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1. About Orb

Orb is a computer program that can find hyperbolic structures on
a large class of hyperbolic 3-orbifolds and 3-manifolds. It can start
with a projection of a graph embedded in the 3-sphere, and produce
and simplify a triangulation with some prescribed subgraph as part of
the 1-skeleton and the remainder of the graph drilled out. It enables
computation of hyperbolic structures on knot complements, graph com-
plements and orbifolds whose underlying space is the 3-sphere minus a
finite number of points.

1.1. Where is it from? Orb was written by Damian Heard as part of
his PhD thesis at the University of University of Melbourne, supervised
by Craig Hodgson. You can download a copy at the Orb home page
www.ms.unimelb.edu.au/~snap/orb.html.

The code was created by modifying the kernel of the program Snap-
Pea written by Jeff Weeks. The user interface was written in Qt 3.3.4,
with portion of the code provided by Morwen Thistlethwaite.

1.2. Licence. Orb is licensed under the terms of the GNU General
Public License. It can be freely distributed for noncommercial pur-
poses.

1.3. System requirements. Orb was developed on Linux and Mac
OS X. A pre-compiled version of Orb, which should run on Mac OS X,
is available at the Orb home page. Linux users need to download the
source code and follow the instructions to compile.

2. Overview

Let Q be an n-orbifold and let x ∈ Q. Since n-orbifolds are locally
modelled on Rn modulo finite subgroups G of O(n), x has a neighbour-
hood which is a cone on a spherical (n−1)-orbifold Sn−1/G. This gives
us an extremely convenient way of describing 3-orbifolds:
Theorem: Let Q be an orientable 3-orbifold. Then the underlying
space XQ is an orientable 3-manifold and the singular set consists of
edges of order k ≥ 2 and vertices where 3 edges meet. At a vertex, the
three edges have orders p, q, r such that 1/p+1/q+1/r > 1 (correspond-
ing to the cone points on a compact orientable spherical 2-orbifold).
Conversely, every such labelled graph in an orientable 3-manifold de-
scribes an orientable 3-orbifold.

Let M be a closed 3-manifold and Γ ⊂ M a labelled graph satisfying
the conditions of Theorem 1. Then we can define a 3-orbifold Q by
the pair (M, Γ). Orb allows the user to enter and study 3-orbifolds of
the type (S3, Γ) by drawing graphs projections as described in section
3 below.
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Γ1:

Example 1: When the graph Γ1 ⊂ S3 is labelled 2 it satisfies the con-
ditions of the theorem. Orb can be used to place a hyperbolic structure
on Q = (S3, Γ1). The hyperbolic volume of Q is approximately 0.1178.

For orientable hyperbolic 3-orbifolds with finite volume the scope of
the labelling on Γ can be increased to allow for vertices coned on closed
orientable Euclidean 2-orbifolds. A hyperbolic structure can be placed
on Q by removing any such vertex from M , creating a cusp. Orb can
also allow vertices coned on closed orientable hyperbolic 2-orbifolds.
In this case Orb slices a neighbourhood of the vertex off, creating a
3-orbifold with (totally) geodesic boundary.

Γ2:

33
3

v1 v2

Γ′
2:

43
3

v′1 v′2

Example 2: The vertices v1 and v2 of Γ2 have neighbourhoods which
are cones on the Euclidean 2-orbifold S2(3, 3, 3). In this case we abuse
notation and let Q = (S3, Γ2) denote the orbifold with underlying space
XQ = S3 − {v1, v2} and singular locus Σ(Q) = Γ2 − {v1, v2} (so the vi

become cusps). The hyperbolic volume of Q is 0.6766....
Since a neighbourhood of v′1 is a cone on the hyperbolic 2-orbifold

S2(3, 4, 4), Orb slices off a neighbourhood of v′1 producing an orbifold,
denoted Q′ = (S3, Γ′

2), with hyperbolic volume 1.2687....

Orb can also be used place to hyperbolic structures on knot and
graph complements in S3. In this case, the edges of Γ are labelled ∞
to indicate that they will be drilled out, and there is a torus cusp or
geodesic boundary surface corresponding to each connected component
of Γ.

Γ3:
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Example 3: If each of the two components of Γ3 is labelled ∞ then
Q = (S3, Γ) denotes the resulting handlebody with a knot drilled out.
When Orb computes a hyperbolic structure on Q the boundary of the
handlebody is made totally geodesic and the knot becomes a torus
cusp. The hyperbolic volume of Q is 12.046....

Orb also allows the user to drill out specific edges on a graph, not
just whole components. In some cases this provides a more natural
way of representing orbifolds.

Γ4:

2

2

∞
Γ′

4:

2

2

Example 4: Drilling out the arc labelled∞ in Γ4 produces a cusp with
a S2(2, 2, 2, 2) cross-section. You can enter the same orbifold into Orb
using Γ′

4. To see this, turn the projection of Γ4 into Γ′
4 by retracting the

edge labelled ∞ and rearranging the result using Reidemeister moves.
Interestingly, the orbifold Q = (S3, Γ4) ∼= (S3, Γ′

4) has the figure 8
knot as a 2-fold branch covering. You can prove this by unwrapping
Γ4 around the circle labelled 2. Using the projection Γ′

4 to deduce this
would be much more difficult. According to Orb , vol(Q) = 1.0149...
which is consistent with the figure 8 knot having hyperbolic volume
2.02988....

Note that Γ′
4 has a degree 4 vertex. Orb accepts any graph projec-

tions with vertex degrees ≥ 3.

Finally, Orb can also be used to study so called “pared manifolds”
by requiring that edges labelled 0 have parabolic meridians.

Γ5:
0

0 0

Γ′
5:

0

3 4

Example 5: An orbifold denoted Q = (S3, Γ5) is produced by taking
the complement of Γ5 in S3 and finding a hyperbolic structure such
that the meridian of each of its edges is parabolic. So Q is a manifold
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with three annulus cusps (one for each edge of Γ5) and two geodesic
3-punctured spheres as boundary components. According to Orb , Q
has hyperbolic volume 5.33349....

We can also label individual edges 0. The orbifold Q′ = (S3, Γ′
5)

has one annulus cusp, two geodesic boundary components of the form
D2(3, 4) and hyperbolic volume 3.2045....

3. Entering graph projections

To draw your own graph projections in Orb click the pencil on the
toolbar. A blank canvas will appear. Use the bottom right corner
to enlarge this if desired. To draw a graph (left) click once on each
successive vertex. There are two ways to stop:

(1) Single click on a previous vertex.
(2) Put in the required vertices and then right1 click anywhere else

on the canvas.

You can:

• Add an edge to an existing graph by clicking on one of the
vertices the adding new vertices as required.

• Switch crossings by clicking on them
• Move vertices by right1 clicking on vertex and then dragging

the vertex by holding down the mouse.
• Select a single line segment by right1 clicking.
• Select an arc of the graph (or circle component) by (left) click-

ing.
• Click again to deselect.
• Kill an edge being created by right1 clicking.

After the projection is complete you can select any edges or components
you wish to drill and then click the drill button. Alternatively, any edge
drawn while the drill button is toggled is automatically drilled. Drilled
edges are coloured black.

After you are satisfied with the projection, click the magnifying
glass2. Orb will triangulate the associated 3-orbifold and open a console
window for you to study it.

In the console you can use the colour coding of the edges of the graph
projection to label the graph’s edges. The labelling on the projection is
stored in the table of the top left corner of the console window. When
the console window first opens, your graph projection will be hidden.

1If you only have a one button mouse you can perfrom a right click by holding
down CTRL and then clicking.

2By default, Orb tries to minimize the number of tetrahedra used in each tri-
angulation. In some cases an unsimplified triangulation is desirable. For instance,
when the graph projection entered is planar the initial triangulation produced will
be particularly nice, i.e. Q = (S3,Γ) is a doubled polyhedron. To tell Orb not to
simplify its triangulations, go to the menu attached to the magnifying glass and
turn simplification off.
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Click the eye in the bottom left corner of the console window to re-
examine the projection. Clicking the eye a second time restores the
console to it original state.

For graphs with a large number of edges the colour coding is not
sufficient to produce a labelling. In this case you will need to use the
index Orb assigns to each of the coloured edges. To determine the
index on an edge of the graph, hold the cursor above it and the index
will appear in the area above the graph projection. Alternatively, if
you click on a coloured edge in the graph projection its label will be
selected in the table.

You do not have the option of labelling the black edges - these are
automatically labelled ∞ and drilled out.

Each coloured (non-black) edge on the graph becomes an edge in the
triangulation of the orbifold. We call such an edge a coloured edge in
the triangulation.

3.1. Saving. Each console window in Orb has its own save button
located in the bottom left corner.

3.2. Loading files. To load a ‘.orb’ file click on the folder on the tool-
bar and select the file. There are example ‘.orb’ files in the ./examples/
directory. You can also import SnapPea triangulation files by clicking
the appropriate button on the toolbar.

4. Using the console

In the console window you can attempt to place a hyperbolic struc-
ture on the orbifold (or manifold) you are studying. At each point
Orb will have a triangulation for the orbifold in question. When you
press the update button Orb attempts to solve the gluing equations for
that triangulation using Newton’s method. There are several possible
outcomes:

• Geometric - A solution was found using geometric generalized
hyperbolic tetrahedra. This is the best possible outcome.

• Partially Flat - A solution was found using geometric general-
ized hyperbolic tetrahedra and some flat generalized hyperbolic
tetrahedra.

• Nongeometric - A solution was found but it requires nongeo-
metric tetrahedra. Orb can not guarantee this corresponds to a
genuine hyperbolic structure.

• Flat - A solution was found using all flat tetrahedra.
• Other - Newton’s method found an invalid solution.
• Step Failed - Newton’s method got ‘stuck’ trying to take a

step between iterations. Typically this occurs when Newton’s
method has tried to move outside the region of realizable gen-
eralized tetrahedra.

• No solution - Newton’s method did not converge to a solution.
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If you are unsatisfied with the outcome of Newton’s method there
are two alternatives for finding better solutions:

(1) At times the triangulation Orb finds is not conducive to New-
ton’s method converging. If you suspect Orb has found a ‘bad’
triangulation you may wish to retriangulate. You may have to
retriangulate several times before a more suitable triangulation
is found.

(2) You may wish to alter the iteration style Newton’s method uses.

4.1. Iteration styles. Orb uses Newton’s method to find hyperbolic
structures. There are two iteration styles Newton’s method can use:

• Manual - Orb uses the previous solution as the starting value for
Newton’s method. The user should be able to use this option
to ‘creep up’ on the solution they are interested in. They can
do this by creating a sequence of orbifolds (by relabelling the
coloured edges) which converge to the desired orbifold.

• Auto - Orb automatically constructs a sequence of orbifolds to
feed into Newton’s method which is designed to converge to the
desired orbifold.

4.2. Triangulations - tri. Orb prints and saves its triangulations
using a format adapted from Casson’s Geo.

To describe the notation for triangulations, consider an orbifold ob-
tained by gluing n tetrahedra numbered 1, . . . n. Label the vertices of
each tetrahedron u, v, w and x so that alphabetical order corresponds
to positive orientation. This labelling also gives us a way of referencing
the faces of each tetrahedron, e.g: face u lies opposite vertex u.

An oriented edge of a tetrahedron can be specified by an integer and
two distinct letters from {u, v, w, x}. For instance, if the tetrahedron
below is numbered 1 then the oriented edge pictured is 1xu.

x

u

v

w

In the notation for a triangulation, a row contains the link of an
unoriented edge in the triangulation, along with additional information
indicating whether of not the edge is coloured. The edge link shown
below can be described by 1uv 4uw 5vx 3xw.
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tet 1 uv

tet 5 xv

tet 3

wu

tet 4

xw

To examine a triangulation in the console press tri. Below is an
example of what you might see.

1 0 1.000 1vu 2xv 1vw 2wv 2vu 1xv

2 2 2.000 1wu 2ux 2xw 1xw

3 3 3.000 1xu

4 1 3.000 2wu

Each row will read
ie | ce | le | −→e1

−→e2 . . .−→en,

where:

• ie is the index on e;
• ce is the colour index on e;
• le is the label on e;
• −→e 1

−→e 2 . . .−→e n are the oriented edges that make up the edge link
around e.

If e is not coloured then ce = 0 and le = 1. You can change the label on
a coloured edge by using the table in the top left corner of the console.

There are additional output options provided through the tri menu.
If you select angle errors the output will read

ie | ce | le | δe | −→e1
−→e2 . . .−→en,

where δe is the difference between the cone angle specified by the gluing
equations and the actual cone angle at that edge.

If you select verbose mode from the tri menu then the above lines
become

ie | ce | le | v1
e | v2

e | −→e1
−→e2 . . .−→en,

where v1
e , v2

e are the indices4 of the vertices at each end of e. In addition,
verbose mode will also print the information necessary to recreate the
structure below the triangulation. Each line of this output will read

ie | βe | αv1
e
| αv2

e
| θ1θ2 . . . θn,

where:

• βe is the structure parameter for e;
• αv1

e
, αv2

e
are the structure parameters for the vertices at the two

ends of e;
• θs is the dihedral angle incident to e opposite −→es .

4A finite vertex will have a negative index.
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The parameters used by Orb to find hyperbolic structures are inner
products of vertices when the (generalized) hyperbolic tetrahedra are
lifted to Minkowski space. Please refer to Damian Heard’s thesis for
the details.

The tri menu also provides the actions canonize, randomize and
simplify which can be used to search for different triangulations. There
is also a remove finite vertices action which removes or minimizes the
number of finite vertices in the triangulation.

4.3. Tetrahedra - tet. Push the tet button to examine the tetrahe-
dra in the triangulation. By default tet prints the hyperbolic volume
of each tetrahedron. Use the tet menu to print the dihedral angles,
edge lengths4, gluing maps and vertex Gram matrices of each of the
tetrahedra. Below is an sample of some tet output5.

tet 1 Volume: 0.798

uv uw ux vw vx wx

da : 1.570 1.047 1.047 1.047 0.628 1.047

el : 2.348 0.413 1.241 1.230 1.720 0.357

nbr: 2 (wvux) 7 (uxwv) 6 (wvux) 7 (uxwv)

grm:

0.730 -1.222 -0.861 -1.006

-1.222 0.000 -1.289 -1.138

-0.861 -1.289 -0.138 -1.482

-1.006 -1.138 -1.482 -0.566

This allows the user to examine various properties of tetrahedron 1,
such as:

(1) The volume of tetrahedron 1 is approximately 0.798.
(2) The dihedral angle between faces v and x is 0.628.
(3) The vertex Gram matrix gives inner products of tetrahedron

vertices lifted to Minkowski spaces.We can use the signs of the
diagonal of the vertex Gram matrix to see that u is hyperinfi-
nite, v is ideal and both w and x are finite.

(4) The length of the edge between faces w and x is 0.357. This
length measures the distance between the hyperplane defined
by u and the prescribed horosphere at v.

(5) Face u of tetrahedron 1 is glued to tetrahedron 2 via gluing map
uvwx 7→ wvux.

4The term ‘edge lengths’ is used loosely. In the case where there are ideal vertices,
values are signed lengths obtained after slicing across some prescribed horospheres
defined by the vertex parameters.

5Note that precision has been manually altered for ease of display.
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4.4. Symmetry Groups - sym. This command prints the symmetry
group of the orbifold. By default it also prints the chirality of the
orbifold. The sym menu allows more detail to be printed. If you select

vertex action (resp. colour edge action) then the permutation each
symmetry induces on each of the vertices (resp. coloured edges) is
printed, together with permutation a ‘p’ or a ‘r’ to indicate whether
the symmetry is orientation preserving or reversing.

4.5. Graph Types - gt. This command allows the user to understand
the boundary components and singular locus of the orbifold. If T
denotes a triangulation for an orbifold Q we define a graph G(Q) as
follows:

• Denote the 2-orbifold in the link of vertex v of T by Qv. A
vertex v is trivial if Qv = S2.

• Each non-trivial vertex v of T has a corresponding vertex v′ in
G(Q).

• G(Q) has an edge joining v′1 and v′2 for each coloured edge in T
joining v1 and v2.

The gt command gives the user enough information to reconstruct

the graph G(Q). The default option is to print the adjacency matrix of
the graph. The user can get additional information on the Qv orbifolds
by going to the gt menu and selecting the list option. Some example
output is provided below.

1 0 -1.000 1 1

2 2 0.000 2 2 3 3

This will read

iv|χ(XQv)|χ(Qv)|ce1ce2 . . . cen ,

where:

• iv is the index for vertex v;
• XQv is the underlying space of Qv;
• ce1ce2 . . . cen are the indices of the coloured edges incident to v.

In this example the three coloured edges here labelled 2 so Sv1 = T(2, 2)
and Sv2 = S2(2, 2, 2, 2).

4.6. Fundamental Group - fg. This command prints the funda-
mental group. The following output is produced when examining the
Whitehead link:

Generators: {a,b}

Relations : aBAAABBAbaaabb

Parabolics:

Merdians : AB

BAA

Longitudes: Abaaab

aaabba
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Peripheral words for the meridians and longitudes on the torus cusps
are also listed. When studying pared manifolds the meridian of each
annulus cusp is listed under Parabolics.

The default option is that group presentations should be simplified
with as few generators as possible. These settings can be changed under
the fg menu. The menu also allows the user to print the homology
group.

4.7. Matrix Generators - mg. This command prints matrix genera-
tors for hyperbolic orbifolds. Use the mg menu to choose between the

O(3, 1) and PSL(2, C) formats.

4.8. Length Spectrum - ls. This command allows the user to feed
matrix generators into SnapPea’s length spectrum() function. Use
the ls menu to modify the tile radius, the cut off length and the other
variables for length spectrum(). See SnapPea for a more detailed
explanation of the parameters.

4.9. Short cuts.
Command Quick key6

tri Space
tet t
sym s
gt g
fg f
mg m
ls l

5. Other actions

There are more useful commands available to the user in the actions
menu. This can be viewed by clicking the wand in the lower left corner
of the console window.

5.1. Covers. You can use Orb to construct branched coverings of orb-
ifolds. This does not require a hyperbolic structure to be present on
the orbifold. Click the build covers command on the actions menu and
select the desired number of sheets in the cover. The table will list the
covers available. The first column will contain one of the following four
characters:

(1) ‘r’ indicating a regular cover;
(2) ‘i’ indicating an irregular cover;
(3) ‘c’ indicating a cyclic cover;

To examine a cover in more detail, select it and press build.

6Note: Majority of menu commands also have short cut keys. These are indicated
on the menus.
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5.2. Dehn Filling. This option lets you Dehn filling torus cusps in
orientable orbifolds. Dehn filling curves are specified as integer mul-
tiples of the meridians and longitudes on each cusp. When the curve
specified is of the form (αp, αq), where p and q are coprime, the curve
(p, q) is filled and the core of the Dehn filling disk becomes a coloured
edge labelled α.

5.3. Export to SnapPea. When you have manifold with torus and
Klein bottle cusps you can use this command to export to SnapPea.

5.4. Finding triangulations. At times you may have to do a lot
of randomization to find a good triangulation. The find triangulation
command automates this operation. Use the slider to select the number
of randomizations you wish to perform and then click tabulate.

The table will list all the combinatorially distinct triangulations
found. The first two columns in the table list the number of tetra-
hedra and edges in each triangulation. The third column describes the
coloured edge orders. For example: “0,1,2,0,3,0,0,0” indicates there is
one edge of order two, two edges of order three and three edges order
five. Edges of order greater than eight are ignored in this field. The
fourth column has a similar field for non-coloured edges.

You may also tell Orb to try and compute structures on each of the
triangulations. This may take along time if Orb finds a large number
of triangulations. Information on the structures found is included in
the fifth and sixth columns of the table.

5.5. Graph pruning. Use the ‘Prune graph’ command to retriangu-
late the underlying space so that specified coloured edges are not nec-
essarily part of the 1-skeleton. Choose the edges you wish to remove
by labelling them 1 and then click ‘Prune graph’.

5.6. Graph drilling. Use the ‘Drill graph’ command to drill out spec-
ified coloured edges, and retriangulate so that these edges become ideal
vertices. Choose the edges you wish to drill by labelling them 0 and
the click ‘Drill graph’.

5.7. Undo. Use undo to revert to the structure found when you last
pressed the ‘Update’ button.

6. Comparing triangulations

The Compare window uses canonical cell decompositions to deter-
mine if two orbifolds are isomorphic. Make sure the two orbifolds are
loaded in Orb and select one of the orbifolds from the left list and the
other from the right list and click compare.

If Orb fails to compute a canonical cell decomposition then you can
use random matching. Under this method Orb randomize the trian-
gulations to see if it can match them up. Use the slider to select the
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level of randomization you require. If the slider is all the way to the
left then Orb attempts to match the current triangulations.

7. Clipboard

The clipboard is a built-in text editor which can be used to store
and save text. It can also be used to load triangulations. For example,
you can load the figure eight knot into Orb by entering

1 0 1.000 1vu 2uw 1ux 2xv 1xw 2vu

2 0 1.000 1wu 2wx 1xv 2xu 1vw 2vw

into the clipboard and click the Export button. Hyperbolic structures
can be read in with triangulations if entered in Orb format7 (as given
in the verbose mode from the triangulation menu):

SolutionType geometric_solution

1 0 1.000 1vu 2uw 1ux 2xv 1xw 2vu

2 0 1.000 1wu 2wx 1xv 2xu 1vw 2vw

1 -23.094 0.000 0.000 1.047 1.047 1.047 1.047 1.047 1.047

2 -23.094 0.000 0.000 1.047 1.047 1.047 1.047 1.047 1.047

8. More software

If you enjoyed using Orb, the following software may interest you:

• Jeff Weeks’ SnapPea, a powerful tool for creating and studying
hyperbolic 3-manifolds.

• Oliver Goodman’s Snap, for computing exact hyperbolic struc-
tures and arithmetic invariants of hyperbolic 3-manifolds.

• Andrew Casson’s Geo and Cusp, for placing geometric structures
on closed and cusped 3-manifolds.

• Bruno Martelli’s ographs, for computing hyperbolic structures
on 3-manifolds with totally geodesic boundary.

Thanks to Nathan Dunfield, these programs and many others are avail-
able at www.computop.org.

9. Reference

Damain Heard, Computation of hyperbolic structures on 3-dimensional
orbifolds, PhD thesis, University of Melbourne, December 2005,
www.ms.unimelb.edu.au/~snap/orb.html.

7Note that precision has been manually altered for ease of display.
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