continuous on K relative to this topology.
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Theorem 26.3. If |n| ≤ 1 for all an ∈ Z, where Z is the image of Z in K, then | · | is
ultrametric, i.e., |x+ y| ≤ max (|x|, |y|).

Proof. First, we prove |1 + a| ≤ 1 for all a ∈ K with |a| ≤ 1. By the Binomial Theorem,

|1 + a|m =

∣∣∣∣∣∣
m∑
j=0

(
n

j

)
aj

∣∣∣∣∣∣ ≤
m∑
j=0

∣∣∣∣(nj
)∣∣∣∣ ∣∣aj∣∣ ≤ m∑

j=0

∣∣aj∣∣ ≤ m+ 1.

So |1 + a| ≤ (m+ 1)
1
m . Since limm→∞(m+ 1)

1
m = 1, we have |1 + a| ≤ 1.

If x 6= 0 and |y| ≤ |x|, then

|x+ y| = |x|
∣∣∣1 +

y

x

∣∣∣ ≤ |x|
by the above result, and so by symmetry,

|x+ y| ≤ max (|x|, |y|) ,∀x, y ∈ K.

27 Weak Approximation Theorem (10/20)

Theorem 27.1 (Weak Approximation Theorem). Let |·|1, · · · , |·|n be inequivalent absolute
values on a field K. Let Kj be the field with the topology derived from | · |j. Embed
K ↪→ K1 × · · ·Kn along diagonal:

x 7→ (x, · · · , x).

Then the image of K is dense in
∏n
j=1Kj, i.e., for any ε > 0, and any x1, · · · , xn ∈ K,

∃y ∈ K such that |y − xj |j < ε for 1 ≤ i ≤ n.

Before we prove Weak Approximation Theory, let’s see an example.

Example 27.2 (A special case). If K is the field of fractions of a Dedekind domain o and
if | · |i corresponds to a prime ideal pi in o, then the Chinese Remainder Theorem says
that for any M > 0 and any y1, · · · , yn ∈ o, ∃x with x ≡ yj (mod pMj ), that’s equivalent

saying |x − yj |j ≤ (Npj )
−M . So if we choose M large enough so that (Npj )

−M < ε, then
this proves a special case of Weak Approximation Theorem.

Remark 27.3. Weak Approximation Theorem involves any absolute values including
archimedean ones.

Lemma 27.4. Suppose | · |1, · · · , | · |n are inequivalent absolute values on a field K, then
there exists a ∈ K such that |a|1 > 1 and |a|i < 1 for all 2 ≤ i ≤ n.
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Proof. We prove by induction on n.
The first case is n = 2. Since | · |1, | · |2 are inequivalent, by our earlier theorem,

{|x|1 < 1} 6⊂ {|x|2 < 1}

and
{|x|2 < 1} 6⊂ {|x|1 < 1}.

So there exists x, y 6= 0 such that

|x|1 < 1, |x|2 ≥ 1

and
|y|2 < 1, |y|1 ≥ 1.

Then ∣∣∣∣xy
∣∣∣∣
1

< 1 <

∣∣∣∣xy
∣∣∣∣
2

.

That proves the n = 2 case.
Assume it is true for n absolute values for some n ≥ 2. Assume there is a b with

|b|1 > 1, |b|i < 1 for i = 2, · · · , n. By n = 2 case, there exists c with

|c|1 > 1, |c|n+1 < 1.

If |b|n+1 < 1, then a = b works. So assume |b|n+1 ≥ 1. If |b|n+1 = 1, take a = cbr where r
is chosen large enough so that for 2 ≤ i ≤ n,

|cbr|i = |c|i|b|ri < 1

which we can do because |b|i < 1. Also

|cbr|1 = |c|1 · |b|r1 > 1,

|cbr|n+1 = |c|n+1 · |b|rn+1 = |c|n+1 < 1.

So cbr works. Finally, assume |b|n+1 > 1. Then take

a =
cbr

1 + br

for some integer r > 0. Then

|a|1 =
|c|1|b|r1
|1 + b|r1

≥ |c|1|b|
r
1

1 + |b|r1
.

Note that since |b|1 > 1, limr→∞
|b|r1

1+|br|1 = 1, we can choose r >> 0 such that |a|1 > 1

because |c|1 > 1. For 2 ≤ i ≤ n,

|a|i ≤
|c|i|b|ri
1− |b|ri
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because |b|i < 1, and

lim
r→∞

|b|ri
1− |b|ri

= 0.

So we can choose r >> 0 so that |a|i < 1. Moreover,

|a|n+1 ≤
|c|n+1|b|rn+1

|b|rn+1 − 1

and

lim
r→∞

|b|rn+1

|b|rn+1 − 1
= 1

because |b|n+1 > 1. Since |c|n+1 < 1, we can choose r >> 0 so that |a|n+1 < 1.

Proof of Theorem 27.1. By Lemma 27.4 choose aj ∈ K so that |aj |j > 1, |aj |i < 1 for
i 6= j. Let

y =
n∑
j=1

arjxj

1 + arj
.

For r >> 0, we will verify that this y works.

|y − xi|i ≤
∑
j 6=i

∣∣∣∣∣ arjxj1 + arj

∣∣∣∣∣
i

+

∣∣∣∣ arixi1 + ari
− xi

∣∣∣∣
i

≤
∑
j 6=i

|aj |ri |xj |i
1− |aj |ri

+
|xi|i
|ai|ri − 1

(since |aj |i < 1, |ai|i > 1).

Since limr→∞
|aj |ri

1−|aj |ri
= 0 and limr→∞

1
|ai|ri−1

= 0, we can choose r >> 0 such that |y −
xi|i < ε.

Corollary 27.5. Suppose K/Q is a finite extension. Suppose |·|1, · · · , |·|m are inequivalent
real absolute values:

|x|i = |xσi |R for distinct embeddings σi : K ↪→ R.

Let each εi(1 ≤ i ≤ m) be ±1. Then there exists x ∈ K such that sign(σi(x)) = εi.

28 Completions of Valued Fields I (10/22)

Definition 28.1. Let K be a field with an absolute value | · |. A sequence {an}∞n=1 with
an ∈ K is Cauchy if ∀ε > 0, ∃N > 0 with |an − am| < ε for n > m ≥ N .
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A Cauchy sequence {an}∞n=1 has a limit l ∈ K if limn→∞ |an − l| = 0. {an} is a null
sequence if l = 0. We say K is complete if every Cauchy sequence has a limit in K.

The set of Cauchy sequence forms a commutative ring R with a 1 = {1} with opera-
tions:

{an}+ {bn} = {an + bn},

{an}{bn} = {anbn}.

The set N of null sequences forms an ideal in R. If {an} ∈ R\N, then there exists
ε > 0 such that |an| ≥ ε for infinitely many n. Choose N such that |an − am| < ε

2 for
n > m ≥ N . Choose N with |aN | ≥ ε. Then

|an| = |an − aN + aN |
≥ |aN | − |an − aN |

≥ ε− ε

2
=
ε

2

for all n ≥ N . So an 6= 0. Now choose {bn} with bn = 1
an

for n ≥ N . Then {bn} is Cauchy.
Then

{an}{bn} = {1}+ some sequence in N.

That proves N is maximal (if we add any {an} ∈ R\N to N, then 1 = {1} ∈ N.) Then
K = R\N is a field.

Theorem 28.2. (i) K has an absolute value

‖{an}‖ = lim
n→∞

|an|.

(ii) K is complete with respect to ‖·‖.
(iii) There is an embedding

K ↪→ K

α 7→ {α}+ N

satisfying ‖{α}‖ = |α|.
(iv) The image of K is dense in K.

(v) If K is a complete field containing K as a dense subset, then K is isomorphic to K,
with K mapping to K by the identity.

If K/Q is a finite extension, and σ : K ↪→ R is a real embedding, then the completion of
K relative to |xσ|R is isomorphic to R. For σ : K ↪→ C which are nonreal, the completion
of K relative to |xσ|C is always isomorphic to C.

Suppose o is a Dedekind domain and not a field, K is its field of fractions, p is a nonzero
prime ideal of o. Define |x|p = λvp with some 0 < λ < 1. | · |p is an absolute value on K.
Then Kp is the completion of K relative to | · |p (p-adic field). The valuation vp extends to
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Kp so that |x|p = λvp(x). Then for any Cauchy sequence {an} in K, limn→∞ |an|p exists.
{|x|p for x ∈ K} ⊂ {λn|n ∈ Z} ∪ {0} and since this is a discrete subset of (0,∞), the
only possible limits of sequence of these are {λn|n ∈ Z} ∪ {0}. Then limn→∞ |an| = 0 or
λm for some integer m ∈ Z. Then if x 6= 0, define vp(x) = m. Then vp is a valuation
on K. Then denote Kp as Kv, and ov = {x ∈ Kv : |x|v ≤ 1} as the valuation ring,
Pv = {x ∈ Kv : |x|v < 1}.

29 Completions of Valued Fields II, Inverse Limits(10/27)

Let K be a field of fractions of a Dedekind domain o, v be a valuation on K, and Kv

be the completion of K with respect to v. Suppose {an} is Cauchy in K, representing
x ∈ Kv. Let

L0 = lim infn→∞|an|v, L1 = lim supn→∞|an|v.

For ε > 0, there exists N > 0 such that |an − am|v < ε
3 for all n > m ≥ N . There exists

n,m ≥ N such that |an|v ≤ L0 + ε
3 and |am|v ≥ L1 − ε

3 . Then

ε

3
> |an − am|v ≥ |am|v − |an|v ≥ L1 −

ε

3
− (L0 +

ε

3
) = L1 − L0 −

2ε

3
.

Then L1 − L0 < ε for any ε > 0. Hence L1 = L0 and limn→∞ |an|v exists.
If v is a discrete valuation, then |x|v = λv(x) for some 0 < λ < 1. Since {λn|n ∈ Z},

then limn→∞ |an|v = 0 or λn for some n ∈ Z. The first case happens if and only if x = 0.
If x 6= 0, then limn→∞ |an| 6= 0 by definition of Null Cauchy sequence. Then limn→∞ |an|
is in the closure of {λn|n ∈ Z}. The only limit point of that set not in the set is 0. Then
limn→∞ |an|v = λm for some m. Define v(x) = m, then there exists N > 0 such that
|an|v = λm for all n ≥ N .

Let

ov = valuation ring of v in Kv

= {x ∈ Kv : |x|v ≤ 1}
= closure of o in Kv

and

Pv = unique prime ideal in ov

= {x ∈ Kv : |x|v < 1}
= {x ∈ Kv : |x|v ≤ λ}
= closure of p in Kv.

Theorem 29.1.
ov/Pvr ∼= o/pr

for r ≥ 1.
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Proof. Consider the map

o/pr → ov/Pvr

x+ pr 7→ x+ Pvr.

Since | · |v is discrete in Kv,

Pvr = {x ∈ Kv : |x|v ≤ λr}.

Since v is an extension of the valuation on K, pr ⊂ Pvr. So the map is well-defined.
Suppose x ∈ o ∩ Pvr, then x ∈ pr. So the map is injective. Given x ∈ ov, x is represented
by a Cauchy sequence {an} ⊂ K. Also |an|v = |x|v 6= 0 for n >> 0. Choose 0 < ε < λr.
Then there exists N > 0 such that for n ≥ N

|an − x|v < ε < λr.

Then aN − x ∈ Pvr. So aN + pr maps to x+ Pvr. That proves the map is surjective.

Example 29.2. Z/prZ ∼= Zp/prZp.

Corollary 29.3. If q is any prime ideal of o with q 6= p, then qov = ov.

Proof. Since q ⊂ o, qov ⊂ ov. Then qov = Pvr for some r ≥ 0. Since q 6= p, there exists
α ∈ q\p. Then |α|v = 1 and hence r = 0.

Now we come to the Inverse Limits.
Suppose we have a sequence of commutative groups: for n ≥ 1

An = o/pn

with homomorphisms
αnm : An → Am

for all n ≥ m ≥ 1, satisfying for n ≥ m ≥ r ≥ 1

αnr = αmr ◦ αnm
where

αnm (x+ pn) = x+ pm

which is well-defined because since n ≥ m, pn ⊂ pm. To any such inverse system {An},
there is associated an inverse limit

A = lim←−
n

An =

{
(xn) ∈

∞∏
n=1

An : αnm(xn) = xm for n ≥ m ≥ 1

}
with natural surjective homomorphisms

βn : A→ An

such that for n ≥ m ≥ 1, βm = αnm ◦ βn.
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Theorem 29.4.
lim←−
n

o/pn ∼= ov.

Proof. Define for x ∈ ov, the sequence (an), an ∈ o/pn where an is the image of x under
the isomorphism

ov/Pvn ∼= o/pn.

Then (an) ∈ A and this gives the isomorphism.

Choose π ∈ p\p2. So |π|v = λ. Let R be any set of representatives in o for the
residue field k = o/p. Let x ∈ Kv, x 6= 0. Then |x|v = λn1 = |π|vn1 for some n1 ∈ Z.
Then |xπ−n1 |v = 1. Then xπ−n1 ∈ ov. Choose a1 ∈ R with xπ−n1 = a1 (mod p). Either
|x−n1−a1|v = 0 or |x−n1−a1|v = λn2 = |π|vn2 for some n2 ≥ 1. Then |(xπ−n1−a1)π−n2 |v =
1. Choose a2 ∈ R with (xπ−n1 − a1)π−n2 = a2 (mod p). We can continue the process.
This gives a unique expansion

x =

∞∑
m=n

amπ
m

with every am ∈ R for all x ∈ Kv.

30 Compactness (10/29)

Example 30.1. Here is an example of 2-adic expansion of −1 in Q2. R = {0, 1} is a set
of representatives for Z/2Z. −1 ∈ 1 + 2Z2, so a0 = 1. Then (−1− 1)2−1 = −1 ∈ 1 + 2Z2,
so a1 = 1, and this pattern repeats forever. This establishes

−1 =

∞∑
n=0

2n.

Example 30.2. Does a solution to x2 = −1 exist in Q5? The Binomial Series

(1 + x)
1
2 =

∞∑
n=0

(1
2

n

)
xn
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formally satisfies
(

(1 + x)
1
2

)2
= 1 + x. Note

(1
2

n

)
=

1
2 · (

1
2 − 1) · · · (12 − (n− 1))

n!

=
1

2n
· (−1)n−1(2n− 3)(2n− 1) · · · 3 · 1

n!

=
(−1)n−1

2n
· (2n− 2)(2n− 3)(2n− 1)(2n) · · · 3 · 2 · 1

n!(2n− 2)(2n− 4) · · · 2

=
(−1)n−1

22n−2
· (2n− 2)!

n! · (n− 1)!

=
(−1)n−1

22n−2
·
(

2n− 2

n− 1

)
· 1

n

∈ Z
22n−1n

.

So

vp

((1
2

n

))
≥ −(2n− 1)vp(2)− vp(n) ≥ −c · log(n)

for p = 5. For p = 5, as long as vp(x) ≥ 1, the series converges, because

vp

((1
2

n

)
xn
)
≥ n− c log(n)→∞ as n→∞.

So (1 − 5)1/2 =
∑∞

n=0

( 1
2
n

)
(−5)n = x converges in Z5 and this satisfies x2 = 1 − 5 = −4.

So (x2 )2 = −1.

Let K be a complete field with a nonarchimedean absolute value | · |. Then

o = {x : |x| ≤ 1}

is a subring of K,
p = {x : |x| < 1}

is the unique maximal or prime ideal of o. We can choose π ∈ p\p2. Let v = vp be the
valuation on K.

Theorem 30.3. If k = o/p is finite, then o is compact with respect to the topology defined
by | · |.

Recall that a basis of neighborhoods of x ∈ K is {x+ pn} for n ∈ Z.

Theorem 30.4. If {An} is a projective sequence of finite abelian groups, then lim←−nAn = A
is compact with respect to the projective topology.
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A basis of neighborhoods of 0 in A is

UN = {(an) : an = 0 in An for n ≤ N}.

We have
∞⋃
N=1

UN = {0}.

A basis of neighborhoods of a ∈ A is {a+ UN}.

Proof of Theorem 30.4. We will prove sequential compactness. Let {xn} be a sequence
in A. We have to show there is a convergent subsequence. There are only finitely many
a1 ∈ A1, and A =

⋃
a1∈A1

a1 + U1. So a1 + U1 contains infinitely many xn for some a1.
Suppose we have an ∈ An, defined where there are infinitely many xn in an + Un. Then
an+Un is the union of an+1+Un+1 where an+1 projects to an. Since there are only finitely
many an+1, one of them an+1+Un+1 has infinitely many xn in it. That defines a = (an) ∈ A
where an + Un contains infinitely many xn’s. Then there are n1 < n2 < n3 < · · · such
that xnj ∈ aj + Uj for all j. Then by definition limj→∞ xnj = a.

Since o ∼= lim←−n o/p
n, that proves o is compact.

Remark 30.5. Infinite Galois groups are projective limits. Suppose Ksep is the field of
all algebraic numbers which are separable over K. Then

Ksep =
⋃

L/K finite separable

L = lim−→
L/K finite separable

L (direct limit).

Then
Gal(Ksep/K) = lim←−

L/K finite separable

Gal(L/K)

since for K ⊂ L1 ⊂ L2 we have

Gal(L2/K) � Gal(L1/K)

forms a projective system of groups. With the projective topology, Gal(Ksep/K) is a com-
pact group. This suggests a relationship between Gal(Ksep/K) and groups like Zp. Iwasawa
Theory is the study of Zp-Galois extensions over Q.

31 Hensel’s Lemma (10/31)

Theorem 31.1 (Hensel’s Lemma). Let K be a complete field with nonarchimedean abso-
lute value | · | = | · |v, o = {x ∈ K : |x| ≤ 1}, p = {x ∈ K : |x| < 1}, π ∈ p\p2. Suppose
f(x) ∈ o[x]. If there is an α0 ∈ o with∣∣∣∣ f(α0)

f ′(α0)
2

∣∣∣∣ < 1,

then there is a root α ∈ o with f(α) = 0 and |α− α0| < 1.
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Proof. For f(x) ∈ o[x], f(x) =
∑N

m=0 cmx
m where cm ∈ o. Then

f(x+ πly) =
N∑
m=0

cm(x+ πlm)m

=
N∑
m=0

cm

m∑
k=0

(
m

k

)
xm−k(πly)k

=

N∑
k=0

(πly)k
N∑

m=k

cm

(
m

k

)
xm−k.

Note that
N∑

m=k

cm

(
m

k

)
xm−k =

f (k)(x)

k!
∈ o[x].

So
f(x+ πly) = f(x) + (πly)f ′(x) + (πly)2h(x, πy)

where h(x, πy) ∈ o[x, y]. At the beginning we have α0 with

|f(α0)| < |f ′(α0)|2 ≤ 1.

If v(f ′(α0)) = c ≥ 0, then v(f (α0)) = n + c for some n ≥ c (because f ′(α0) ∈ πco∗ and
f (α0) ∈ π2c+1o). Let α1 = α0 + yπn for some y ∈ o. Then

f(α1) = f(α0 + yπn) ≡ f(α0) + f ′(α0)π
ny (mod p2n).

Choose

y =
−f(α0)

πnf ′(α0)
.

Then

|y| = |f(α0)|
|πnf ′(α0)|

=
|πn+1|
|πn+1|

= 1.

Then y ∈ o∗. Then for that y,

f(α1) ≡ 0 (mod p2n).

That proves
v(f(α1)) ≥ 2n.

Since n > c,
v(f ′(α1)) = v(f ′(α0)) = c.

Repeat the process from α1 to get α2, then α3 and so on, and we get

v(f(α0)) < v(f(α1)) < v(f(α2)) · · ·
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and
v(f ′(αn)) = v(f ′(α1)), ∀n.

Also
v(αn+1 − αn) > v(αn − αn−1),

which implies {αn} is Cauchy. So limn→∞ αn = α exists in o. Since v(f(αn)) → ∞, by
continuity limn→∞ f(αn) = 0 = f(α).

Example 31.2. Consider f(x) = x2 + 1 in Q5 and α0 = 2. We have f(α0) = 5, so
|f(α0)|5 < 1. Also f ′(α0) = 2 × 2 = 4, so |f ′(α0)| = 1. Then by Hensel’s Lemma, there
exists α ∈ Z5 with α ≡ 2 (mod 5) and α2 + 1 = 0.

32 Teichmüller Units (11/03)

Let K be a complete field with nonarchimedean absolute value | · | = | · |v, o = {x ∈ K :
|x| ≤ 1} the valuation ring of K, p = {x ∈ K : |x| < 1} the maximal ideal of o. Assume
k = o/p is a finite field of order q = pf for a prime p.

Theorem 32.1. For each a ∈ o/p with a 6= 0, there exists â ∈ o with (â)q−1 = 1 and
â ≡ a (mod p).

Proof. Pick x0 ∈ o with xo ≡ a (mod p). Since aq−1 = 1 in (o/p)∗, then xq−10 ≡ 1

(mod p). So for f(x) = xq−1 − 1, we have |f(x0)| < 1. Next, f ′(x0) = (q − 1)xq−20 . Since

xq−10 ≡ 1 (mod p), |x| = 1. Also, since p|#(o/p), we have p ≡ 0 (mod p) and so q = pf ≡ 0
(mod p). So |q − 1| = 1. So |f ′(x0)| = |q − 1| · |x0|q−2 = 1. Then |f(x0)| < 1 = |f ′(x0)|2.
Then by Hensel’s Lemma, there exists root â with f(â) = (â)q−1 − 1 = 0 and â ≡ x0
(mod p).

Remark 32.2. It is common to use R = {0, â} as “digits” in p-adic series expansion.

Next we consider when x0 is a square in Z∗p

Theorem 32.3. If x0 ∈ Z∗p, then x0 = a2 for some a ∈ Z∗p if and only if{
x0 ≡ a2 (mod p) if p > 2,

x0 ≡ 1 (mod 8) if p = 2.

Proof. We look at f(x) = x2 − x0.
For p > 2, |f(a)|p < 1 and |f ′(a)|p = |2a|p = 1. By Hensel’s Lemma, we are done.
For p = 2, we need x0 ≡ 1 (mod 8). Then |f(1)|2 = |12 − x0|2 ≤ |8|2 and |f ′(1)|2 =

|2 ·1|2 = |2|2. Hence |8|2 < |f ′(1)|22 = |2|22 = |4|2. By Hensel’s Lemma, there exists a root
x with f(x) = 0 and so x0 = x2. Conversely, if x0 = a2 for some a ∈ Z∗2, then a = 1 + 2b
for some b ∈ Z2. Then a2 = (1 + 2b)2 = 1 + 4b(b+ 1) ≡ 1 (mod 8).
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33 Adeles and Ideles I (11/05)

A good reference for this part is the book Basic Number Theory by Weil.
Let K/Q be a number field of degree n. Let M = MK be the set of inequivalent

absolute values on K (places of K), M∞ be the set of archimedean places (infinite places),
MR be the set real places, MC be the set complex places. Let r1, r2 be the number of
real places and complex places respectively. So r1 + 2r2 = n. Let M0 be the set of
nonarchimedean places of K. For each v ∈M, let Kv be the completion of K with respect
to v. For v ∈M0, let

ov = {x ∈ Kv : |x|v ≤ 1},
pv = {x ∈ Kv : |x|v < 1},
πv ∈ pv\p2v,
Uv = o∗v = {x ∈ Kv : |x|v = 1} = units of ov.

The ring of adeles of K is

KA = AK =
∏′

v∈M
Kv

where the direct product is restricted to (xv)v∈M where for all but finitely many v ∈M0

we have |xv|v ≤ 1 (or xv ∈ ov).
A basis of open sets in KA consists of

U ×
∏
v 6∈S

ov

where S is a finite set S ⊂M, S ⊃M∞, and U is an open subset of
∏
v∈SKv.

Theorem 33.1 (Tychonoff’s Theorem). A countable direct product of compact sets is
compact.

Tychonoff’s Theorem implies that
∏
v∈M0

ov is compact, and hence KA is locally com-
pact.

We use direct product laws of addition and multiplication on KA.

Theorem 33.2 (Theorem of Haar). Every Hausdorff locally compact topological group G
has an invariant measure µ on open subsets of G, satisfying
(i) µ(U) ≥ 0 for all open subsets U ,
(ii) µ(U) <∞ if U is compact,
(iii) µ (

∐∞
n=1 Un) =

∑∞
n=1 µ(Un) for disjoint union

∐∞
n=1 Un,

(iv) µ(aU) = aµ(U) for all a ∈ G.

The Haar measure µ is unique, determined up to a nonzero constant multiplier. For
additive group G, (iv) in Theorem of Haar becomes µ(a+ U) = µ(U) for all a ∈ G.
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Kv is locally compact topological group under addition, so it has a Haar measure. If
Kv
∼= R, then µ((a, b)) = b−a up to a constant is the usual Lebesgue measure. If Kv

∼= C,
then µ({|z| ≤ r}) = πr2 up to a constant multiplier. If v is nonarchimedean, it is normal
to normalize µ by µ(ov) = 1.

If µ is a Haar measure on Kv, for any a ∈ K∗v , define

µa(U) = µ(aU).

Then µa(U) is also a Haar measure. So µa(U) = modKv(a) ·µ(U). modKv(a) is called the
modulus of a in Kv. modKv(a) = |a|R if Kv

∼= R, modKv(a) = |a|2 if Kv
∼= C.

In general, there is a constant A such that

modKv(x+ y) ≤ A (modKv(x) + modKv(y))

for any x, y ∈ Kv. For example, for Kv = C, modC(z) = |z|2 where | · | is the ordinary
absolute value, we have modC(z + w) ≤ 2(modC(z) + modC(w)).

If v is nonarchimedean with ov/pv finite,

ov =
∐

a∈ov/pv

(a+ πov)

for any π ∈ pv\p2v. So

µ(ov) =
∑

a∈ov/pv

µ(a+ πov)

=
∑

a∈ov/pv

µ(πov)

= modKv(π)
∑

a∈ov/pv

1

=
1

|ov/pv|
·
∑

a∈ov/pv

1.

34 Adeles and Ideles II (11/07)

Now let K/Q be a finite extension. Let KA =
∏′

v∈M
Kv. KA is locally compact and has

a Haar measure defined by

µ(U) =

∫
U
|dx|A =

∫
U
dµA(x).

One common normalization is to put

µ

(∏
v∈M
{xv : |xv|v ≤ 1}

)
=
∏
v∈MR

∫ 1

−1
dx ·

∫
v∈MC

∫
|x|≤1

|dx ∧ dx| ·
∏
v∈M0

µ(ov)

= 2r1(2π)r2 .
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The group of ideles of K is the restricted direct product

K∗A =
∏′

v∈M
K∗v

where (xv)v must satisfy xv ∈ o∗v for almost all finite places v. K∗A has the direct product
multiplicative law and the restricted direct product topology. K∗A is locally compact. K∗A
acts continuously on KA by a ∈ K∗A and x ∈ KA going to ax ∈ KA.

The normalize Haar measure on K∗A is

µ

 ∏
v∈M∞

{1 ≤ |x|v ≤ N} ×
∏
v∈M0

o∗v

 =

(
2

∫ N

1

dt

t

)r
1

·

(∫
1≤|x|v≤N

|dx ∧ dx
|x|v

)r2
· 1

= 2r1 · (logN)r1(2π · 2 log(
√
N))r2

= 2r1 · (2π)r2 · (logN)r1+r2 .

If µ is a Haar measure on KA and a ∈ K∗A, then µ(aU) for any open U ⊂ KA defines
another Haar measure on KA. So µ(aU) = modA(a)µ(U). Another common notation
is |a|A = modA(a). From the product structure of KA and K∗A, we can prove |a|A =∏
v∈M |av|v. (This is the product formula for ideles.)

35 Module Theory over Dedekind Domain (11/10)

Let o be an integral domain and M a module over o. Then x ∈M is torsion if there exists
r ∈ o such that r 6= 0 and rx = 0. tM , the set of torsion elements in M , is a submodule
of M and is called the torsion submodule of M . M is torsion-free if tM = 0. M/tM is
torsion-free for any module M over o.

Let o be Noetherian, K be the field of fractions of o.

Theorem 35.1. Let M be a finitely generated o-module. The following are equivalent:
(i) M is torsion-free.
(ii) M is isomorphic to a submodule of a free o-module of finite rank.
(iii) M is isomorphic to an o-submodule of a finite dimensional K-vector space.
(iv) The map M →M ⊗o K defined by m 7→ m⊗o 1 is injective.

dimK(M ⊗o K) = rko(M) is the o-rank of M .

Theorem 35.2. If o is a PID, any finitely-generated torsion-free module is free.

Theorem 35.3. If o is an integral domain containing a single prime ideal p 6= 0 and if
M = tM is a torsion module, then

M ∼= ⊕ti=1(o/p
ni)

for uniquely determined n1 ≤ n2 ≤ · · · ≤ nt.
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Theorem 35.4. Let o be an Dedekind domain.
(i) Every fractional o-ideal is a projective o-module.
(ii) Every torsion-free finitely generated o-module M is isomorphic as a o-module to F ⊕a
for some free o-module F and a fractional o-ideal a.

Remark 35.5. The o-rank of F and the ideal class of a are uniquely determined. The
ideal class of a is dependent only on M is denoted as c(M) and is called the Steinitz
invariant of M . M is free if and only if c(M) = 1 in cl(K) = cl(o).

Suppose K is a finite extension of Q, and L/K is a finite extension. Then the ring
oL of integers in L is a finitely generated torsion free oK-module. oL is free if and only if
c(oL) = 1.

Theorem 35.6 (Kable-Wright, 2006). As L/K ranges over all extensions of degree 2
(or 3) by size of discriminant of L/Q, then the Steinitz class of oL as an oK-module is
equidistributed over all the ideal classes in cl(oK).

Remark 35.7. Bhargava and his coauthors laid out distribution of discriminants of degree
4 and 5 relative extensions. One should be able to use this to do this theorem for degree 4
and 5.

36 Extensions I (11/12)

Let (K, v) be a complete valued field. Let E/K be a finite separable extension.

Theorem 36.1. There is a unique absolute value | · |w on E such that |x|w = |x|v for all

x ∈ K. Furthermore, for a ∈ E, we have |a|(E:K)
w = |NE/K(a)|v.

Proof. (Existence) If K = R, then E = R or C; if K = C, then E = C. In both cases,
existence is clear. For the ordinary absolute value | · | on C, |z|2 = |z · z| = |NC/R(z)|R.

If K is a nonarchimedean field with valuation v and maximal compact subring oK ,
prime ideal pK , then the integral closure oE of oK in E is a discrete valuation domain with
unique prime ideal pE satisfying pE ∩ oK = pK . Let π = πK ∈ pK\p2K and πE ∈ pE\p2E .
Then πoE = peE for some integer e ≥ 1. If |π|v = λ < 1, define |πE |w = λ1/e < 1. We can
show that | · |w defines an absolute value on E satisfying

|π|w = |πeE |w = (λ1/e)e = λ = |π|v.

(Uniqueness) Suppose w,w′ are two extensions of v to E over K. We want to prove
that w,w′ are equivalent. Earlier we saw that this follows from

(36.1) {x ∈ E : |x|w < 1} ⊂ {x ∈ E : |x|w′ < 1}.

If so then |x|w′ = |x|cw for some c > 0. Since |x|w = |x|v = |x|w′ for x ∈ K, we have c = 1.
It suffices to show 36.1, which is dealt with in Lemma 36.2.
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Lemma 36.2. For any sequence {xn} ⊂ E, if we have

(36.2) if lim
n→∞

|xn|w = 0, then lim
n→∞

|xn|w′ = 0,

then 36.1 is true.

Proof. Suppose 36.1 is not true, then there exists y ∈ E with |y|w < 1 and |y|w′ ≥ 1. Then
limn→∞ |yn|w = 0 and limn→∞ |yn|w′ ≥ 1, a contradiction.

To finish the proof of Theorem 36.1, we need to prove the limit connection 36.2.

37 Extensions II (11/14)

Both | · |w and | · |w′ define v-norms on E as a vector space over K. Recall that || · || : E →
[0,∞) is a v-norm if
(i) ||x|| = 0 if and only if x = 0.
(ii) ||λx|| = |λ|v · ||x|| for all λ ∈ K, x ∈ E.
(iii) ||x+ y|| ≤ ||x||+ ||y|| for all x, y ∈ E.

Lemma 37.1. Let {xn} be a sequence in E. Let || · || be a v-norm on E over K. Let
{z1, · · · , zn} be a basis of E over K. Let

xm = λm1z1 + · · ·+ λmnzn

for λmj ∈ K. Then

(37.1) lim
m→∞

||xm|| = 0 if and only if lim
m→∞

|λmj |v = 0 for all 1 ≤ j ≤ n.

Since 37.1 is independent of || · ||, this shows the following corollary.

Corollary 37.2. For any two v-norms || · ||, || · ||′ on E over K, we have

lim
m→∞

||xm|| = 0 if and only if lim
m→∞

||xm||′ = 0.

Proof of Lemma 37.1. (⇐=) Assume limm→∞ |λmj |v = 0 for all j. Then

0 ≤ ||xm|| ≤ |λm1 |v · ||z1||+ · · · |λmn |v · ||zn||.

By the Squeeze Theorem, limm→∞ ||xm|| = 0.
(=⇒) We prove this direction by induction. For n = 1, ||xm|| = |λm1 |v · ||z1|| and since

||z1|| 6= 0, this statement is clear.
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Assume it is true for some n ≥ 1 and let dim(E/K) = n+1, with basis {z1, · · · , zn+1}.
Let U = span(z1) and consider the quotient space E/U which has dimension n. Define

|| · ||0 : E/U → [0,∞)

x+ U 7→ inf
z∈U
||x+ z|| = inf

λ∈K
||x+ λz1||.

We will check that || · ||0 is a norm on E/U .
(i) If ||x + U ||0 = 0 = infz∈U ||x + z||, then there is a sequence zm ∈ U such that

limm→∞ ||x − zm|| = 0. Then limm→∞ zm = x. All finite-dimensional subspaces of a
finite-dimensional normed vector space are closed. So x ∈ U .

(ii) For any λ ∈ U ,

||λ(x+ U)||0 = inf
z∈U
||λ(x+ z)||

= inf
z∈U
||λx+ λz||

= |λ|v · inf
z∈U
||x+ z||

= |λ|v · ||x+ U ||0.

(iii)

||(x+ U) + (y + U)||0 = inf
z∈U
||x+ y + z||

= inf
z,z′∈U

||x+ y + z + z′||

≤ inf
z,z′∈U

(
||x+ z||+ ||y + z′||

)
(by Triangle Inequality)

≤ inf
z∈U
||x+ z||+ inf

z′∈U
||x+ z′||

= ||x+ U ||0 + ||y + U ||0.

Take a sequence
xm = λm1z1 + · · ·+ λmn+1zn+1

with limm→∞ ||xm|| = 0. Let

ym = λm2z2 + · · ·+ λmn+1zn+1 + U ∈ E/U.

Then
||ym + U ||0 ≤ ||xm||.

So limm→∞ ||ym+U ||0 = 0. Since z2 +U, · · · , zn+1 +U is a basis of E/U , by the induction
assumption for n, this implies

lim
m→∞

|λmj |v = 0, ∀2 ≤ j ≤ n+ 1.
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Repeat the whole argument with U = span(zi) for any i 6= 1, then we get

lim
m→∞

|λmj |v = 0, ∀j 6= i, 1 ≤ j ≤ n+ 1.

Then we proved
lim
m→∞

|λmj |v = 0, ∀1 ≤ j ≤ n+ 1.

38 Correspondence Between Prime Ideals and Absolute Val-
ues (11/17)

Let K be a field with a valuation v, Kv be its completion, and L/K be a finite separable
extension. Then L ⊗K Kv

∼=
∏t
i=1 Li and Li is a finite separable extension of Kv. v has

a unique extension wi to Li. Every extension of v to L is one of the wi’s. The wi’s are
inequivalent absolute values on L.

Corollary 38.1. L is dense under the embedding L → L⊗K Kv defined by α 7→ α ⊗K 1
by the Weak Approximation Theorem.

We will write
L⊗K Kv

∼=
∏
w|v

Lw

where w|v means w is an extension of v.
Let v be a discrete valuation. Let oKv = ov = {x ∈ Kv : |x|v ≤ 1} be the maximal

compact subring of Kv, pv the maximal ideal of ov, oLw = {x ∈ Lw : |x|w ≤ 1} the maximal
compact subring of Lw, Pw the maximal ideal of oLw . We have proved Pw ∩ oKv = pv.
Then the ramification order e = e(w|v) is defined by

pvoLw = Pew.

If e = 1, w is unramified over v. Define the residue degree of w over v to be

f = f(w|v) = (oLw/Pw : oKv/pv).

Theorem 38.2. (Lw : Kv) = e(w|v)f(w|v).

Proof. We sketch the idea of the proof. Choose πw ∈ Pw\P2
w. List a basis of oLw/Pw over

oKv/pv to {α1, · · · , αf}. Then {αiπjw}1≤i≤f,0≤j≤e−1 is a basis of Lw/Kv.

Suppose oK is a Dedekind domain, K is its field of fractions, p is a prime ideal in oK ,
L/K is a finite separable extension, OL is the integral closure of oK in L, P is a prime
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ideal of OL lying over p. So P ∩ oK = p. Let v be the valuation corresponding to p on K,
w the valuation of L corresponding to P. In the Dedekind domain oL,

pOL = Pe11 · · · P
et
t

for distinct prime ideals Pj in OL. The Pj corresponds to all the inequivalent absolute
values w extending v from K to L. Each Pj corresponds to some wj |v and LPj = Lwj ,
and ej = e(wj |v). That describes the correspondence between the prime ideals over p and
the direct sum components in L⊗K Kv =

∏
w|v Lw.

Inside L⊗K Kv we have a ring OL ⊗oK oKv . Since oKv is a PID, OL ⊗oK oKv is a free
oKv -module of rank (L : K). Also

OL ⊗oK oKv
∼=
∏
w|v

oLw .

The mapping α ∈ L→ α⊗1→ (α) is dense because the absolute values w are inequivalent,
by the Weak Approximation Theorem. Also, since oKv is closed, OL ⊗oK oKv is closed as
a submodule. So the mapping is onto.

Theorem 38.3 (Tower Laws). Suppose

K ↪→ L ↪→ N

are finite separable extensions with prime ideals

p→ P → Q

in each of them. Then

e(Q|p) = e(Q|P)e(P|p),

f(Q|p) = f(Q|P)f(P|p),

(NQ : Kp) = (NQ : LP)(LP : Kp).

39 Galois Extensions I (11/19)

Let L/K be a finite separable extension, K be the field of fractions of a Dedekind domain
o, OL be the integral closure of o in L. Any prime ideal p in o lifts to an ideal pOL with
factors as

pOL = Pe11 · · · P
er
r

for all distinct prime ideals Pj lying over p and Pj ∩ oK = p. The primes Pj correspond
to the inequivalent valuations wj extending the valuation on K corresponding to p to L.
With regard to completions, LPj = Lwj . If we omit the j, the prime ideal in Lw Pw
satisfies Pw ∩ OL = p.

Suppose L/K is a Galois extension with G = Gal(L/K).
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Theorem 39.1. G acts transitively on the prime divisors Pj of pOL. So all ej = e and
all fj = f and so [L : K] = efr.

The decomposition group (Zerlegungsgruppe in German) of P lying over p is defined
as

Z(P) = {σ ∈ G : σ(P) = P}.

We have [G : Z] = r and Z(Pi) is conjugate to Z(Pj) in G. The inertia group (Trägnngs
in German) is defined as

T (P) = {σ ∈ G : σ(α) ≡ α (mod P) for all α ∈ OL}
= {σ ∈ G : σ acts as the identity in OL/P}.

T (P) is a normal subgroup of Z(P) and

Z(P)/T (P) = Gal ((OL/P)/(oK/p)) .

If oK/p is a finite field of order q, then OL/P has order qf , and is cyclic generated by

Frobenius ϕ(x) = xq. The class of ϕ in Z/T is called the Frobenius symbol
[
L/K
P

]
∈ G.

If G is abelian, then Z(P) is the same for all P|p, and then we write[
L/K

P

]
=

(
L/K

p

)
and the second one is the Artin symbol. p is ramified (e > 1) if and only if T 6= 1. If

T = 1, then
(
L/K
P

)
∈ G is a well-defined element.

40 Galois Extensions II (11/21)

Suppose L/K is Galois with Gal(L/K) = G. For any prime ideal p in oK , let P be a
prime ideal lying over p in OL. We have defined

Z(P) = {σ ∈ G : σ(P) = P},

T (P) = {σ ∈ G : σ(α) ≡ α (mod P) for all α ∈ OL}.

This implies that Gal ((OL/P)/(oK/p)) ∼= Z(P)/T (P). Z(P) ∼= Gal(LP/Kp) where LP is
the completion of L relative to the valuation determined by P and Kp is the completion
of K relative to the valuation determined by p. Suppose we have a tower of extension
Kp ↪→ F ↪→ LP where Gal(F/Kp) = Z/T , Gal(LP/F ) = T , then the extension F/Kp is
unramified, and the extension LP/F is totally ramified.

Suppose K is a finite extension of Q, (K : Q) = n, and OK is the the ring of integers
of K. Suppose α ∈ OK satisfies an Eisenstein polynomial for the prime p

f(α) = αn + c1α
n−1 + · · ·+ cn = 0
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where p|cj for 1 ≤ j ≤ n and p2 - cn. Then p - [OK : Z[α]] and p is totally ramified in K
(e = n, f = 1, r = 1). (Recall Disc(f) = Disc(OK) · ([OK : Z[α]])2).

Here is an example for K = Q(w) where w = e2πi/p, p ≥ 3. f(x) = xn − 1. We have

Disc(f) = (−1)
p−1
2 · pp−2 (by midterm problem). So DK = Disc(OK)| (−1)

p−1
2 · pp−2.

Notice that

(x+ 1)p − 1 = xp + pxp−1 +

(
p

2

)
xp−2 + · · ·+

(
p

p− 1

)
x

= x

(
xp−1 + pxp−2 + · · ·+

(
p

p− 1

))
and xp−1 + pxp−2 + · · · +

(
p
p−1
)

is an Eisenstein polynomial for p, so w − 1 satisfies an
Eisenstein polynomial for p. Then p - [OK : Z[w − 1]] = [OK : Z[w]]. That proves
[OK : Z[w]] = 1. That proves

DK = (−1)
p−1
2 · pp−2

= square of Vandermonde determinant

with entries equal to power of w.

Then DK is a square in K. So
√
DK ∈ K. Since p is odd, p − 2 is odd. Then F =

Q(
√
DK) = Q

(√
(−1)

p−1
2 p

)
⊂ K.

Let q be a prime different from p. q splits in F/Q if qoF = qq for some prime ideal
q. q ∈ q. By earlier lemma, q = (q, α) for some α = a + b

√
D. Then qoF = (q, a +

b
√
D)(q, a − b

√
D). This proves q|a2 − b2D. So D is a square mod q. So (−1)

p−1
2 · p is a

square mod q. Gal(Q(w)/Q) = (Z/pZ)∗ is cyclic of order p− 1. It has a unique subgroup
H of order p−1

2 and H = {l2|l ∈ (Z/pZ)∗}. By Galois theory, KH = F . q splits in F if
and only if the decomposition group of any prime ideal Q lying over p satisfies Z(Q) ⊂ H.
ZK/Q(q) ∼= Gal ((OK)/(Z/qZ)) is generated by the Frobenius map x 7→ xq. This map
must be in H. So q is a square mod p. This yields another proof of the Law of Quadratic
Reciprocity: for odd primes p, q,

(−1)
p−1
2 · p ≡ � (mod q) iff q ≡ � (mod p).

41 Galois Extensions III (11/24)

Lemma 41.1. Let K is a finite extension of Q, (K : Q) = n, and OK is the the ring of
integers of K. Suppose α ∈ OK satisfies an Eisenstein polynomial

f(α) = αn + c1α
n−1 + · · ·+ cn

where p|cj for 1 ≤ j ≤ n and p2 - cn, then p - [OK : Z[α]].
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Proof. Suppose p| [OK : Z[α]]. Then there exists β ∈ OK with pβ ∈ Z[α], β 6∈ Z[α]. let

pβ = b0 + b1α+ · · ·+ bn−1α
n−1

where bj ∈ Z for all j = 0, · · · , n − 1 and some bj is not divisible by p. Let j be the
smallest index such that p - bj . Then p|bi for 0 ≤ i < j. Let γ ∈ OK be

γ = β − b0 + b1α+ · · ·+ bj−1α
j−1

p
=
bjα

j + · · ·+ bn−1α
n−1

p
.

Then

γαn−j−1 =
bjα

n−1

p
+
αn

p
δ

for some δ ∈ Z[α]. Since αn

p δ ∈ OK ,
bjα

n−1

p ∈ OK . So

NK/Q

(
bjα

n−1

p

)
=
bnj ·NK/Q(α)n−1

pn
= ±

bnj c
n−1
n

pn
∈ Z.

Since p||cn, pn−1||cn−1n , hence p|bnj and so p|bj . This is a contradiction.

Remark 41.2. If | · |v on K is the extension of | · |p on Q, then

|αn|v = | − c1αn−1 − · · · − cn|v
≤ max

(
| − c1αn−1|v, · · · , | − cn|v

)
.

By the Eisenstein condition, p|c1, · · · , cn. So |cj |v = |cj |p ≤ |p|p < 1. Then |α|v < 1.
Since | − cjαn−j |v = |cj |p|αn−j |v < |p|p for all 1 ≤ j ≤ n − 1 and | − cn|v = |p|p, then
|αn|v = |p|p. That means that Kv is totally ramified over Qp. Also, (αOK)n = pOK and
so e(v|p) = n = (K : Q). Conversely, if K/Q is totally ramified at p, then there is an
α ∈ K that satisfies an Eisenstein polynomial at p.

Theorem 41.3. Let K be a nonarchimedean complete field with absolute value | · |v,
maximal compact subring o, prime ideal p, with finite residue field k = o/p of order
q = pf0. Let π be a generator of p. A finite separable extension L/K is totally ramified
(e = (L : K), f = 1) if and only if L = K(α) where α has a minimal polynomial

αn + c1α
n−1 + · · ·+ cn = 0, n = (L : K)

where π|cj for 1 ≤ j ≤ n, π2 - cn.

Theorem 41.4. Let K be a nonarchimedean complete field with absolute value | · |v,
maximal compact subring o, prime ideal p, with finite residue field k = o/p of order
q = pf0. Let π be a generator of p. A finite separable extension L/K is unramified
(e = 1, f = (L : K) = n) if and only if L = K(α) where α is a (qn − 1)-th root of unity in
L.
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Proof. Earlier we showed that there is an isomorphism

(OL/P)∗ ↪→ L∗

that maps onto the (qn − 1)-th root of unity, (the Teichmüller units) proved by Hensel’s
Lemma. Thus, these roots of unity generate L/K.

Theorem 41.5. Every finite separable extension L/K of complete nonarchimedean num-
ber fields has a unique intermediate field

L ⊃ F ⊃ K

such that F/K is unramified and L/F is totally ramified.

Corollary 41.6. Every Galois extension L/K of complete nonarchimedean number fields
has solvable Galois group.

42 Finiteness of the Class Group I (12/01)

Let K/Q be a finite extension with ring of integers OK . The class group is

CK = cl(OK) = IOK/POK .

The absolute norm of an ideal a ⊂ OK is

N(a) = [OK : a].

If p is a prime ideal lying over p in Q, then (OK/p) is an extension of (Z/pZ) of degree
f(p|p). So N(p = pf .

Lemma 42.1. For any X > 0, there are finitely many ideals a ⊂ OK with N(a) ≤ X.

Proof. By Dedekind Theorem, every ideal has a prime factorization a = pe11 · · · perr . The
Chinese Remainder Theorem says that

N(a) = |OK/a| = N(p1)
e1 · · ·N(pr)

er .

There are only finitely many ideals p in OK that lie over a given ordinary prime p ∈ Z.
For n ≤ X, if n = pk11 · · · pkrr in Z then each pj has only finitely many prime ideals p lying

over p and N(p) = pfj . So if N(a) = n, and if pe‖a then pfe = N(pe) ≤ N(a) = n. That
proves that

e ≤ log(n)

f log(p)
.

For a given n, that allows only finitely many prime ideals p and only finitely many expo-
nents e. That means there are finitely many a such that N(a) = n.
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We will show that there is a constant A depending on K/Q such that every ideal class
contains an ideal b ⊂ OK with N(b) ≤ A.

Let v1, · · · , vn be a Z-basis of OK . Pick some ideal a in the inverse ideal class C−1K .
Then let

L = {s =
n∑
j=1

mjvj , 0 ≤ mj < (N(a))1/n + 1}.

Then

#L ≥
n∏
j=1

(
(N(a))1/n + 1

)
≥ N(a) + 1.

By Pigeonhole Principle, there exists a, b ∈ L with a 6= b and a ≡ b (mod a). (there are
only N(a) = |OK/a| congruence classes.) So a− b 6= 0 and a− b = ab for some OK-ideal
b. Notice since (a− b) is principal, b belongs to the ideal class CK . Let

A =

n∏
j=1

n∑
i=1

|vσji |

where σj ranges over the embeddings σj : K ↪→ C over Q. Now

N(a)N(b) = |NK/Q(a− b)| = |N(

n∑
i=1

pivi)| ≤
n∏
j=1

(
n∑
i=1

|pi||v
σj
i |

)

for some integers pi ∈ Z and |pi| ≤ N(a)1/n + 1. So

N(a)N(b) ≤
(
N(a)1/n + 1

)n
A

and hence

N(b) ≤

(
N(a)1/n + 1

N(a)1/n

)n
A

=

(
1 +

1

N(a)1/n

)n
A.

a was arbitrary chosen in C−1K . Replace a by Ma for any M ≥ 1. In the limit, as M →∞,
we get N(b) ≤ A.

Theorem 42.2. Let K/Q be a finite extension, (K : Q) = n, and dK be the discriminant
of K/Q. Let a be a non-zero fractional ideal in OK . There is a non-zero y ∈ a such that

1 ≤
∣∣NK/Q(y)

∣∣ ≤ ( 4

π

)r2
· n!

nn
· |dK |1/2N(a)

where r1 be the number of real embeddings K ↪→ R over Q, r2 be the number of conjugate
pairs of nonreal embeddings σ, σ : K ↪→ R over Q.

62



We postpone the proof of Theorem 42.2 to next lecture, but see the consequences of
it first.

Theorem 42.3 (Minkowski Bound). Given a class c ∈ CK , there exists an OK-ideal b ∈ c
such that

N(b) ≤
(

4

π

)r2
· n!

nn
· |dK |1/2 .

Proof. Choose an OK-ideal a 6= 0 in c−1. By Theorem 42.2, there exists x 6= 0 in a such
that ∣∣NK/Q(x)

∣∣ ≤ ( 4

π

)r2
· n!

nn
· |dK |1/2N(a).

Since x ∈ a, x 6= 0, (x) = ab for some OK-ideal b. Then b is in class c. Then

N(a)N(b) =
∣∣NK/Q(x)

∣∣ ≤ ( 4

π

)r2
· n!

nn
· |dK |1/2N(a).

Then cancel N(a).

Remark 42.4. Theorem 42.3 implies that there are only finitely many ideal classes.

Theorem 42.5. For n ≥ 2,

|dK | ≥
((π

4

)r2
· n

n

n!

)2

> 1.

Proof. Choose a = OK in Theorem 42.2. Then |NK/Q(y)| ≥ 1 and N(a) = N(OK) =
1.

Remark 42.6. The worst case for the bound in Theorem 42.5 is when r2 = n
2 . Then(π

4

)n/2
· n

n

n!
> 1.

This can be proved by induction. If n = 2, then π
4 ·

22

2! = π
2 > 1. Now consider the ratio of

n+ 1-term to the n-term:(
π
4

)(n+1)/2 · (n+1)n+1

(n+1)!(
π
4

)n/2 · nnn! =
(π

4

)1/2
· (n+ 1)n+1

(n+ 1) · nn

=
(π

4

)1/2
· (n+ 1)n

nn

=
(π

4

)1/2
·
(

1 +
1

n

)n
.
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Note that
(
1 + 1

n

)n
is an increasing sequence for n ≥ 2 (converges to e). The minimal

ratio is when n = 2, which is(π
4

)1/2
·
(

1 +
1

2

)2

≈ 1.99 > 1.

43 Finiteness of the Class Group II (12/03)

Let K/Q be a finite extension, (K : Q) = n, and dK be the discriminant of K/Q. Let r1
be the number of real embeddings K ↪→ R over Q, r2 be the number of conjugate pairs
of nonreal embeddings σ, σ : K ↪→ R over Q. So K ⊗Q R ∼= Rr1 × Cr2 and n = r1 + 2r2.
Number the embeddings σ1, · · · , σn such that

σj : K ↪→ R for 1 ≤ j ≤ r1,
σj : K ↪→ C for r1 + 1 ≤ j ≤ r1 + r2,

and
σj+r2 = σj for r1 + 1 ≤ j ≤ r1 + r2.

Each σj induces an R-linear map

fj = σj ⊗ id : K ⊗Q R→ C
x⊗ r 7→ r(xσj ).

Set V = K ⊗Q R which is a n-dimensional R-vector space. Let a be a fractional ideal of
OK . Let a1, · · · , an be a Z-basis of a. Then {aj ⊗a}1≤j≤n is an R-basis of V . The general
point x in V can be written as

x =
n∑
j=1

aj ⊗ xj

for xj ∈ R.
Let

Rd = {~x ∈ Rn :

r1∑
j=1

|xj |+ 2

r1+r2∑
j=r1+1

√
x2j + x2j+r2 ≤ d}.

Then Rd is symmetric (~x ∈ Rd ⇒ −~x ∈ Rd), compact, convex. Moreover,

vol(Rd) =

∫
Rd

d~x =
2r1
(
π
2

)r2 dn
n!

.

For a fractional ideal a ⊂ OK , choose a Z-basis a1, · · · , an of a over Q and map
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∑n
j=1 aj ⊗ yj to

x1
...

xr1+1
...

xr1+r2
xr1+r2+1

...
xn


=



σ1(a1) · · · σ1(an)
...

. . .
...

Re(σr1+1(a1)) · · · Re(σr1+1(an))
...

. . .
...

Re(σr1+r2(a1)) · · · Re(σr1+r2(an))
Im(σr1+1(a1)) · · · Im(σr1+1(an))

...
. . .

...
Im(σr1+r2(a1)) · · · Im(σr1+r2(an))





y1
...

yr1+1
...

yr1+r2
yr1+r2+1

...
yn


= J



y1
...

yr1+1
...

yr1+r2
yr1+r2+1

...
yn


.

Then

det(J) = 2−r2 |det(σj(ak))|
= 2−r2 |dK |1/2N(a).

The image ∧ = JZn is a lattice in Rn: a free Z-module of rank n such that Rn/∧ has
finite volume.

vol(Rn/∧) = |det(J)|vol(Rn/Zn)

(by the multivariable change-of-variables theorem)

= |det(J)|
= 2−r2 |dK |1/2N(a).

Lemma 43.1 (Minkowski-Blichfeldt Lemma). Let ∧ be a lattice in Rn and S a compact,
symmetric, convex subset of Rn. If vol(S) ≥ 2nvol(Rn/∧), then S contains a non-zero
point in ∧.

Proof of Theorem 42.2. Choose d so that

vol(Rd) =

∫
Rd

d~x =
2r1
(
π
2

)r2 dn
n!

≥ 2n2−r2 |dK |1/2N(a).

Then there exists y ∈ Zn, y 6= 0 such that Jy ∈ Rd. Let y =
∑n

j=1 yjaj ∈ a. The setup
implies that

r1∑
j=1

|yσj |+ 2

r1+r2∑
j=r1+1

|yσj | ≤ d.
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Then

|N(y)| =
r1∏
j=1

|yσj |

≤

(∑n
j=1 |yσj |
n

)n
(Arithmetic-Geometry Mean Inequality)

≤ dn

nn
.

Take d to be the smallest of all such values that work, then we have

|N(y)| ≤ 1

nn

(
n!

2r1(π2 )r2
2n2−r2 |dK |1/2N(a)

)
=
n!

nn

(
4

π

)r2
|dK |1/2N(a).

44 Dirichlet’s Unit Theorem (12/05)

Let UK = O∗K be the group of units of OK , µK = {x ∈ UK : xm = 1 for some m ∈ Z} be
the subgroup of roots of unity in UK . Since (Q(e2πi/m) : Q) = ϕ(m)→∞ as ϕ→∞ and
(K : Q) is finite, there exists m such that µK =< e2πi/m > and ϕ(m) < (K : Q). UK is a
multiplicative Z-module (l ∈ Z acts on u ∈ UK by ul.) µK is a torsion submodule. The
torsion-free quotient is UK = UK/µK .

Lemma 44.1. u ∈ OK is a unit if and only if |NK/Q(u)| = 1.

Theorem 44.2 (Dirichlet’s Unit Theorem).

UK ∼= µK × Zr1+r2−1.

A basis of the free part UK is called a system of fundamental units.
Define a map

ψ : K∗ →W = Rr1+r2

u 7→ (log |uσj |1≤j≤r1 , 2 log |uσj |r1+1≤j≤r1+r2) .

So if ~e = (1, 1, · · · , 1) ∈ Rr1+r2 , then

ψ(u) · ~e = log(N(u)).

So ψ maps UK into the hyperplane H = {~w ∈ W : ~w · ~e = 0} = ~e⊥. Note that dimRH =
r1 + r2 − 1. Our goal is to show that ψ(UK) is a lattice of rank r1 + r2 − 1 in H.
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Lemma 44.3. {a ∈ OK : |aσj | ≤ β for all j = 1, · · · , n} is a finite set.

Proof. The coefficients of

f(x) =
∏
σ

(x− aσ) = xn + c1x
n−1 + · · ·+ cn

satisfies |cj | ≤
(
n
j

)
βj . This allows at most finitely many f(x) ∈ Z[x], each of which has

finitely many roots.

Corollary 44.4. This proves ψ(UK) is discrete in W .

Corollary 44.5. ker(ψ) = µK .

Proof. By Lemma 44.3, ker(ψ) is a finite subgroup of {a ∈ K∗ : |aσj | = 1 for all j} ⊂ K∗.
Hence, ker(ψ) is cyclic and thus ker(ψ) = µK .

We will next prove

Theorem 44.6. ψ(UK) spans H.

Then we will use a geometry theorem.

Theorem 44.7. If ∧ is a discrete subgroup of a real vector space Rn that spans Rn, then
∧ is a free Z-module of rank n and vol(Rn/∧) <∞.

Corollary 44.8. ψ(UK) is a free Z-module of rank r1 + r2 − 1.

Proof of Theorem 44.7. Suppose ψ(UK) does not span H = ~e⊥. Then there is another
hyperplane H2 = ~b⊥ with ~b 6= 0, ~b ∈ W , ~b is not any scalar multiple of ~e, such that
ψ(UK) ⊂ H2. By orthogonalization of ~b relative to ~e, we may assume ~b · ~e = 0. We will
show that there exists u ∈ UK with ψ(u) ·~b 6= 0.

Consider the map

h : K → V = K ⊗Q R ∼= Rr1 × Cr2

α 7→ (ασj ).

We have seen that h(OK) is a lattice in V of rank n. Let L be a symmetric, compact,
convex region in V . The Minkowski-Blichfeldt Lemma says that there is a constant A > 0
such that if vol(L) ≥ A then L contains a non-zero point h(α), α ∈ OK\{0}. Let

L = {~x ∈ V : |xj | ≤ ρj , 1 ≤ j ≤ r1 + r2} ⊂ V.

Then

vol(L) =

 ∏
1≤j≤r1

2ρj

 ∏
r1+1≤j≤r1+r2

πρ2j

 = 2r1πr2ρ1 · · · ρr1ρ2r1+1 · · · ρ2r1+r2 .
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Choose ρ’s so that this equals A. Then for α ∈ OK with α 6= 0, h(α) ∈ L, we have

|NK/Q(α)| ≤ ρ1 · · · ρr1ρ2r1+1 · · · ρ2r1+r2 =
A

2r1πr2
= A′.

Also |NK/Q(α)| ≥ 1. There are finitely many principal ideals (βj) ⊂ OK with |N(βj)| ≤ A′.
Let

B = max
j
|ψ(βj) ·~b|.

Claim: There is a vector ~r ⊂ V such that ~r · ~e = logA′, and ~r ·~b > B + (logA′)
∑
|bj |.

Actually

~r =
logA′

~e · ~e
~e+

B + 1

~b ·~b
~b

works.
Define the ρj ’s by

log ρj = j-th coordinate of ~r, 1 ≤ j ≤ r1,

2 log ρj = j-th coordinate of ~r, r1 + 1 ≤ j ≤ r1 + r2.

Then ~r · ~e = logA′ implies

ρ1 · · · ρr1ρ2r1+1 · · · ρ2r1+r2 = A′.

So we have α ∈ OK , α 6= 0 with |ασj | ≤ ρj for all j. So

|ασj | = 1

|
∏
i 6=j α

σi |
≥ 1∏

i 6=j ρi
=
ρj
A′
.

So
ρj
A′
≤ |ασj | ≤ ρj .

So
log ρj − logA′ ≤ log |ασj | ≤ log ρj .

Since |N(α)| ≤ A′, there is a j such that (α) = (βj). Then u = α
βj
∈ UK . Hence,

ψ(a) ·~b = (ψ(α)− ψ(βj)) ·~b

≥ ψ(α) ·~b−B

≥ ~r ·~b−
r1+r2∑
j=1

(logA′)|bj | −B

> 0 (by the choice of ~r).

That proves ~u 6∈ H2 and hence finishes the proof.
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Law of Quadratic Reciprocity, 5
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lift, 26

Minkowski Bound, 63
Minkowski-Blichfeldt Lemma, 65

norm, 14

Ostrowski’s Theorem, 37

perfect field, 12
place, 38
Primitive Element Theorem, 13
primitive idempotent, 16
Principal Ideal Theorem, 26

radical, 16
ramification order, 56
relatively prime, 23

separable extensions, 13
Steinitz invariant, 53
Stickelberger-Schur Theorem, 29

tensor product, 10
Theorem of Haar, 50
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