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Chapter 1

Introduction

Two hyperbolic 3-orbifolds are said to be commensurable if they share a

common finite sheeted cover. Commensurability forms an equivalence relation

on the set of hyperbolic 3-manifolds and 3-orbifolds. In general, it is difficult

to identify a commensurability class by a general element. Therefore, one may

be interested in finding elements of a commensurability class that appear quite

rare. Conjecturally, knot complements in S3 are rare in a commensurability

class as articulated in the following conjecture of Reid and Walsh (see [33,

Conj 5.2]):

Conjecture. Let S3−K be a hyperbolic knot complement. Then, there are at

most two other knot complements in its commensurability class.

It is worth mentioning that not all commensurability classes of hy-

perbolic orbifolds contain a knot complement. There is only one arithmetic

knot complement (see [32] and §2.3). Consequently, H3/PSL(2, Od) where Od

is the ring of integers in Q(
√
−d) (d is square-free), and d 6= 3 will not be

commensurable with any knot complement.

However the conjecture is non-trivial, in fact, for special classes of knot

complements, eg two bridge knots (see [33]) the conjecture is known to hold.
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More generally, Boileau, Boyer, Cebanu, and Walsh have shown that

the conjecture holds in the case where any knot complement in a given com-

mensurability class does not admit hidden symmetries (see [8] and §2.5). Fur-

thermore, the conjecture can be shown to be sharp in the sense that there

are knot complements commensurable with exactly two other knot comple-

ments. For example, Fintushel and Stern’s (−2, 3, 7) pretzel knot complement

famously admits two non-trivial cyclic fillings (see [14]). Each cyclic filling

can be exploited in order to construct a knot complement that covers the

(−2, 3, 7) knot complement (see [15]). Hence, the (−2, 3, 7) knot complement

is commensurable with at least 2 other knot complements. Neumann and Reid

showed that the invariant trace field of of the (−2, 3, 7) knot complement is

a degree 3 extension of Q (see [28, §10.2]). This is an obstruction to having

hidden symmetries (see [28, Prop 2.7]). Hence, by [33, Cor 5.4], these are the

only knot complements in its commensurability class. The ideas of the argu-

ment above have been exploited to show that certain knot complements do not

admit hidden symmetries (see [21]). The theorem below is proven using a new

obstruction to having hidden symmetries using the geometric and algebraic

convergence coming from a sequence of Dehn surgeries.

Theorem 1. Let n ≥ 1 and (n, 7) = 1. For all but at most finitely many pairs

of integers (n,m), the result of (n,m) Dehn surgery on the unknotted cusp of

the Berge manifold is a hyperbolic orbifold with exactly three knot complements

in its commensurability classes.

In light of the above theorem and [8], it seems natural to investigate
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knot complements admitting hidden symmetries. A knot complement admits

hidden symmetries if it covers an orbifold with a rigid cusp (see §2.0.2). Also,

Boileau, Boyer, Cebanu, and Walsh outlined a program to find commensurable

knot complements provided there is an orbifold with two or three finite cyclic

fillings ([8, Prop 4.11]). Consequently, one might ask if both finite fillings and

hidden symmetries can occur in conjunction. For certain cases, the answer

to that question is no, as expressed by the following theorem, which is a less

precise version of the actual Theorem 1:

Theorem 1. Let S3 − K be a strongly invertible, non-arithmetic, hyperbolic

knot complement that admits integral traces and an invariant trace field of class

number 1. Then, S3 −K does not admit hidden symmetries and a non-trivial

exceptional surgery.

It should be pointed out the theorem can be applied to many knot

complements. We remark that all but one hyperbolic knot complement is

non-arithmetic (see §2.3 and Thm 2). Additionally, Alan Reid pointed out to

the author that all of the hyperbolic knot complements up to 8 crossings have

the property that their invariant trace fields are class number 1. If a knot

complement admits non-integral traces, then it contains a closed, embedded,

essential surface (see [5]). Thus, all small knot complements admit integral

traces. Finally, the properties of admitting a non-trivial exceptional surgery

and being strongly invertible often occur in conjunction. For instance, all

known knot complements exhibiting non-trivial cyclic fillings or special types

of toroidal fillings are known to be strongly invertible (see [13] and [17]).
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Finally, orbifolds with base space D3 are of particular interest in this

work (see Prop 2). If O is an orbifold with a rigid cusp, the branch set of any

orbifold is a trivalent graph, G (see §2.0.3 and §2.0.2). The following theorem

shows that orbifolds with sufficiently complicated branch set contain a non-

trivial two component link in G or they contain an incompressible surface. In

particular, if p : S3 −K → O is small and G has 8 or more vertices, then G

contains at least one two component link.

Theorem 1. Let O be an orbifold with a single rigid cusp and base space D3

that has an isotropy graph with 8 or more vertices. Then either every pair

of edge cycles in the isotropy graph of O is linked or O contains a closed,

embedded, incompressible 2-orbifold.

This theorem is also of interest because of the hypotheses of Theorem

1. As mentioned above, if if O = H3/Γ and Γ admits non-integral traces, then

O contains a closed embedded essential surface. Therefore, this theorem gives

us a window into understanding the complexity of orbifolds with rigid cusps

covered by knot complements.

This thesis is organized as follows. The introduction and statements

of the main theorems are in chapter 1. Relevant background material can be

found in chapter 2. The third chapter contains the proof of Theorem 1. The

fourth chapter contains a proof of Theorem 1 and the fifth chapter contains a

proof of Theorem 1.
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Chapter 2

Background

An orientable hyperbolic 3-manifold M is a manifold homeomorphic to

H3/Γ where Γ is a torsion-free, discrete subgroup Isom+(H3). We will also

require that H3/Γ can be associated to a fundamental domain that is finite

volume with respect to the hyperbolic metric. If we identify hyperbolic space

with the upper half space model, then Isom+(H3) ∼= PSL(2,C).

A hyperbolic 3-manifold can be viewed more generally as a special type

of 3-orbifold, ie a metrizable space equipped with an atlas of compatible local

models that are quotients R3 by finite subgroups of SO(3,R). Since we will be

interested in 3-orbifolds that admit a geometric structure, we now recall the

definition of a geometric 3-orbifold O is a space homeomorphic to X/Γ, where

X is a simply connected Riemannian 3-manifold and Γ is a discrete subgroup

of Isom+(X). In particular, since we will be concerned with 3-orbifolds that

admit finite volume hyperbolic structures, we recall the following definition for

completeness. An orientable hyperbolic 3-orbifold is a space homeomorphic to

H3/Γ where Γ is discrete subgroup of Isom+(H3) such that H3/Γ admits a

fundamental domain of finite volume under the hyperbolic metric.

Similarly, we also define an orientable geometric 2-orbifold O as a space
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that is homeomorphic to X/Γ, where X is a simply connected Riemannian

2-manifold and Γ is a discrete subgroup of Isom+(X). In the case where

O = X/Γ, we note that O inherits the Riemannian metric from X and neigh-

borhoods of points in O are isometric to R2 or R2/〈γ|γn〉.

Both of the above definitions are due to Thurston and further back-

ground can be found in [38, Chapter 13].

2.0.1 Finite subgroups of SO(2,R) and SO(3,R)

The only finite subgroups of SO(2,R) are cyclic. A finite subgroup G of

SO(2,R) preserves the unit disk D ∈ R2. If G fixes a point on ∂D, then either

all of D is fixed or G reverses the orientation on D, which is a contradiction.

It follows p : ∂D → ∂D/G is a covering map where G acts freely on ∂D ∼= S1.

Hence, G is finite cyclic.

A disk quotient is the quotient of a disk by a finite cyclic rotation group

of order n. We denote this by D2(n). We also use the notation Σ(n1, n2, ..., nm)

for a 2-orbifold such that the base space of Σ(n1, n2, ..., nm) is a surface Σ and

for each ni we remove a closed neighborhood of a point and glue in D2(ni) by

a homeomorphism of the boundary circles.

We define the base space of an orbifold O to be the underlying topolog-

ical space. For convenience, we use |O| to denote the base space of an orbifold

O. In dimensions 2 and 3, |R2/〈γ|γn〉| = R2 and |R3/G| = R3. Hence, the

base space of a 2-orbifold is a surface and the base space of a 3-orbifold is a

3-manifold. Also, if all neighborhoods of x ∈ O map to R2/〈γ|γn〉 or R3/G,

6



we call x a cone point of O.

For 2-orbifolds, the Riemann−Hurwitz formula extends the notion of

Euler characteristic or χ(O) using the formula:

χ(O) = χ(|O|)−
∑
i

(1− 1

ri
)

where ri is the order of the cyclic group fixing the a cone point x.

The above definition preserves the property that if p : S1 → S2 is a

covering map of degree n, then χ(S1) = n · χ(S2) (see [38, Chapter 13]).

An elliptic 2-orbifold is an orientable 2-orbifold that can be covered by

S2. The complete list of orientable 2-orbifolds covered by S2 is S2, S2(n, n),

S2(2, 2, n), S2(2, 3, 3), S2(2, 3, 4) and S2(2, 3, 5).

Taking the cone over each of these orbifolds produces all of the possi-

bilities for R3/G (see Fig 2.1). In particular, G is either trivial, finite cyclic,

Dn (a dihedral group of order 2n), A4, S4, or A5. Finally, if x ∈ H3/Γ the

isotropy group of x is G ⊂ Γ such g ∈ G if and only if g(x) = x.

Using the spherical cosine law (see [35, Lem 3] for application in this

context), we can compute the angles between the axes for each type of isotropy

group in Figure 2.1. If we consider the three axes fixed by elements of torsion

of orders a, b, and c where the angles between these axes are α, β, γ (see in

Fig 2.2), then
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Figure 2.1: The five types of trivalent points that correspond to finite sub-
groups of SO(3,R)
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Figure 2.2: The angles between axes of fixed points in finite subgroups of
SO(3,R)
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b
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c

sin π
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c

cos β =
cos π

b
+cos π

a
cos π

c

sin π
a

sin π
c

cos γ =
cos π

c
+cos π

a
cos π

b

sin π
a

sin π
b
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In particular, if (a, b, c) is (2, 2, n), then (α, β, γ) is (π
2
, π

2
, π
n
). If (a, b, c) =

(2, 3, 3), then (α, β, γ) is (cos−1(1
3
), cos−1( 1√

3
), cos−1( 1√

3
)). If (a, b, c) = (2, 3, 4),

then (α, β, γ) = (cos−1( 1√
3
), π

4
, cos−1(

√
2√
3
)). If (a, b, c) = (2, 3, 5), then (α, β, γ) =

(cos−1(
cos(π

5
)√

3 sin(π
5

)
), cos−1( 1

2 sin(π
5

)
), cos−1(

2 cos(π
5

)√
3

)). We note that only the dihedral

subgroups have the property that there is an axis perpendicular to all other

fixed point axes.

2.0.2 Classification of cusps

A finite volume hyperbolic 3-manifold can only have torus cusps. By

Selberg’s Lemma, any finite volume hyperbolic 3-orbifold O is covered by a

3-manifold, so we see that the cusps of O must be quotients of the torus. In
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fact, we associate a orientable quotient of the torus to each of the 5 orientation

preserving Euclidean wallpaper groups. The five quotients are T 2, S2(2, 2, 2, 2),

S2(2, 4, 4), S2(3, 3, 3) and S2(2, 3, 6). If a cusp C is of the form S× [0,∞) where

S is one of the last three orbifolds above, then C is said to be a rigid cusp. We

include presentations for fundamental groups of these orbifolds in the following

paragraphs.

The torus admits an involution that fixes four points. The quotient of

T 2 under this involution is the often called the pillowcase, which we denote

by S2(2, 2, 2, 2). By adding an element of order 2 to π1(T 2), we obtain the

following presentation:

πorb1 (S2(2, 2, 2, 2)) = 〈a, b, c|aba−1b−1 = 1, c2 = 1, cac−1 = a−1, cbc−1 = b−1〉.

In particular, πorb1 (S2(2, 2, 2, 2)) ∼= (Z× Z) o Z/2Z. The following paragraphs

will discuss quotients of tori admitting particular Euclidean structures.

If T 2 admits a Euclidean structure such that the a and b are translations

of the same length and the angle between the two vectors is π
2
, then T 2 will

admit a symmetry of order 4. The quotient of T 2 by this symmetry is an

orbifold with two cone points of order 4 and one cone point of order 2. We use

the notation S2(2, 4, 4) to denote such a quotient. As the symmetry of order

4 sends a to b and b to a−1, we obtain the following presentation:

πorb1 (S2(2, 4, 4)) = 〈a, b, c|aba−1b−1 = 1, c4 = 1, cac−1 = b, cbc−1 = a−1〉.

Hence, πorb1 (S2(2, 4, 4)) = (Z× Z) o Z/4Z.
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If T 2 admits a Euclidean structure such that the a and b are translations

of the same length and the angle between the two vectors is π
3
, then the torus

will admit a symmetry of order 3 and a symmetry of order 6. If we consider

the quotient of T 2 under the symmetry of order 3, we will use S2(3, 3, 3) to

denote the quotient. This symmetry of order 3, sends a to ba−1 and b to a−1,

we obtain the following presentation

πorb1 (S2(3, 3, 3)) = 〈a, b, c|aba−1b−1 = 1, c3 = 1, cac−1 = ba−1, cbc−1 = a−1〉.

In particular, this group is isomorphic to (Z× Z) o Z/3Z.

If we take the quotient of T 2 by the symmetry of order 6, we will obtain

the orbifold S2(2, 3, 6). The symmetry of order 6 sends a to b and b to ba−1,

therefore we record the following presentation for

πorb1 (S2(2, 3, 6)) = 〈a, b, c|aba−1b−1 = 1, c6 = 1, cac−1 = b, cbc−1 = ba−1〉.

Finally, this group is isomorphic to (Z× Z) o Z/6Z.

2.0.3 Wirtinger presentation

Let O = X/Γ be a geometric 3-orbifold where X is the universal cover

of O. Denote by F = {x ∈ X|γ(x) = x, γ ∈ Γ−{1}}. The isotropy graph, IG,

of an orbifold O is the set of points in O that are in the image p(F ), where

p : X → O is a covering map. For any closed O, the set IG forms a trivalent

graph. In the cusped case, it will prove convenient to consider the cusp as a

vertex of the graph. Thus, we still have that IG is trivalent except O where

11



O has S2(2, 2, 2, 2) cusps. At such points, we see a valence 4 vertex in IG

corresponding to each S2(2, 2, 2, 2) cusp. Finally, if O has a torus cusp C then

IG will be disjoint from C.

For a 3-orbifold O, we defined Γ above as the group of deck transforma-

tions on its universal cover X. Alternatively, we can construct a presentation

for Γ using the isotopy graph of O using the Wirtinger presentation. A more

general proceedure exists; however, we will restrict to the case where |O| is

simply connected. The Wirtinger presentation is derived from a well known

algorithm for producing a fundamental group of a knot complement in S3 from

a knot projection. A similar formulation exists for exhibiting the fundamental

group of a trivalent graph complement, and a third generalization allows us to

construct a presentation for the fundamental group of an orbifold in S3. We

will describe this process below.

Consider an orbifold O with base space S3 and isotropy graph G. We

will assume that the projection of G into the plane is in general position, ie

there are finitely many edges, crossings, and vertices in the projection and

each crossing and vertex is in a neighborhood that does not contain other

vertices or crossings. We add a generator for each over strand of an edge

in G. At each crossing, we introduce the same relation that occurs in the

Wirtinger presentation for a knot complement (see Fig 2.3). At each vertex,

we introduce the relation abc = 1 (see Fig 2.4). Finally, each generator bounds

a disk that intersects the graph along an edge in one point. The element of

order n associated to this edge induces the relation an = 1 (see Fig 2.5).
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c

b

a

Figure 2.3: The diagram for the relation aba−1 = c

b

c

a

Figure 2.4: The relation abc = 1
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a

n

Figure 2.5: Each generator has finite order

If a vertex corresponds to a cusp, then the same algorithm applies. In

the case where the base space of O is not simply connected, we must consider

how the graph is embedded with respect to |O|. However, we will only need

to use the Wirtinger presentation for orbifolds with base space S3 or D3 in the

arguments that follow.

2.0.4 Incompressible surfaces

The study of incompressible surfaces in 3-manifold topology is of great

interest. Recall that M is an irreducible 3-manifold if every properly embedded

S2 bounds a 3-ball. A compact, orientable surface Σ properly embedded in an

orientable manifold M is said to be incompressible if Σ 6∼= S2 and every curve

γ ∈ Σ that bounds a disk in M also bounds a disk in Σ.

Thurston extended this definition to consider incompressible 2-orbifolds

in a closed 3-orbifold (see [38], Chapter 13). To extend this notion to orbifolds,

we first introduce a good orbifold. An orbifold is said to be good if it has a

14



manifold cover. Not all orbifolds are good, for example a 2-sphere with 1 cone

point is not covered by any manifolds. If an orbifold is not good, it is bad. We

define an elliptic 2-orbifold to be an orbifold finitely covered by the 2-sphere.

We define an irreducible 3-orbifold to be an orbifold that does not contain any

bad 2-suborbifolds and where every elliptic 2-orbifold bounds the quotient of

a 3-ball.

Let O be a 3-orbifold with orientable base space. If O′ is a compact,

orientable 2-orbifold and properly embedded in O with χ(O′) ≤ 0, then O′

is an incompressible suborbifold of O if for every O′′ ∼= S1, which bounds a

disk quotient in O − O′, O′′ bounds a disk quotient in O′. O is Haken if it is

irreducible and contains an incompressible suborbifold. Finally, we define an

atoroidal 3-orbifold to be an orbifold that does not contain any incompressible

2-orbifolds that are quotients of Euclidean tori.

The following theorem originally announced by Thurston and published

by Boileau, Leeb, and Porti is known as the Orbifold Theorem (see [38, Chap

13], [9, Cor 1.2]).

Theorem 2.1 (Boileau, Leeb, and Porti, 2005). Let Q be a compact, con-

nected, orientable, irreducible 3-orbifold with non-empty isotropy graph. If Q

is atoroidal, then Q is geometric.
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2.1 The trace field and invariant trace field

Mostow-Prasad Rigidity shows that if two finite volume hyperbolic orb-

ifolds, H3/Γ1 and H3/Γ2, are homeomorphic then the two groups Γ1 and Γ2

are conjugate in Isom(H3) (see [27], [30], [38]).

If O = H3/Γ is a finite volume hyperbolic 3-orbifold, a direct conse-

quence of the Mostow-Prasad Rigidity is that the field, Q(trΓ) = Q(tr(γ)|γ ∈

Γ) is a homeomorphism invariant. This field is known to be a finite extension

of Q (see [38, Prop 6.7.4]). Here, we are slightly abusing notation, an element

γ ∈ Γi is of the form

γ =

{(
a b
c d

)
,

(
−a −b
−c −d

)∣∣∣∣ ad− bc = 1, a, b, c, d ∈ C
}
.

Hence, tr(γ) will refer to the trace of one of the elements in the coset that

defines γ.

Let O = H3/Γ, we say O or Γ admits an integral representation if for

all γ ∈ Γ, a, b, c, and d as defined above are algebraic integers. Also if for all

γ in Γ, tr(γ) is an algebraic integer, we say Γ has integral traces. In fact, Γ

admits an integral representation if and only if it admits integral traces (see

[22, Lem 5.2.4]).

As noted in the introduction, two hyperbolic 3–orbifolds, H3/Γ1 and

H3/Γ2, are said to be commensurable if they share a common finite sheeted

cover. In terms of their groups, this means that ∃g ∈ PSL(2,C) such that Γ1

and gΓ2g
−1 share a subgroup of finite index. In this case, we say that that Γ1

and Γ2 are commensurable.
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As noted above, the trace field of a finite volume hyperbolic orbifoldO is

a homeomorphism invariant for O. However, in general, it is not an invariant

of the commensurability class. The invariant trace field of a hyperbolic 3-

orbifold O = H3/Γ is kΓ = Q(tr(γ2)|γ ∈ Γ). This field is known to be both a

finite extension of Q and an invariant of the commensurability class (see [31]).

For knot groups, the invariant trace field is equal to the trace field (see [28,

Cor 2.3]).

In addition, the property of having integral traces is a commensurabil-

ity class invariant (see [22, Cor 3.1.4]), so the property of admitting integral

representations is a commensurability class invariant.

2.2 Class number

Let k be number field and Ok the ring of integers in k. A fractional

ideal J of Ok is an Ok-submodule of k such that there exists α ∈ Ok with the

property that αJ ⊂ Ok.

In the setting of number fields (or more generally Dedekind domains),

the set of fractional ideals is well known to form an abelian group under

multiplication of ideals. We will call this group the ideal group of k and

denote it by Ik.

We say a fractional ideal I is principal if I = 〈d〉 for some d in Ok, ie

every element of I is of the form d · r for some r ∈ Ok. Clearly, the set of

principal fractional ideals forms a subgroup Pk of Ik.
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Since Ik is abelian, Pk is a normal subgroup. We define the class group

as Ik/Pk and the class number hk as the order of the class group. We will

focus on the case where the class number is 1. Hence, Ok is a principal ideal

domain, ie all ideals are generated by one element.

2.3 Arithmetic 3-manifolds and 3-orbifolds

If O ∼= H3/ΓO is a finite volume, cusped hyperbolic 3-orbifold O, then

ΓO is arithmetic if kΓO = Q(
√
−d) (for d a square-free integer) and ΓO admits

integral traces. Also, if ΓO is arithmetic, then O is arithmetic. Otherwise, the

orbifold is non-arithmetic and the corresponding group is non-arithmetic.

Let Od be the ring of integers in Q(
√
−d). Then an orbifold of the

form H3/PSL(2,Od) is an arithmetic orbifold, since its invariant trace field is

quadratic imaginary and PSL(2,Od) has integral traces.

Riley showed that if K is the figure 8 knot then π1(S3−K) ⊂ PSL(2,O3)

(see [34]). Reid completely classifies arithmetic knot complements by the fol-

lowing theorem:

Theorem 2.2 (Reid, 1991). The figure 8 knot complement is the only arith-

metic knot complement.

Since the invariant trace field and the property of having integral traces

are commensurability class invariants, arithmeticity is a commensurability

class invariant. Therefore, there are no other knot complements commen-

surable with the figure 8 knot complement.
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Being commensurable with PSL(2,Od) (where d is a negative square-

free integer) is equivalent to be being arithmetic. Furthermore, if k = Q(
√
d),

It follows from work of Hurwitz that the number of cusps of H3/PSL(2,Od)

is hk (see [22]). We define a maximal (non-cocompact) arithmetic group Γ to

be an arithmetic group that is not contained in any other discrete arithmetic

group. For O3, we restate the following special case of [11].

Theorem 2.3 (Chinburg, Long, and Reid, 2008). All maximal arithmetic

subgroups of PSL(2,C) commensurable with PSL(2,O3) have one cusp.

2.4 Tetrahedral orbifolds

We will call a hyperbolic 3-orbifold H3/Γ tetrahedral if H3/Γ is the

orientation double cover of a quotient of a group generated by reflections in

the faces of a hyperbolic tetrahedron. We will call a group tetrahedral if it is

the orbifold fundamental group of a tetrahedral orbifold.

The orbifold fundamental groups of tetrahedral orbifolds are computed

by determining the angles between the faces of the tetrahedron. Each angle

is a submultiple of 2π. Therefore, we will parametrize tetrahedral groups by

six integers. If we have the tetrahedron T in Figure 2.6, as described in [22,

Chap 4.7], we denote by

Γ(m,n, p, r, s, t) = 〈x, y, z|xm = yn = zp = (yz−1)r = (zx−1)s = (xy−1)t = 1〉

(the tetrahedral group associated to T ). Since we are considering our tetra-

hedral groups to be orientable, H3/Γ(m,n, p, r, s, t) is homeomorphic to two
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s r

t

m n

Figure 2.6: The angle between to faces of the tetrahedron above is 2π
n

where
n is label on their common edge

copies of the tetrahedron in Figure 2.6 glued together by a set of face pairings.

2.5 Hidden symmetries

An important commensurability class invariant of Γ or H3/Γ is the

commensurator, denoted by

Comm+(Γ) = {g ∈ PSL(2,C)|[Γ : Γ∩gΓg−1] <∞, [gΓg−1 : Γ∩gΓg−1] <∞}.

Denote by N+(Γ) the normalizer of Γ in PSL(2,C). We say that a group Γ

has hidden symmetries if [Comm+(Γ) : N+(Γ)] > 1. A hyperbolic orbifold,

Q = H3/ΓQ, has hidden symmetries if ΓQ has hidden symmetries.

Margulis showed that if Γ is non-arithmetic then Comm+(Γ) is discrete

(see [23]). Therefore, if Γ is non-arithmetic, we define the commensurator

quotient to be H3/Comm+(Γ). In this case, H3/Comm+(Γ) is the minimum

volume orbifold in the commensurability class and it is covered by all orbifolds
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commensurable with H3/Γ.

We defined hidden symmetries in terms of elements of the commensu-

rator above. However, in [28], it has been shown that this algebraic condition

is equivalent to an topological condition for knot complements.

Theorem 2.4 (Neumann and Reid, 1991). Let S3 − K ∼= H3/Γ be a non-

arithmetic knot complement. Then the following are equivalent:

1. S3 −K admits hidden symmetries.

2. H3/Comm+(Γ) has a rigid cusp.

3. S3 −K non-normally covers some orbifold.

A key element of the proof of this theorem, which will also be relevant

to the following arguments, states that if p : S3 −K → O where O does not

have a rigid cusp, then p is regular (see [32, Lem 4]). If, as above, we have

S3−K ∼= H3/Γ, then N+(Γ)/Γ ∼= Isom+(S3−K), by Mostow-Prasad Rigidity.

Therefore, N+(Γ) is generated by Γ and possibly parabolic elements that act

on the complement by translation along the longitude and strong inversions,

ie order 2 elliptic elements that reverse the orientation on the cusp of the knot

complement. In S3, a strong inversion of a knot is realized by an order 2

symmetry of S3 that sends the knot to itself as an embedded curve in S3 and

fixes two points on the knot. Finally, if a knot complement admits a strong

inversion, we say it is strongly invertible.
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Ds

Figure 2.7: The dodecahedral knots

Also, by [28, Prop 2.7], the cusp field of a hyperbolic orbifold is a sub-

field of the invariant trace field. Thus, if a hyperbolic orbifold has a S2(3, 3, 3)

or S2(2, 3, 6) cusp, Q(
√
−3) must be a subfield of the orbifold’s invariant trace

field and if the cusp is S2(2, 4, 4), Q(i) must be a subfield of the orbifold’s

invariant trace field (see [28, Proof of Thm 5.1(iv)]).

At present, there are only three knot complements known to admit

hidden symmetries. The first is the figure 8 knot complement. As noted

above, the figure 8 knot complement is arithmetic and so it has a non-discrete

commensurator and therefore it has hidden symmetries. In this case, having

hidden symmetries can be seen an accident of arithmeticity.

The other examples are the dodecahedral knots of Aitchison and Ru-

binstein (see [4] and Fig 2.7). These knot complements are constructed by

identifying the faces of two regular ideal dodecahedra. Therefore, each knot

complement covers a small volume orbifold H3/D where D is the group of

orientation preserving isometries of T, a tessellation of H3 by regular ideal
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dodecahedra. Each dodecahedral knot group is index 120 in D. Furthermore,

D is tetrahedral, D = Γ(5, 2, 2, 6, 2, 3), and H3/D has volume approximately

.3430.. (see [28] and [29]). Since H3/D has a rigid cusp, the dodecahedral knot

complements admit hidden symmetries. Finally, we remark that the dodec-

ahedral knot complements admit integral traces and have an invariant trace

field that is class number 1. Therefore, we will be able to apply Theorem 1 to

these knot complements.

2.6 Adams’ classification of orbifolds of small volume

For the remainder of the thesis, we will observe the convention that

the volume of a regular ideal tetrahedron in hyperbolic space is denoted by

v0 ≈ 1.01494160. Also, the volume of an ideal tetrahedron with dihedral angles

of π
2
, π

4
, and π

4
is denoted by v1 ≈ .9159655941.

Let O = H3/ΓO be a 1-cusped hyperbolic orbifold. We will consider

the action of ΓO on upper half space.

Assume that ΓO has an upper triangular parabolic element. Hence, ∞

is a parabolic fixed point. Choose another parabolic fixed point y ∈ C. We

will say a Euclidean ball By is based at y if the ball is tangent to C at y.

We call the set {g(By)|g ∈ ΓO} the horoballs associated to ΓO. If we grow

By equivariantly with respect to ΓO, eventually a ball Bx (based at x) will be

tangent to the image of g(By) where g ∈ ΓO sends y to∞. In this case, we call

the set {g(By)|g ∈ ΓO} a set of maximal horoballs. For further background on

horoballs, see [1]. Given any fundamental domain D for H3/ΓO, we partition
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D into two sets: Dc the set of points in D inside maximal horoballs; and Do

the set of points outside the maximal horoballs. We call the volume Dc the

cusp volume of O.

Meyerhoff used such a sphere packing to classify the hyperbolic 3-

orbifold of least volume (see [25]). In particular, Meyerhoff showed that the

densest sphere packing implies the that the cusp density, ie ratio of cusp vol-

ume to total volume, is at most 2
v0
√

3
. Using this bound on cusp density and

other techniques, Adams improved upon this classification and exhibited the

six hyperbolic (orientable) 3-orbifolds of least volume (see [2]). In addition,

Adams classified maximal horoball arrangements corresponding to low cusp

volume.

The following theorem summarizes Meyerhoff’s result and Adams’ clas-

sification of small cusp volume hyperbolic orbifolds (see [25], [2, Thm 3.2, Cor

4.1, Thm 5.2]).

Theorem 2.5 (Adams, 1991). Let O be a 1-cusped hyperbolic 3-orbifold.

1. A maximal S2(2, 3, 6) cusp in O has volume either
√

3
24

,
√

3
12

, 1
8
,
√

3(3+
√

5)
48

,
√

21
24

or at least
√

3
8

.

2. A maximal S2(3, 3, 3) cusp in O has volume either
√

3
12

,
√

3
6

, 1
4
,
√

3(3+
√

5)
24

,
√

21
12

or at least
√

3
4

.

3. A maximal S2(2, 4, 4) cusp in O has volume either 1
8
,
√

2
8

, or at least 1
4
.
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Adams points out that for an orbifold O with a S2(2, 3, 6) cusp de-

scribed in 1) above and each cusp volume in 2), there is a unique orbifold with

a S2(3, 3, 3) cusp that is the double cover of O.

Neumann and Reid provided explicit descriptions of many of the orb-

ifolds corresponding to the cusp volumes in these theorems (see [29]). Many

of the orbifolds they describe are arithmetic. More specifically, their notes

together with some notes by Adams on the volume of the orbifolds can be

summarized in the following proposition (see [2]):

Proposition 2.6 (Adams 1991, Neumann and Reid 1991). Let O be a 1-cusped

hyperbolic 3-orbifold.

1. If O has a maximal S2(2, 3, 6) cusp of volume either
√

3
24

,
√

3
12

, or 1
8
, it is

arithmetic. Furthermore, these orbifolds have volumes v0
12

, v0
6

, and 5v0
24

,

respectively.

2. If O has a maximal S2(3, 3, 3) cusp of volume either
√

3
12

,
√

3
6

, or 1
4
, it is

arithmetic. Furthermore, these orbifolds have volumes v0
6

, v0
3

, and 5v0
12

,

respectively.

3. If O has a maximal S2(2, 4, 4) cusp of volume either 1
8

or
√

2
8

, it is arith-

metic. Furthermore, these orbifolds have volumes v1
6

and v1
4

, respectively.

Adams also notes that the orbifold with a S2(2, 3, 6) and cusp volume
√

3(3+
√

5)
48

and the orbifold with a S2(3, 3, 3) and cusp volume
√

3(3+
√

5)
24

are both
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tetrahedral. Their volumes are v ≈ .3430.. and v′ ≈ .6860.., respectively.

We remark that the orbifold of volume v is homeomorphic to H3/D from the

previous section (see [28, §9]).

Following Theorem 3.2 in Adams’ paper, there is a conjectural picture of

the orbifold with S2(2, 3, 6) and cusp volume
√

21
24

. Together with the Corollary

4.1 we obtain a conjectural picture of the orbifold with a S2(3, 3, 3) cusp and

cusp volume
√

21
12

. However, a computation of the orbifold fundamental groups

shows that these orbifolds turn out to have invariant trace fields that differ

from this conjectural picture. The argument is outside of the scope of this

background section, so we will delay the computation and discussion of these

orbifolds until §4.2.

2.7 Dehn filling

Given a 3-orbifold M with a single torus boundary, the result of γ-

Dehn filling on M is the space M ∪γ T = M(γ) where T is a solid torus, ∂M

is a single torus, γ is a curve in ∂M and the ∂T and ∂M are identified by a

homeomorphism that identifies γ with a curve µ ∈ ∂T bounding a disk in T .

If γ is a simple curve and M is a manifold then M(γ) is a manifold. Here,

π1(M(γ)) = π1(M)/〈〈γ〉〉π1(M) where 〈〈γ〉〉π1(M) denotes the normal closure of

γ in π1(M). If γ = αn with n ≥ 2 ie not a simple curve, then M(γ) is an

orbifold with base space M(α) and a simple closed curve labeled by n torsion

along the core of the torus glued in under the surgery. Here, π1(M(γ)) =

π1(M)/〈〈αn〉〉π1(M).
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If M has more than one torus boundary, we can define Dehn filling as

above by restricting to a particular torus boundary.

For knot exteriors M , we can construct canonical coordinates to param-

etrize the curves we fill along. We define the longitude to be the curve on the

boundary torus of M that is homologically trivial. In addition, there is a

curve µ which intersects the longitude in one point and has the property that

M(µ) = S3. We call such a curve the meridian and the corresponding filling

the trivial filling. By [18], this filling is unique and so we call any other filling

a non-trivial filling.

We also define Dehn surgery on M if M has a torus cusp. In this case,

the cusp is homeomorphic to T 2 × [0,∞) and we remove N = T 2 × [a,∞)

(here a > 0) from this cusp. Then we attach a solid torus to the newly created

torus boundary via the Dehn filling procedure described above.

2.7.1 Exceptional Dehn filling

A Dehn filling is exceptional if it does not admit a finite volume hyper-

bolic structure. It is in general rare for surgery on a hyperbolic 3-manifold or

3-orbifold to be exceptional. The following theorem appears as Theorem 5.8.2

in Thurston’s notes (see [38]). A statement is included below for completeness.

Theorem 2.7 (Thurston’s Hyperbolic Dehn Surgery Theorem). Let M be an

n-cusped hyperbolic 3-manifold. If we restrict to Dehn filling along a partic-

ular cusp, all but at most finitely many Dehn fillings will admit a hyperbolic

structure.
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Thus, if M is hyperbolic with many torus boundary components, then

Dehn filling along just one boundary component will result in a hyperbolic

manifold for all but at most finitely many curves. Dehn fillings.

2.7.2 The Six Theorem

We can define length for a parabolic element γ for a one-cusp hyperbolic

3-manifold M in the following manner. Considering the upper half space

model, conjugate γ so it is a parabolic fixing ∞. Let B∞ be the maximal

horoball that is based at ∞. The length of the translation by γ in g(B∞) will

be the distance between x and γ(x) as measured in the boundary of B∞. We

will denote this length by len(γ).

Agol and Lackenby (see [3], [19]) both independently proved the “Six

Theorem” namely:

Theorem 2.8 (Agol 2000, Lackenby 2000). If M is a hyperbolic manifold and

M(γ) is not hyperbolic, then len(γ) ≤ 6.

This result improved the bound of the 2π-Theorem attributed to Gro-

mov and Thurston which bounded the length of γ by 2π.

As noted in §2.0.2, a rigid cusped orbifold O admit one geometric struc-

ture up to Euclidean similarity. If we fix a structure, such that the shortest

translation in πorb1 (O) is of length 1, the maximal abelian subgroup of πorb1 (O)

can be identified with a fixed Z-lattice in the complex plane. Specifically, if

O is either S2(2, 3, 6) or S2(3, 3, 3), this lattice Lω has 1 and ω as its basis
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vectors, where ω2 +ω+1 = 0. Note that vectors in Lω are of the form n+mω,

n,m ∈ Z. Vectors of length less than 6 will be of particular interest and so

are noted in Figure 2.8(a). Specifically, if a sublattice is generated by 1 and

n + mω and the lattice has a non-trivial vector v of length less than 6 with

v 6= ±1, then |m| ≤ 6. If O is S2(2, 4, 4), the Z-lattice Li that corresponds

translations in πorb1 (O) is of the form n+m · i. In this case, we can make the

same observation. Namely, if a sublattice is generated by 1 and n+m · i and

the lattice has a non-trivial vector v of length less than 6 with v 6= ±1, then

|m| ≤ 6 (see Fig 2.8(b)).

2.7.3 Finite cyclic fillings and coverings by knot complements

Given a hyperbolic knot complement S3−K, we can bound the number

of possible finite cyclic fillings it can admit.

Theorem 2.9 (Culler, Gordon, Luecke, and Shalen, 1987). Let M be a hy-

perbolic 3-manifold with one boundary component. If α is slope in ∂M , then

π1(M(α)) is finite cyclic group for at most three α.

In fact, finite cyclic fillings of hyperbolic knot exteriors correspond to

finite coverings by other knot exteriors. More precisely,

Theorem 2.10 (González-Acuña and Witten, 1992). If M is a hyperbolic

knot exterior, we can construct a covering of M by a knot exterior for each

finite cyclic filling of M .
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(a) Points in Lω that are less than 6 from the origin
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(b) Points in Li less than 6 from the origin

Figure 2.8: Lattice points that are length less than 6 from the origin.
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Combining these two results we see that a knot complement can be

covered by at most two other knot complements.

The result of Boileau, Boyer, Cebanu and Walsh (see [8]) mentioned

earlier generalizes this construction to orbifolds that admit cyclic fillings. They

show that a hyperbolic orbifold admits at most three cyclic fillings and that

each time a knot complement S3 − K covers a torus-cusped orbifold O, O

admits a cyclic filling. Furthermore they show that if S3 −K does not admit

hidden symmetries, this completely characterizes the knot complements in a

commensurability class. For future reference, we state their results in the

following theorem:

Theorem 2.11 (Boileau, Boyer, Cebanu and Walsh, 2010). If S3 − K is

hyperbolic and does not admit hidden symmetries, it is commensurable with at

most two other knot complements.

An important element in the proof the above theorem is a classifica-

tion of orbi-lens spaces, ie orbifolds with finite cyclic fundamental group. This

classification is listed below and originally appears as Lemma 3.1 in [8]. Fur-

thermore, this argument generalizes the classification of lens spaces, which are

manifolds with finite cyclic fundamental group. These manifolds all admit a

genus one Heegaard splitting, ie they are the union of two solid tori glued

together via a boundary identification. As a result of the Orbifold Theorem

(see Thm 1) and the positive solution to the Geometrization conjecture (see

[26]), we know that all orbi-lens spaces are quotients of S3.
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Theorem 2.12 (Boileau, Boyer, Cebanu, Walsh, 2010). Let Z be a finite

cyclic subgroup of SO(4) of order n and fix a generator ψ of Z. There are a

genus one Heegaard splitting S3 = V1 ∪ V2, cores C1,C2 of V1, V2, and integers

a1, a2 ≥ 1 such that

1. both V1 and V2 are Z-invariant.

2. ψ acts by rotation of order a1 on C1 and order a2 on C2. Moreover, the

Z-isotropy subgroup of a point in

(a) S3 (C1 ∪ C2) is trivial.

(b) C1 is generated by ψa1 and has order ā2 = n/a1,

(c) C2 is generated by ψa2 and has order ā1 = n/a2.

Thus, n = lcm(a1, a2), ā1 = a1/gcd(a1, a2), ā2 = a2/gcd(a1, a2), so

gcd(ā1, ā2) = 1.

3. |S3/Z| is the lens space with fundamental group Z/gcd(a1, a2) and genus

one Heegaard splitting (V1/Z) ∪ (V2/Z).

2.8 Notation

We now establish the notation that will be used throughout the thesis.

First,

ΓK = π1(S3 −K)

where K is an embedded knot in S3.
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If O ∼= H3/Γ or O ∼= S3/Γ, we say that

Γ = ΓO.

Also, we use P to denote the peripheral subgroup of a 1-cusped orbifold

O. In arguments where multiple 1-cusped orbifolds are being discussed, we

denote the peripheral subgroup of O by PO for clarity. Similarly, if P is the

peripheral subgroup of a knot complement, we will simply use PK .
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Chapter 3

Commensurability classes containing exactly

three hyperbolic knot complements

In this chapter, we exhibit infinitely many commensurability classes

containing exactly three hyperbolic knot complements. Each commensurabil-

ity class can be identified by an orbifold that is the result of surgery on the

Berge manifold, which is the complement of the two-component link shown in

Figure 3.1. In particular, we prove the following theorem:

Theorem 3.1. Let n ≥ 1 and (n, 7) = 1. For all but at most finitely many

pairs of integers (n,m), the result of (n,m) Dehn surgery on the unknotted

cusp of the Berge manifold is a hyperbolic orbifold with exactly three knot

complements in its commensurability classes.

An important ingredient of the proof is an orbifold coming from (n,m)

surgery on the unknotted cusp of the Berge manifold, which we denote by

βn,m. Each of these orbifolds admits three finite cyclic fillings (see §3.1.1). For

each one of these fillings we can construct a covering by a knot complement

(see Lem 5). In general, classifying manifolds three cyclic fillings remains an

open problem, however in the case where βn,m has non-empty branch set more

is known. We finish the chapter with a complete classification of orbifolds that
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Figure 3.1: The Berge manifold is the complement of this link.

admit three cyclic fillings, are covered by three hyperbolic knot complements,

and have non-empty branch set (see Thm 6).

3.1 Preliminaries

If a knot complement admits hidden symmetries, it covers an orbifold

with a rigid cusp (see Thm 4). In the arguments that follow, we will show

that certain manifolds and orbifolds do not cover rigid cusped orbifolds as an

obstruction to having hidden symmetries.

First, we investigate some self-covers of Euclidean 2-orbifolds. Like

the torus, the orbifolds S2(3, 3, 3), S2(2, 4, 4), and S2(2, 3, 6), can admit self-

covers. As noted in the previous chapter, the groups of deck transformations

for the above orbifolds are of the form (Z × Z) of Z/nZ (where n is 3, 4, or

6 respectively), there exists a degree m self-cover of one of these orbifolds for

each index m subgroup of Z × Z preserved by f , an outer automorphism of
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Z × Z. The following proposition shows that there are certain degrees such

that S2(3, 3, 3) does not admit a self-cover.

Proposition 3.2. Let p : O′ → O be a covering map. If O ∼= S2(3, 3, 3), then

degree of p is not 2 or 5.

Proof. Denote by Γ = πorb1 (O) and note that the abelianization of Γ is Z/3Z×

Z/3Z (see §2.0.2). In particular, Γ has no index 2 subgroups.

Assume that Γ′ ⊂ Γ has index 5. The abelianization of Γ excludes the

case that Γ′ / Γ.

Notice, Γ has a torsion-free subgroup T ∼= Z × Z of index 3. Also,

[Γ : Γ′ · T ][Γ′ · T : T ] = 3 and since Γ′ has torsion elements, [Γ : Γ′ · T ] = 1.

Thus, we get the following lattice of subgroups:

Γ

3
ww

ww
ww

ww
ww

5 GG
GG

GG
GG

GG

T

5 EE
EE

EE
EE

E Γ′

3xx
xx

xx
xx

x

T
⋂

Γ′

Note that T / Γ. Hence, we have that T
⋂

Γ′ / Γ′ by the Second Iso-

morphism Theorem. Also, T
⋂

Γ′ / T since T is abelian. Using Γ = Γ′ · T , we

obtain that T
⋂

Γ′ /Γ. Thus, Γ/T
⋂

Γ′ is isomorphic to a cyclic group of order

15, which is a contradiction to abelianization of Γ being Z/3Z × Z/3Z. This

completes the proof.

36



3.1.1 Special fillings of the Berge manifold

In the explanation below, we assume that the (n,m) surgery on the

Berge manifold comes from a standard framing on the cusps of this link com-

plement as in §2.7.

Each βn,m admits several surgery slopes of interest. These surgeries can

be explained by understanding surgeries on the Berge manifold. First, if we

perform Dehn surgery along the (1, 0) slope of the unknotted cusp of the Berge

manifold, we will obtain the (−2, 3, 7) pretzel knot (see [14]). Also, if we drill

out a solid torus along the unknotted cusp of the manifold we would obtain

the one knot in the solid torus (defined up to homeomorphism of the solid

torus) that admits three D2×S1 fillings (see [6, Cor 2.9]). Furthermore, if we

perform Dehn surgery along the (1, r) slope and then drill along the core of

the surgered torus, we would also obtain a knot complement in D2 × S1 that

admits three D2 × S1 surgeries. In fact, by the above mentioned corollary,

these are the only knots in solid tori with this property.

The above construction shows that Dehn surgery along a (1, r) slope

of the unknotted cusp of the Berge manifold produces knot complements that

produce three lens space surgeries. In fact, it is well known that the (1, 0),

(18, 1) and (19, 1) surgery slopes on the (−2, 3, 7) pretzel knot admit lens

space surgeries (see [14]). By drilling out the unknotted cusp of the Berge

manifold, these are also the surgery slopes that produce a solid torus filling.

Since the linking number of the knotted cusp and the unknotted cusp is 7,

the longitude gets sent to the curve (49r, 1) after (1, r) Dehn surgery on the
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unknotted cusp while the meridian (1, 0) remains fixed (for further background

see [36, Sect 9.H]). So the (1, 0), (18, 1), and (19, 1) surgery parameters get

sent to (1, 0), (49r + 18, 1), and (49r + 19, 1) respectively after (1, r) Dehn

surgery on the unknotted cusp. Therefore, these fillings produce solid tori

in the new coordinates. Furthermore, we can use the surgery parameters to

compute the homology of the manifolds resulting from lens space surgeries on

the knot complements. In fact, we see that for these knots we obtain S3 and

two lens spaces - one with fundamental group of order |49r + 18| and another

of order |49r + 19|.

More generally, if we allow Dehn surgery along any (p, q) slope of the

unknotted cusp of the Berge manifold where (p,q)=1, and either (1, 0), (18, 1),

or (19, 1) Dehn surgery on the knotted cusp, we will also get lens spaces. Again,

we see that the (1, 0) surgery slope corresponds to a lens space of order |p|,

(18, 1) surgery slope corresponds to a lens space of order |49q+18p|, and (19, 1)

surgery slope corresponds to a lens space of order |49q + 19p|.

3.1.2 The commensurability class of the Berge manifold

As defined in §2.3, v0 ≈ 1.01494146 as the volume of the regular ideal

tetrahedron. The Berge manifold is comprised of four such tetrahedra and

therefore its volume is 4v0. Denote by ΩL the fundamental group of the Berge

manifold.

We saw that the figure 8 knot complement is the only arithmetic knot

complement (see Thm 2). However, there are two component link complements
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that are arithmetic. In particular the Berge manifold is the complement of the

link in Figure 3.1 and is arithmetic.

Proposition 3.3. The Berge manifold is arithmetic. Furthermore, the invari-

ant trace field of the Berge manifold is Q(
√
−3).

Proof. As stated above the Berge manifold is a link complement made up of

four regular ideal tetrahedra. Let Γ be the group generated by the order 24

group of symmetries of the ideal tetrahedron. Then H3/Γ is the smallest vol-

ume non-orientable hyperbolic 3-orbifold (see [25]). Let Γ+ be the orientation

preserving subgroup of Γ. Then, Γ+ = PGL(2,O3) which can be identified

with the group of isometries that preserve the tessellation of H3 by regular

ideal tetrahedra (see [29]). Since the Berge manifold is comprised of regular

ideal tetrahedra, [Γ+ : ΩL] = 48. We make the observation that arithmeticity

is preserved by passing to finite index subgroups to complete the first part

of the proof. We finish the proof by noting that the invariant trace field of

PGL(2,O3) is Q(
√
−3).

The proof of the following lemma takes advantage of the fact that the

Berge manifold has relatively low volume in order to show that it cannot cover

an orbifold with a torus cusp and a rigid cusp. It is worth mentioning that

PGL(2,O3) is the orbifold fundamental group of hyperbolic orbifold with a sin-

gle S2(2, 3, 6) cusp. Additionally, the following proof will consider PSL(2,O3),

which is an index 2 subgroup of PGL(2,O3), and so H3/PSL(2,O3) is a two-

fold cover of the orbifold H3/PSL(2,O3) (see §2.6). Hence for this paper, we
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consider PGL(2,O3) under the image of its representation into PSL(2,C).

Also, we will consider all other groups as subgroups of PSL(2,C) where nec-

essary.

Lemma 3.4. The Berge manifold does not cover an orbifold with a torus cusp

and a rigid cusp.

Proof of 4. AssumeQT is an orbifold with a torus cusp and a rigid cusp covered

by the Berge manifold. Since the invariant trace field of the Berge manifold is

Q(
√
−3), the rigid cusp of QT must be either S2(3, 3, 3) or S2(2, 3, 6). In either

case, consideration of the unknotted torus cusp of the Berge manifold covering

the rigid cusp shows the degree of such a cover is 3k for some integer k ≥ 1.

Also, since the Berge manifold is arithmetic and the class number of Q(
√
−3)

is 1 (see Prop 3 and §2.2), it follows from Theorem 3 that any maximal group

commensurable with the Berge manifold has exactly one cusp. Thus, there

exists a one-cusped orbifold QM covered by QT .

Denote the Berge manifold by B. By consideration of a torus cusp of B

covering the rigid cusp of QT , we see that p1 : B → QT is a covering map of

degree 3k (k ≥ 1). Also, by consideration of the torus cusp of QT covering the

rigid cusp of QM , p2 : QT → QM is a covering map of degree at least 3. If QM

has a S2(3, 3, 3) cusp, we use the fact that vol(QM) ≤ 4v0
9

to show that it must

be one of the orbifolds classified by Adams (see Thm 5 and Prop 6). However,

as pointed out in the comment after the theorem, each of the orbifolds is a

double cover of an orbifold with a S2(2, 3, 6) cusp. Since we may assume QM is
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corresponds to a maximal subgroup of PSL(2,C), and is therefore not a cover

of any smaller volume orbifold, we only have to consider to the case that QM

has a S2(2, 3, 6) cusp. In this case, QM has a S2(2, 3, 6) cusp and the degree

of p2 is at least 7. Since the torus cusp of QT is at least a six fold-cover of

the rigid cusp of QM and the rigid cusp of QT is at least a one-fold cover of

the rigid cusp of QM . Hence, vol(QM) ≤ 2v0
9

and QM is described by Adams

(see §2.6). Furthermore, since vol(B) = 4v0, vol(QM) is eitherv0
6

or v0
12

. Thus,

the covering of QM by the Berge manifold is of order 24 or 48, respectively.

We will consider these two cases separately by further analyzing the possible

covering maps p1 and p2.

6

w

3

3

2

2

2

Figure 3.2: The fundamental domain for Γ together with the involution w
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Case 1: QM has volume v0/6 and the degree of the cover

p1 : B → QM is 24.

By noting that ΓQM has an index 2 subgroup:

Γ = 〈x, y, z|x2, y2, z3, (yz−1)2, (zx−1)6, (xy−1)3〉 and ΓQM = 〈Γ, w〉 where

w is the order 2 rotation on the fundamental domain of Γ, we obtain a pre-

sentation for ΓQM (see §2.4 and Fig 3.2).

Thus, we obtain the following presentation:

ΓQM = 〈w, x, y, z|x2, y2, z3, w2, (yz−1)2, (zx−1)6, (xy−1)3, (wx)2, wywyz−1〉.

By the constraints mentioned above, the degree p1 : B → QT must be

3 and the degree of p2 : QT → QM must be 8. However, using GAP, the

above group ΓQM does not have any index 8 subgroups. Thus, there can be

no orbifold QT .

Case 2: QM has volume v0/12 and the degree of the cover

p2 : B → QM is 48.

In this case, QM
∼= H3/PGL(2,O3) and so we will consider the group

picture. Here, [PGL(2,O3) : ΓQT ] = 8 or 16, since degree of p2 ≥ 7 and the

degree of p1 = 3k (k ≥ 1).

First, assume [PGL(2,O3) : ΓQT ] = 8. If ΓQT ⊂ PSL(2,O3),

[PSL(2,O3) : ΓQT ] = 4. Using GAP, there is a unique index 4 subgroup G

of PSL(2,O3). However, G has finite abelianization, and therefore cannot be

the orbifold group of QT .
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Thus, we may assume that ΓQT 6⊂ PSL(2,O3) and deduce that there

is a unique subgroup Λ of index 2 in ΓQT such that Λ ⊂ PSL(2,O3). By

covolume considerations Λ has index 8 in PSL(2,O3). Also, H3/Λ has a torus

cusp and a S2(3, 3, 3) cusp. Since H3/PSL(2,O3) has a S2(3, 3, 3) cusp, the

degree of the covering p : H3/Λ→ H3/PSL(2,O3) has to be 3l+m. However,

m 6= 2, 5 (see Prop 2), a contradiction.

PGL(2,O3)

2

8

::
::

::
::

::
::

::
::

::

PSL(2,O3)

8

;;
;;

;;
;;

;;
;;

;;
;;

;;

ΓQT

2

Λ

Now, assume that [PGL(2,O3) : ΓQT ] = 16. We know that p1 : B →

QT is of degree 3 and therefore, QT has a S2(3, 3, 3) cusp and a torus cusp.

Thus, ΓQT ⊂ PSL(2,O3) and [PSL(2,O3) : ΓQT ] = 8, giving us the same

contradiction as in above paragraph.

This completes the proof.

3.2 Knot complements covering βn,m

In this section, we show that for fixed n and m, βn,m admits three finite

cyclic surgeries. We also show directly it is covered by three knot complements
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if n 6= 7.

Lemma 3.5. The orbifolds βn,m are covered by three knot complements. Fur-

thermore, the degrees of the corresponding covering maps are distinct.

Proof. For a fixed βn,m, let r = (n,m) and consider βn,m as the union of the

complement of a knot in a solid torus, T1 and a solid torus with core a singular

locus of order r, T2 (see Fig 3.3).

r

T1

T2

Figure 3.3: The decomposition of a surgered βn,m along a torus

By [6, Cor 2.9], T1 admits three Dehn surgeries that result in a solid

torus. Thus, βn,m admits three Dehn surgeries that are homeomorphic to T2

and a solid torus glued together along their boundaries. Each orbifold Oj

(j ∈ {1, 2, 3}) resulting from one of these Dehn surgeries has underlying space

a lens space with ΓOj finite cyclic.

In fact, |ΓOj | is distinct for each choice of j. To see this, we observe,

as noted above, that Oj is an orbifold with underlying space a lens space.
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Moreover, this underlying space is a lens space with fundamental group of order

either n
r
, |49m

r
+ 18n

r
|, or |49m

r
+ 19n

r
| depending on the choice of surgery on

T1 (see §3.1). Splitting Oj into a solid torus coming from the Dehn surgery on

T1 and T2 the solid torus core a singular curve, we can compute ΓOj using van

Kampen’s theorem. Thus, the orders of the each fundamental group increase

by a factor of r and |ΓOj | is either n, r · |49m
r

+ 18n
r
|, or r · |49m

r
+ 19n

r
| which

take on three distinct values for fixed n, m, and r.

In addition, by the Orbifold Theorem (see [10, Thm 2]) and the above

argument that ΓOj is finite cyclic, each Oj has S3 as its universal cover. Denote

this covering map by φj : S3 → Oj. We may view Oj as the union of the solid

torus coming from the cusp Dehn filling of βn,m and the complement of this

solid torus, which we denote by B. Hence, φ−1
j (B) is a knot or link exterior

in S3. Since (n, 7) = 1 and the singular set of T2 has linking number 7 with

the knotted cusp of βn,m, the boundary of φ−1
j (B) is connected. Hence, if

(n, 7) = 1, βn,m will be covered by three knot complements in S3. Also, since

the orders of |ΓOj | are distinct, the covering degree of φj will take on a distinct

value for each j.

Remark 3.2.1. When n = 1, the classification of exceptional Dehn surgeries

in [24, Table A.1, Rem A.3] shows that βn,m is hyperbolic. Hence, β1,m is a

hyperbolic knot complement that admits three cyclic surgeries. In addition,

Eudave-Muñoz realized these these knot complements from tangle filling in

[13]. Therefore, the β1,m are strongly invertible.
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3.3 Proof of Theorem 1

In this section, we prove Theorem 1. Also for this section, we consider

Ωn,m, ∆n,m, and ΩL as subgroups of PSL(2,C).

Proof of Theorem 1. Using Lemma 5, each βn,m is covered by three knot com-

plements such that the covers are of distinct degrees. Also, Thurston’s Hyper-

bolic Dehn Surgery Theorem (see Thm 7) shows that all but at most finitely

many of the βn,m are hyperbolic. For the rest of the proof we only consider

those βn,m that are hyperbolic. Given this condition, each βn,m we consider is

covered by three distinct knot complements. By Theorem 11, to prove Theo-

rem 1 it suffices to show that the knot complements covering βn,m do not have

hidden symmetries.

Suppose an infinite number of the hyperbolic knot complements that

cover βn,m admit hidden symmetries. By the discussion in §2.5, every such

knot complement will non-normally cover an orbifold Qn,m with a rigid cusp.

Furthermore, on passage to a subset of the βn,m, we can assume that the

orbifolds Qn,m have the same type of rigid cusp, C. Let Ωn,m = Γβn,m , ∆n,m =

ΓQn,m and let P ⊂ PSL(2,C) be the peripheral subgroup of ∆n,m. We may

assume that each Ωn,m is conjugated so that P has a fixed representation in

PSL(2,C). Since βn,m has one cusp, notice that ∆n,m = P · Ωn,m.

By Thurston’s Hyperbolic Dehn Surgery Theorem (see Thm 7), the

volumes of the βn,m are bounded from above by the volume of the Berge man-

ifold. In addition, the minimum volume of a non-compact oriented hyperbolic
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3–orbifold is v0
12

(see §2.6). Hence, vol(Qn,m) ≥ v0
12

. Thus, we can further sub-

sequence to arrange that βn,m covers Qn,m, that the Qn,m’s have the same type

of rigid cusp, and that the covering degree is fixed, say d.

Since βn,m is obtained by Dehn surgery on the Berge manifold, the

Ωn,m will converge geometrically to ΩL, the fundamental group of the Berge

manifold (see [38, Thm 5.8.2]). As P is a fixed group in our construction, ∆n,r

also converges algebraically and geometrically to P · ΩL.

We have the following diagram:

∆n,m
(n,m)→∞

// P · ΩL

Ωn,m

?�
d

OO

(n,m)→∞
// ΩL

?�

d

OO

Note, [P ·ΩL : ΩL] = d <∞. Let QT = H3/P ·ΩL. QT has two cusps: a

torus cusp, corresponding to the cusp created by geometric convergence from

Dehn surgery, and a rigid cusp, corresponding to the cusp with peripheral

group P .

However by Lemma 4, such a limiting QL cannot exist. Hence, at most

finitely many of the βn,m have hidden symmetries.

Remark 3.3.1. To find explicit examples of hyperbolic knot complements with

three knot complements in the commensurability class, we can use the com-

puter program snap (see [16]) to show directly that there are no hidden sym-

metries. Specifically, for m=0 and n=1,2,3,4,5,6,7, βn,m is hyperbolic and snap
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shows us that βn,m has an invariant trace field with real embeddings. These

fields cannot contain Q(i) or Q(
√
−3) as subfields. Thus, the knot comple-

ments covering such βn,m do not have hidden symmetries (recall §2.5) and

there are exactly three knot complements in each of these commensurability

classes.

3.4 Remarks

The following theorem provides a partial classification of hyperbolic

orbifolds covered by three knot complements. It can be seen as a direct corol-

lary to a result of [8], however we provide a proof for completeness.

Theorem 3.6. Let O be a closed 3–orbifold and let K be a knot in O that is

disjoint from the singular locus of O. If O −K is:

1. hyperbolic,

2. covered by 3 knot complements,

3. does not admit hidden symmetries, and

4. O has non-empty singular locus,

then O −K ∼= βn,m for some pair (n,m).

Proof. Let γ be the singular locus of O. Denote |O| the underlying space of

O. By [8, Thm 1.2] and the assumptions above, we know that |O| is a lens

space, γ is a non-empty subset of the cores of a genus 1 Heegaard splitting of
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|O|, and if S3−K covers O−K, then it does so cyclically and corresponds to

a finite cyclic filling of O −K. Finally, denote M = O − γ −K.

First assume γ has one component. Each of the three knot complements

covering O−K corresponds to M admitting a S1×D2 filling along its knotted

cusp. Again, we appeal to the fact that there is a unique family of knots in

solid tori that admits 3 non-trivial S1×D2 fillings (see [6, Cor 9.1]). Hence, M

is obtained by performing (1,m) surgery on the unknotted cusp of the Berge

manifold then drilling out the core of the surgered torus. Gluing back in the

neighborhood of the fixed point set of 〈γ〉 gives us βn,m for some n,m.

Now, assume that γ has two components γ1 and γ2. M = T 2× I −K ′,

where K ′ is a knot. Each cyclic filling on O−K corresponds to M admitting

a T 2 × I filling. Hence, Dehn filling along the cusp corresponding to γ1 will

produce a knot complement in D2 × S1 with three D2 × S1 fillings.

Denote l1 to be the linking number of γ1 and K ′ and l2 to be the linking

number of γ2 and K ′. If l1 is zero, K ′ would be a knot in a solid torus that is

not a 1-braid after (1, 0) on γ2 but has two non-trivial S1 ×D2 fillings. This

contradicts [6, Cor 9.1]. Hence, we may assume l1 6= 0 and l2 6= 0.

Also, (1, n) surgery on γ2 will produce a knot K ′′ in a solid torus that

has linking number l2+n·l1 with γ2. In particular for large enough n, l2+n·l1 6=

7. Hence, it cannot be in the family of knots that admit two non-trivial S1×D2

fillings.

One might hope to relax condition (4) above. However, Brandy Guntel

49



pointed out to the author that the k(2, 2, 0, 2) knot complement (see Fig 3.4)

is hyperbolic and admits two non-trivial cyclic surgeries. In fact, John Berge

first showed that this knot complement produced two lens space surgeries in

unpublished work. Additionally, Mario Eudave-Muñoz gave a construction of

the two non-trivial lens space surgeries of this knot complement (see [13]).

Let M(r) denote Dehn filling the torus cusp with respect to the slope r on the

cusp torus. Furthermore, we will observe the convention that 1
0

is the meridian

and 0
1

the homologically determined longitude. From the discussion following

[13, Prop 5.4], we obtain that k(2,2,0,2)(32
1

) and k(2,2,0,2)(31
1

) are lens space

surgeries where the fundamental groups of these lens spaces are of orders 32 and

31 respectively (see [13, Prop 5.3]). By our original discussion in §3.1.1, knot

complements obtained by Dehn surgery on the unknotted cusp of the Berge

manifold have lens spaces of order |49r−18| and |49r−19|, none of which can

be 32. Hence, the k(2, 2, 0, 2) complement is not one of the βn,m. However,

since the invariant trace field of the k(2, 2, 0, 2) is an odd degree extension of

Q, we see that this knot complement does not admit hidden symmetries and

the k(2, 2, 0, 2) has exactly three knot complements in its commensurability

class (see [33, Cor 5.4]).

Ken Baker pointed out to the author that the (−2, 3, 7) pretzel knot

and the K(7, 5, 2,−1) knot complement both come from (p′′, 1) surgery on

the unknotted cusp of the Whitehead sister link. Although perhaps known to

others (see [24], [7]), this leads to the following conjecture (which is a subcase

of the generalized Berge conjecture):
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Figure 3.4: The k(2,2,0,2) knot

Conjecture. Let L(p, q) − K be a knot in a lens space that admits 3 cyclic

fillings. If L(p, q) − K is covered by a knot complement, then L(p, q) − K is

either the result of (p′, q′) surgery on the Berge manifold (p′, 7) = 1 or the

result of (p′′, 1) surgery on the Whitehead sister link (p′′, 5) = 1.

The restrictions that (p′, 7) = 1 and (p′′, 5) = 1 are imposed in order to

ensure that L(p, q)−K is covered by a knot complement.

As mentioned above (1,m) surgery on the unknotted cusp of the Berge

manifold produces Berge knots. It seems natural to ask if any hyperbolic

Berge knots can have hidden symmetries. More generally, we might ask if any

hyperbolic knot complements can have hidden symmetries and admit non-

trivial lens space surgeries. As discussed in §2.5, there are three hyperbolic

knot complements known to have hidden symmetries: the complements of the

two dodecahedral knots of Aitchison and Rubinstein, and the figure 8 knot

complement. Using SnapPea [39], one can see that both dodecahedral knots

are amphichiral. Thus, by [12, Cor 4] they cannot admit a lens space surgery.
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Additionally, it is well known that the figure 8 knot complement does not

admit a lens space surgery (see [37] for example).
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Chapter 4

Hidden symmetries and exceptional surgeries

In this chapter, we prove Theorem 1, which was stated in the intro-

duction. As seen in the previous chapter, a knot complement S3 − K can

be commensurable with another knot complement if it admits a finite cyclic

surgery. However, the dodecahedral knot complements are commensurable be-

cause they cover a common orbifold with a rigid cusp. Motivated by the desire

to understand hidden symmetries, a natural question to ask is “Can a knot

complement admit a non-trivial exceptional surgery (eg a finite cyclic surgery)

and hidden symmetries?” The theorem below provides a negative answer for

certain knot complements.

Theorem 4.1. Let S3 − K be a non-arithmetic hyperbolic knot complement

that covers an orbifold O with a rigid cusp such that ΓK admits integral traces

and the invariant trace field of S3 −K has class number 1.

1. If S3 −K covers an orbifold with a S2(3, 3, 3) cusp or a S2(2, 4, 4) cusp,

then S3 −K does not admit a non-trivial exceptional filling.

2. If S3 −K is strongly invertible and covers an orbifold with a S2(2, 3, 6)

cusp, then S3 −K does not admit a non-trivial exceptional filling.
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Note that this theorem is slightly stronger than the theorem stated in

the introduction.

This chapter is broken up into five sections. The first section establishes

some preliminaries. The second section uses the assumptions of Theorem 1 to

construct an integral representation of a knot group for which the meridian is

a particular parabolic element. The third section establishes lower bounds for

the minimum degree of a covering p : S3−K → Q, where Q is an orbifold with

a rigid cusp. The proof of Theorem 1 is contained in section 4. Finally, in

section 5, we discuss the hypotheses of Theorem 1 in greater detail and some

consequences of the lemmas and propositions of this chapter.

4.1 Preliminaries

Let Q = H3/ΓQ be a 1-cusped hyperbolic 3-orbifold. Denote by |γ| the

order of an element in ΓQ and denote by R = {γ|γ ∈ PQ, |γ| <∞}. We define

the cusp killing homomorphism to be

f : ΓQ → ΓQ/〈〈R〉〉ΓQ .

We will make use of the following proposition, which was also noticed

by M. Kapovich.

Proposition 4.2. Let S3−K be a hyperbolic knot complement. Suppose S3−K

covers an orientable orbifold Q with a non-torus cusp. Denote the cusp killing

homomorphism by f . Then, f(ΓQ) is trivial. Furthermore, |Q| ∼= D3 and each

component of the isotropy graph of Q is connected to the cusp.
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Proof. First note that ΓQ = PQ · ΓK .

Since a meridian µ of ΓK is contained in PQ and PQ is generated by

torsion elements on the cusp (we recall §2.0.2) killing these torsion elements

kills 〈〈µ〉〉ΓQ as well as killing PQ. However, ΓK = 〈〈µ〉〉ΓK and 〈〈µ〉〉ΓK ⊂

〈〈µ〉〉ΓQ . Hence, the cusp killing homomorphism kills the whole group ΓQ.

Thus, |Q| is a simply connected space with S2 boundary. Therefore,

|Q| ∼= D3 by the solution to the Geometrization Conjecture (see [26]).

If there were any pieces of the isotropy graph not connected to the

cusp, then there would be elements of finite order that are non-trivial under

the cusp killing homomorphism. Hence, the isotropy graph is connected.

Remark 4.1.1. We can also interpret the effects of the cusp killing homomor-

phism on the isotropy graph of Q when |Q| is simply connected. Viewing the

isotopy graph as a weighted graph that generates the fundamental group of

Q via the Wirtinger presentation (see §2.0.3), killing elements of torsion on

the cusp corresponds to erasing edges of the graph. For each endpoint x of

an erased edge corresponding an elliptic element γ, we introduce the relation

γ = 1 in the local isotropy group at x. If x corresponds to a S2(2, 2, 2, 2)

cusp, then the new isotropy group at x is a quotient of the Klein 4 group. If

not, then x corresponds to a trivalent vertex of the isotropy graph, say each

edge corresponds to torsion elements γ, a, and b. Introducing the relation that

γ = 1, to abγ = 1 (see Fig 2.4) yields a = b−1. In particular a and b have the

same order. Therefore, in the image f(ΓQ), f(a) = f(b−1) and graphically we
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(a) The isotropy graph before reduction
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(b) The graph after removing edges cor-
responding to torsion elements fixing
points on the cusp

2

2

2

2

2

2
5

(c) The graph after resolving the degree
2 vertices

5

2

2

(d) The result of cusp killing is a graph
corresponding to a dihedral group

Figure 4.1: A step by step graphical interpretation of the cusp killing homo-
morphism
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can relabel the weights corresponding to a and b with gcd(|a|, |b|) (see §2.0.3

and Fig 4.1). Relabeling the edges could introduce further reductions to the

graph, however since the isotropy graph has a finite number of vertices and

edges and each edge is weighted by a finite integer, this process will terminate

in a finite number of steps.

4.2 Representations of knot groups

In this section, we begin by constructing a particularly useful represen-

tation of a knot group using the assumptions of Theorem 1. We then show that

no orbifold with cusp volume
√

21
12

or
√

21
24

can be covered by a knot complement.

We conclude this section by showing that no 1-cusped orbifold admitting in-

tegral traces with cusp volume
√

3
4

can be covered by a knot complement and

no 1-cusped orbifold admitting integral traces with cusp volume
√

3
8

can be

covered by a knot complement.

For the rest of the chapter, we will use the notation that if k is a number

field, then Ok is the ring of integers in k. Also, we will use A to denote the

ring of algebraic integers in C.

A subgroup of PSL(2,C) is elementary if there is a finite orbit in its

action on H3 ∪ ∂H3. Otherwise, it is non-elementary.

Recall that a quaternion algebra over a field L is a four dimensional

L−space and with basis vectors 1,i,j,k such that 1 is the multiplicative identity,

i2 = a1, j2 = b1, ij = −ji = k for some a, b ∈ L, and multiplication is extended
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linearly so A is an associative algebra over L (for further background see [22,

Chapter 2]).

The proof of the following proposition exploits the fact that if 〈g, h〉 is

a non-elementary subgroup of ΓQ for some finite volume hyperbolic 3-orbifold

Q, then Q(trΓQ)[I, g, h, gh] is a quaternion algebra over Q(trΓQ) (see [22,

Cor 3.2.3]). Here, we again abuse notation and consider g, h as elements of

SL(2,C). Also, denote by

A0ΓQ = {
∑
finite

aiγi|ai ∈ Q(trΓQ), γi ∈ ΓQ}.

The key facts for us is

A0ΓQ = Q(trΓQ)[I, g, h, gh]

(see [22, § 3.2]). Also, by construction ΓQ ⊂ A0ΓQ, so ΓQ ⊂ Q(trΓQ)[I, g, h, gh].

Proposition 4.3. Let Q1, Q2 be 1-cusped hyperbolic 3-orbifolds so that p : Q1 →

Q2. Denote by k1 = Q(trΓQ1) and k2 = Q(trΓQ2). Then, we may conjugate

ΓQ1 and ΓQ2 so that

1. Γ2 ⊂ PSL(2, k2) and

2. Γ1 ⊂ PSL(2, k1) ∩ Γ2.

Proof. Let g, h ∈ ΓQ1 be non-commuting parabolic elements. Then 〈g, h〉 is

non-elementary subgroup of PSL(2,C) and A0ΓQ1 = Q(trΓQ1)[I, g, h, gh] and

A0ΓQ2 = Q(trΓQ2)[I, g, h, gh] from above.
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Since g, h are non-commuting parabolic elements, we can conjugate ΓQ1

by γ ∈ PSL(2,C) such that

γgγ−1 =

(
1 1
0 1

)
and γhγ−1 =

(
1 0
x 1

)
∈ γΓQ1γ

−1.

Also, γΓQ1γ
−1 ⊂ γΓQ2γ

−1. For the remainder of the proof, we will suppress

this conjugation for ease of notation.

Note that Q(trΓQ1)[I, g, h, gh] ⊂ M2(k1) and Q(trΓQ2)[I, g, h, gh] ⊂

M2(k2). Furthermore, we have equality for both because both algebras are 4-

dimensional over their respective fields. Hence, A0ΓQ1 = M2(k1) and A0ΓQ2 =

M2(k2). Also, ΓQ2 ⊂ PSL(2, k2) and by this construction ΓQ1 ⊂ PSL(2, k1)∩

ΓQ2 .

We now refine the above proposition to show that if Q admits integral

traces and a trace field k that is class number 1, then we can get an integral

representation of ΓQ into PSL(2,Ok).

Proposition 4.4. Let Q = H3/ΓQ be a cusped hyperbolic 3-orbifold with in-

tegral traces. If k = Q(trΓQ) is class number 1, then ΓQ is conjugate into

PSL(2,Ok).

Proof. We begin by choosing two non-commuting parabolic elements g, h as

in Proposition 3. As above, we can conjugate ΓQ so that

g =

(
1 1
0 1

)
and h =

(
1 0
x 1

)
.
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Thereby identifying A0ΓQ = M2(k) and so ΓQ ⊂M2(k).

Define OΓQ = {
∑
αiγi|αi ∈ Ok, γi ∈ ΓQ} where each sum is finite.

Then, OΓQ is an order of M2(k) [22, Lem 2.2.7]. Let O be a maximal order of

M2(k) containing OΓQ.

Now M2(Ok) is a maximal order (see [22, Example 2.2.6.3]) and since

k is class number 1, all maximal orders of M2(k) are conjugate to M2(Ok)

(see [22, Cor 2.2.10]). Hence, O is conjugate to M2(Ok), and so we have ΓQ is

conjugate to a subgroup of PSL(2,Ok).

Finally, we are ready to prove the key lemma of this section.

Lemma 4.5. Let S3 − K be a hyperbolic knot complement that covers an

orbifold Q with a rigid cusp. Let k be the trace field of ΓK and let L be the

trace field field of ΓQ. If k is class number 1 and ΓK admits integral traces,

then

1. ΓQ is conjugate into PSL(2,OL),

2. ΓK is conjugate into ΓQ ∩ PSL(2,Ok),

3. A meridian of the above representation of ΓK is of the form µ =

(
1 x
0 1

)
.

Proof. First, we may assume that ΓK and ΓQ are conjugate in PSL(2,C) to

subgroups of PSL(2, k) and PSL(2, L), respectively (see Prop 3). Further-

more, by the same argument, we may assume ΓK ⊂ PSL(2, k) ∩ ΓQ.
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Since ΓK admits integral traces, ΓQ admits integral traces as well (see

§2.1). Hence, OΓK and OΓQ are orders in M2(k) and M2(L) respectively. As

in Proposition 4, k is class number 1, so OΓK is conjugate into M2(Ok) by

γ ∈ PSL(2, k). Conjugating OΓQ by γ, defines a maximal order O of A0ΓQ

with ΓQ ⊂ O and M2(Ok) ⊂ O.

Here, we have shown that ΓK ⊂ PSL(2,Ok). to show that M2(OL) ⊂ O

for some maximal order. Therefore, O = M2(OL) and ΓQ ⊂ PSL(2,OL).

We observe that e1 =

(
1 0
0 0

)
, e2 =

(
0 1
0 0

)
, e3 =

(
0 0
1 0

)
, and e4 =(

0 0
0 1

)
is an Ok-basis for M2(Ok) and an OL-basis for M2(OL).

Since O is an order O =
∑n

i=1 aiei for ai ∈ OL, M2(OL) ⊂ O. However,

M2(OL) is a maximal order. Therefore M2(OL) = O.

We claim that conjugating ΓK by some element of PSL(2,Ok) sends

a meridian µ to an upper triangular parabolic element, while preserving the

property ΓQ ⊂ O. This follows from work of Hurwitz, however, we provide an

explicit computation. Let λ be a parabolic element λ =

(
1 + βα −β2

α2 1− βα

)
.

Then λ fixes β
α
∈ k. Since Ok is a principal ideal domain, β

α
= r

s
such that r, s ∈

Ok and pr+qs = 1 for some p, q ∈ Ok. Thus, h0 =

(
p q
−s r

)
∈ PSL(2,Ok) and

h0(β
α

) =∞. Therefore h0λh
−1
0 is an upper triangular parabolic, as desired.

We further refine the representation above such that the upper right

entry of µ is a unit.

Lemma 4.6. Assuming the representations ΓK ⊂ PSL(2,Ok) and ΓQ ⊂
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PSL(2,OL) as in Lemma 5 where k is class number 1, then x is a unit in Ok.

Furthermore, by conjugation in PSL(2,A), we may assume that µ =

(
1 1
0 1

)
.

Proof. Given these assumptions, we have ΓK ⊂ PSL(2,Ok), and ΓK has an

upper triangular meridian, µ =

(
1 x
0 1

)
.

We claim that x is a unit in Ok. For if not, then x ∈ I for some

maximal ideal I ⊂ Ok. Since ΓK is normally generated by µ, ΓK is trivial

under the homomorphism f : ΓK → PSL(2,Ok/I) induced from reduction

mod I. Hence, for any g =

(
a b
c d

)
∈ ΓK a = i + 1, d = j + 1 where i, j ∈ I

and b, c ∈ I.

If we assume that I = 〈δ〉 ⊂ Ok, we conjugate ΓK by h1 =

(√
δ 0

0 1√
δ

)
,

then h1 · g · h−1
1 =

(
a δ · b
c
δ

d

)
.

Under this conjugation, h1ΓKh
−1
1 remains a subgroup of PSL(2,Ok)

since c ∈ I and therefore c
δ
∈ Ok. Also, the upper right entry of h1µh

−1
1 is x · δ

and so f(h1ΓKh
−1
1 ) is trivial.

Let γ =

(
a b
c d

)
∈ ΓK . We know from above that c ∈ I. In fact, for

some m, c = r · δm with r 6∈ I. We may assume that γ is an element of ΓK

with lowest such m. Hence, conjugation of γ by hm1 is a matrix where the

lower right entry is not in I. However, under this conjugation ΓK remains a

subgroup of PSL(2,Ok). Thus, the reduction homomorphism f is still well

defined and hm1 γh
−m
1 would be non-trivial under f . However, hm1 µh

−m
1 remains

trivial, which is a contradiction. Hence, x is a unit.
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Finally, since x is a unit,
√
x and 1√

x
are also units (possibly in Ok′ where

[k′ : k] = 2). Therefore, if we conjugate ΓQ by h2 =

( 1√
x

0

0
√
x

)
, we still have

integral representations for ΓK and ΓQ where µ =

(
1 1
0 1

)
, as desired.

Note that this final conjugation may move ΓK out of PSL(2,Ok) (and

ΓQ out of PSL(2,OL)), since k(
√
x) can be a quadratic extension of k. In this

case, k(
√
x) could have class number strictly bigger than 1. However, as noted

above, we still have that ΓK and ΓQ are an integral representations with the

above meridian µ =

(
1 1
0 1

)
.

Also, we call attention to the fact that because of the form of µ, we

can identify the possible meridians of knot complements in PQ. If the cusp of

H3/ΓQ is S2(3, 3, 3)× [0,∞), the integral representation for ΓQ defined above

is of the form where PQ =

〈(
ω r
0 ω−1

)
,

(
1 1
0 1

)〉
where ω2 +ω+ 1 = 0 and r

an algebraic integer. We may conjugate ΓQ by

(
1 r
0 1

)
. Thus, we may assume

that ΓQ ⊂ PSL(2,A) and PQ =

〈(
ω 0
0 ω−1

)
,

(
1 1
0 1

)〉
Therefore, all parabolic elements in PQ have y = n+mω in their upper

right entries. Hence, if y is a unit, y = (−ω)i where i ∈ {0, .., 5}. A nearly

identical argument shows that if the cusp of H3/ΓQ is S2(2, 3, 6)× [0,∞), y is

of the same form. However, if the cusp of H3/ΓQ is S2(2, 4, 4) × [0,∞), then

PQ =

〈(
` 0
0 `−1

)
,

(
1 1
0 1

)〉
where ` = e

iπ
4 . Therefore, all parabolic elements

in PQ have y = n + m · i in their upper right entries. And if y is a unit, then

y = ±1 or y = ±i.
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Lemmas 8 and 10 use similar ideas to those above in order to show that

certain orbifolds described in §2.6 cannot be covered by a knot complement.

We begin with a proposition that also exhibits a correspondence between units

in Ok and meridians in ΓK .

Proposition 4.7. Let k be a number field and Ok the ring of integers in k. If

ΓK be a knot group such that ΓK ⊂ PSL(2,Ok) and

ΓK =

〈
µ1 =

(
1 x
0 1

)
, µ2 =

(
1 0
y 1

)
, µ3, ...µn

〉
where µi are meridians, then x and y are units in Ok.

Proof. Assume that x is not a unit in Ok. Then there is a prime ideal I ⊂

Ok such that x ∈ I. Just as in the proof of Lemma 6, we may define a

homomorphism f : PSL(2,Ok) → PSL(2,Ok/I). Under f , µ1 is trivial and

since ΓK is normally generated by µ1, f(ΓK) is trivial. But there is an element

g ∈ Γ such that gµ1g
−1 = µ2. Such an element has a 0 in the 1,1 entry and

hence, ΓK cannot be trivial under f . This is a contradiction and so x is a unit.

The same argument carries through if we assume y is not a unit.

We use this observation to prove the following lemma. Also, in the

following proofs, we will identify H3 with {z + tj ∈ H|z ∈ C, t > 0, j2 = −1}

(upper-half space) and ∂H3 with C∪{∞}. We also denote by Bx the horoball

that is tangent to ∂H3 at x.

Lemma 4.8. 1. Any orbifold with a S2(3, 3, 3) cusp and cusp volume
√

21
12

cannot be covered by a knot complement.

64



2. Any orbifold with a S2(2, 3, 6) cusp and cusp volume
√

21
24

cannot be cov-

ered by a knot complement.

Proof. First, we appeal to Adams’ characterization of orbifolds of small cusp

volume (see §2.6) to reduce to case (2) as any orbifold with a S2(3, 3, 3) cusp

and cusp volume
√

21
12

covers an orbifold with S2(2, 3, 6) cusp and cusp volume
√

21
24

.

Hence, let Q be a 3-orbifold with a S2(2, 3, 6) cusp and cusp volume
√

21
24

. A diagram of the horoballs associated to Q first appeared in Adams’

paper (see [2, Fig 5]), however we include it here as Figure 4.2 for the sake of

completeness. Furthermore, following the discussion of this horoball diagram

in [2], we use the following notation: O = 0, D = 4
√

7, X = 5+i
√

3
2
√

7
, and

Y =
4√7
2

+ i
4√7

2
√

3
.

In this figure, there are four horoballs pictured. Following the descrip-

tion of this diagram from Adams’ work, the horoballs BO and BD are of

Euclidean diameter 1 and maximal in the sense that they are tangent to the

horoball based at ∞. The horoball BX has Euclidean diameter 1√
7

and the

horoball BY has Euclidean diameter 3
7
. The line segment OY is length w =

4√7√
3

while the line segment OX is length 1
4√7

. In particular,
4√7√

3
≈ 0.939104416 < 1.

Under Adams’ description of Q, we see that ΓQ contains a parabolic

element T such that T (∞) =∞ and T (0) = 4
√

7. In addition, ΓQ contains an

order 6 rotation R that fixes 0 and∞. Finally, as Adams notes, all horoballs of

Euclidean diameter 1 are equivalent under the action of PQ. Therefore, there
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Y

O D

X

Figure 4.2: A horoball diagram for Q

is an element γ that exchanges 0 and ∞ while sending 4
√

7 to 5+
√
−3

2· 4
√

73
(see [2,

Lem 1.2]). Hence,

T =

(
1 4
√

7
0 1

)
, R =

(
` 0
0 `−1

)
, and γ =

(
0 i · b
i
b

0

)

where ` =
√

3+i
2

and b =

√
5+i
√

3√
2
√

7
.

The isometric sphere of γ is of radius 1 and centered at 0 (see Fig 4.3).

Hence, the isometric sphere for T · γ · T−1 is radius 1 and centered at 4
√

7. Let

Γ = 〈T,R, γ〉. Since these two isometric spheres bound a fundamental domain

for Γ away from C, Γ has finite co-volume. Also, since the cusp co-volume of

Γ is
√

21
24

, [ΓQ : Γ] = 1.

Let λ = 1√
b

and

c =

(
λ 0
0 λ−1

)
.
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Y

O D

X

Figure 4.3: A horoball diagram for Q with the isometric spheres represented
by dotted curves around 0 and D

Then,

c · Γ · c−1 =

〈
T ′ =

(
1 α
0 1

)
,

(
` 0
0 `−1

)
, γ′ =

(
0 i
i 0

)〉
where α =

√
14

5+i
√

3
. Note the minimal polynomial for α is q4 − 5q2 + 7 = 0.

Thus, α is an algebraic integer, but not a unit since the constant term of this

polynomial is not 1.

Under this integral representation of ΓQ, there are upper and lower

triangular parabolic elements (T and γ′ · T · γ′−1, respectively). Hence, a knot

complement covering Q would contradict Proposition 7.

The following proposition discusses which finite groups can act on a

point of tangency between two horoballs.
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Proposition 4.9. Consider a maximal horoball packing corresponding to an

orbifold with a rigid cusp. Denote by Bx the horoball centered x and denote

by B∞ the horoball at ∞. If y is the point of tangency of Bx and B∞ and y

fixed by an element γ ∈ Stab∞, then the isotropy group of y is Cn or Dn where

n = 2, 3, 4, 6.

Proof. First γ is order 2,3,4, or 6 because it fixes ∞. If Staby is cyclic or

dihedral, we are done.

Denote by γ′ be an element of the isotropy group of y such that axis

fixed by γ′ intersects the axis fixed γ at the smallest angle possible. Deont

this angle by α. If α = π
2
, then, 〈γ, γ′〉 is dihedral (see §2.0.1). Hence, we

may assume that α < π
2
. Therefore, γ′ fixes points inside of B∞. However,

γ′(B∞) ∩B∞ = ∅ and γ′ does not fix ∞, which is a contradiction.

We are now ready to prove the following lemma.

Lemma 4.10. 1. Any orbifold Q with a S2(3, 3, 3) cusp and cusp volume
√

3
4

such that ΓQ admits integral traces cannot be covered by a knot com-

plement.

2. Any orbifold Q with a S2(2, 3, 6) cusp and cusp volume
√

3
8

such that ΓQ

admits integral traces cannot be covered by a knot complement.

Proof. We begin by assuming that Q has a S2(3, 3, 3) cusp and has cusp vol-

ume
√

3
4

, and ΓQ admits integral traces. Consider a horoball diagram for the

fundamental domain of Q viewed from the point at ∞ (see Fig 4.4). In this
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X

D

Y

O

Figure 4.4: A fundamental domain for Q lies above OXDY

figure, O = 0, Y =
√

3+i
2

, X =
√

3−i
2

, and D =
√

3 and there are horoballs that

are tangent to the horoball at ∞, which are of Euclidean diameter 1 tangent

and to ∂H3 at 0 and D. Also, there are elliptic elements of order 3 in ΓQ fixing

0 and ∞, X and ∞, Y and ∞, and D and ∞.

We know that the point stabilizer of 0 + j is D3 or C3 (see Prop 9).

Case 1: Assume the point stabilizer of 0 + j is D3.

Then, there is an element γ =

(
0 ieiθ

ie−iθ 0

)
, which fixes eiθ and −eiθ.

Therefore, the isometric sphere corresponding to γ has radius 1 and is centered

at 0. Also, let R be the element of order 3 fixing Y and ∞. Then, R =(
ω

√
3+i
2

0 ω−1

)
and RγR−1 admits an isometric sphere of radius 1 centered at

√
3. The boundaries of these isometric spheres in C are depicted by dotted

lines in Figure 4.4. Finally, let T =

(
1
√

3
0 1

)
.

Since Γ′ = 〈γ,R, T 〉 is a subgroup with covolume ≤ v0 (see Fig 4.4),

it must be finite index in ΓQ. Also, by combining the assumption that cusp
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2

3

Figure 4.5: The two possible types of isotropy graphs for the orbifold Q de-
scribed in Case 1 of Lemma 10

volume is
√

3
4

with the upper bound on the cusp density of 2
v0
√

3
(see §2.6), we

know that covolume(ΓQ) ≥ v0
2

. Hence, [ΓQ : Γ′] = 1, 2.

If [ΓQ : Γ′] = 2, then covolume(ΓQ) = v0
2

and there are horoballs

based at
√

3+i
2

and
√

3−i
2

of Euclidean diameter 1. Thus, by Proposition 9, the

point stabilizers above these points are either both D3 or both C3. Hence, the

cusp corresponds to a vertex in the isotropy graph that is either 1) connected

to three vertices labeled by D3 isotropy groups or 2) there is a loop labeled

by 3-torsion and the cusp connects to one vertex labeled by a D3 isotropy

group (see Fig 4.5). In either case, ΓQ cannot be trivial under the cusp killing

homomorphism.

Therefore, we consider the case that [ΓQ : Γ′] = 1. Here, tr(γ · R) =

−i(
√

3+i
2

)e−iθ. Since, −i(
√

3+i
2

) is a unit and we are assuming integral traces,

e−iθ is an algebraic integer. Hence,〈(
0 ieiθ

ie−iθ 0

)
,

(
1
√

3
0 1

)
,

(
ω

√
3+i
2

0 ω−1

)〉
is a representation of ΓQ with parabolic elements fixing 0 and ∞ where all

entries of the generators are algebraic integers. If ΓK ⊂ ΓQ, then ΓK admits
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integral representation. However, the maximal abelian subgroup AQ of PQ is

of the form: 〈(
1
√

3
0 1

)
,

(
1 ω
√

3
0 1

)〉
.

In particular, AQ vanishes under reduction modulo the prime ideal I, if
√

3 ∈

I. Also, ΓQ contains the upper triangular parabolic element T and lower

triangular parabolic element γ · T · γ−1. Hence, ΓK contains upper and lower

triangular parabolics as well. Therefore, no knot group ΓK is a subgroup by

Proposition 7.

Case 2: The point stabilizer of 0 + j is C3.

In this case, there is a group element γ′ that identifies 0 + j with a

point above either
√

3+i
2

or
√

3−i
2

. We may assume that 0 + j is identified with
√

3+i
2

+ tj. Since γ′ can be decomposed into reflections in the plane defined by

hemisphere of radius 1 centered at 0 and vertical planes, 0 + j and
√

3+i
2

+ tj

are the same Euclidean distance above C and t = 1.

Hence, under γ′, ∞ 7→ 0,
√

3+i
2
7→ ∞, and

√
3+i
2

+ j 7→ j. Here, γ′ =(
0

√
3+i
2

−
√

3+i
2

1

)
.

Let R′ =

(
ω −

√
3−3i
2

0 ω−1

)
. Since γ′ admits an isometric sphere of radius

1 at
√

3+i
2

, γ′−1 admits an isometric sphere of radius 1 at 0, and R′ · γ′−1 ·R′−1

admits an isometric sphere of radius 1 at
√

3.

Hence, Γ3 = 〈γ′, R′, T 〉 is a subgroup of finite covolume (here T is

defined in Case 1) and Γ3 is finite index in ΓQ. However, kΓ3 = Q(
√
−3) and
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Γ3 has integral traces. Thus, Γ3 is arithmetic and therefore, ΓQ is arithmetic.

However, the only knot complement that can cover Q is the figure 8 knot

complement (see Thm 2). Cusp volume considerations would force the figure

8 knot complement to be a 4-fold cover of Q. However, Q has 3 torsion on the

cusp. Hence in this case, Q is not covered by a hyperbolic knot complement.

Finally, if Q has a S2(2, 3, 6) cusp and cusp volume
√

3
8

and ΓQ admits

integral traces. Then, the point stabilizer of 0 + j is D6. Hence, an identical

argument to Case 1 shows Q is not covered by a knot complement.

4.3 Bounding the degree of covering

In this section, we establish bounds on the minimum degree of covering

form p : S3 − K → Q where Q is a rigid cusped orbifold. We achieve these

bounds by analyzing the isotropy graph associated to Q. A loop in a graph is

a edge in a graph that connects a vertex to itself.

We begin by classifying the possible abelian quotients of ΓQ. We denote

the abelianization of ΓQ by ΓabQ .

Proposition 4.11. Let S3 − K be a hyperbolic knot complement that covers

an orbifold Q.

1. If Q has a S2(2, 3, 6) cusp, then Z/2Z surjects ΓabQ .

2. If Q has a S2(3, 3, 3) cusp, then Z/3Z× Z/3Z surjects ΓabQ .

3. If Q has a S2(2, 4, 4) cusp, ΓabQ is trivial, Z/2Z, Z/2Z×Z/2Z, or Z/4Z.
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Furthermore, ΓabQ
∼= Z/4Z if and only if the isotropy graph of Q has a

loop.

Proof. We first note that ΓQ = PQ · ΓK . Therefore, we claim that

ΓQ =

〈〈
t =

(
1 1
0 1

)
, r =

(
` 0
0 `−1

)〉〉
PQ·ΓK

,

where r is an elliptic element of order 3, 4, or 6 depending on the cusp type.

The claim follows from the fact that r and t are generators for PQ and PQ

contains a meridian of ΓK .

First assume Q has a S2(2, 3, 6) cusp, then ` = e
iπ
6 . Since PQ abelianizes

to Z/6Z (see 2.0.2), we know ΓabQ is a quotient of Z/6Z. Also, the torsion

element of order 6 is connected to an interior vertex with the isotropy group

a D6, (dihedral group of order 12). Under the abelianization of this isotropy

group, the element of order 6 maps to an element of order 2. Thus, ΓabQ is a

quotient of Z/2Z, as desired.

Next assume Q has a S2(3, 3, 3) cusp. In this case, ` = e
2iπ
3 . Then ΓabQ

is a quotient of Z/3Z × Z/3Z, the abelianization of the peripheral subgroup

(see 2.0.2).

Finally assume Q has a S2(2, 4, 4) cusp, then ` = e
iπ
4 . Hence, ΓabQ is a

quotient of the abelianization of PQ, which is Z/2Z× Z/4Z (see 2.0.2).

Consider an edge e labeled by 4-torsion that connects the cusp c to

another vertex x. Then x is either the cusp itself, or it corresponds to an

isotropy group, D4 or S4 (see §2.0.1).
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Case 1: e is a loop. In this case, e connects the cusp back to itself.

Then, considering a Wirtinger presentation for ΓQ coming from the isotropy

graph. ΓabQ is either Z/4Z or Z/4Z× Z/2Z. However, the second case cannot

occur since this would imply the existence of a cycle labeled by only even

numbers that starts and ends at the cusp (by the cusp killing homomorphism)

and includes the 2 torsion on the cusp. Such a cycle would kill the 4 torsion

on the cusp and the maximal abelian quotient would be Z/2Z× Z/2Z.

Case 2: x corresponds to D4 or S4. Under the abelianizations of these

groups, elements of order 4 are mapped to elements of order 2. Under the

abelianization of the cusp, the peripheral elements of order 4 all have the

same order in ΓabQ . Therefore, Z/2Z × Z/2Z surjects ΓabQ . In this case, the

isotropy graph of Q does not contain a loop. This completes the proof.

We now establish lower bounds on the degree of the cover

p : S3 −K → Q

using the following propostion and lemma. We establish the following notation

for the remainder of the chapter.

Proposition 4.12. If p : S3−K → Q with a S2(2, 4, 4) cusp and the isotropy

graph for Q has a loop labeled 4, then deg(p) ≥ 24.

Proof. Assume that Q is covered by a knot complement and has an edge

labeled 4 in its isotropy graph (see Fig 4.6 for a possible example). Then
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Figure 4.6: A possible isotropy graph of an orbifold with a S2(2, 4, 4) cusp

ΓabQ is Z/4Z (see Prop 11). Hence, there is a unique orbifold Q′ which has a

S2(2, 2, 2, 2) cusp and is 2-fold cover of Q.

Since PQ′ and PQ have the same parabolic subgroup, PQ′ contains a

meridian µ of ΓK . The abelianization of ΓQ is Z/4Z so ΓQ′ is characteristic

in ΓQ. In particular, 〈〈µ〉〉ΓK ⊂ ΓQ′ . Therefore, S3 − K covers Q′. Also, Q′

has S2(2, 2, 2, 2) cusp and the cover p′ : S3 − K → Q′ is a regular covering

(see §2.5). Furthermore, there is a unique 2-fold cover of Q′ that has a torus

cusp. We denote this orbifold by QT . We know that S3 −K covers QT by an

identical argument to that above.

Since QT
∼= (S3−K)/Z for some cyclic group Z (see §2.5), we see that

QT is the complement of a knot in an orbi-lens space (see §2.7.3). The isotropy

graph for QT is either 0, 1, or 2 unknotted circles (see Thm 12). Therefore,

the isotropy graph for Q′ contains 0, 2, or 4 internal vertices.

The isotropy graph for Q′ cannot contain 0 vertices because that would

imply that the isotropy graph forQ only had vertices labeled by Klein 4 groups.
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(b) 4 vertex graph

Figure 4.7: The possible isotropy graphs Q’

Such a graph would be non-trivial under the cusp killing homomorphism. Since

the 2-fold of the loop labeled by 4 is a loop labeled by 2, the possible graphs

as defined up to graph isomorphism type can be see Figure 4.7.

We claim that the isotropy graph for Q′ cannot contain 2 internal ver-

tices as well. First, notice that the isotropy graph for Q′ has an edge e labeled

by 2-torsion with both endpoints on the cusp. Thus, the isotropy graph Q

takes the form of Figures 4.8(a), 4.8(b), and 4.8(c). In the latter two cases,

the orbifold is non-trivial under the cusp killing homomorphism and therefore

cannot be covered by a knot complement. In the first case, we cannot close up

the isotropy graph. Therefore, no such orbifold Q can be covered by a knot

complement.

Finally, if Q′ contains 4 internal vertices, then QT is the complement of

a knot in an orbi-lens space with an isotropy graph consisting of two unknotted

circles. Since the circles are labeled by n-torsion and m-torsion with n,m ≥ 2

and (n,m) = 1, S3 −K is at least a 6-fold cover of QT and therefore at least

a 24-fold cover of Q. This completes the proof.

Lemma 4.13. 1. If Q has a S2(3, 3, 3) cusp, then deg(p) = 12n n ≥ 1.

2. If Q has a S2(2, 4, 4) cusp, then the deg(p) ≥ 24.
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(c) The third case

Figure 4.8: The three cases for an isotropy graph with 2 vertices

2

3

3

2

2

2

Figure 4.9: Application of the cusp killing homomorphism to a graph with a
cycle labeled 3 and a vertex labeled D3

Proof. 1) Assume that Q has a S2(3, 3, 3) cusp. First, consider the isotropy

graph of Q. If there is an edge of the graph with two endpoints on the cusp,

then the third edge cannot connect the cusp to a point with isotropy group D3.

For this case, ΓQ would be non-trivial under the cusp killing homomorphism

(see Fig 4.9).

Therefore, this vertex is fixed by a group G where G is either A4, S4 or

A5 and to lift to a torsion-free group deg(p) must be a multiple of the order

of G. Hence, deg(p) = 12n (n ∈ Z).

77



If we assume that there is no edge in the isotropy graph with both

endpoints on the cusp, then there must be at least one vertex adjacent to the

cusp labeled with a A4, S4 or A5 subgroup. Otherwise, all vertices are labeled

with D3 and just as above ΓQ would be non-trivial under the cusp killing

homomorphism. Thus, deg(p) = 12n.

2) Assume that Q has a S2(2, 4, 4) cusp. Since S3 −K is a mani-

fold, all isotropy subgroups of ΓQ must vanish in the lift. Either, the order 4

elements in the cusp are part of the same fixed axis (see Fig 4.6) or the four

torsion on the cusp connects to a pair of distinct vertices in the isotropy graph.

In the first case, deg(p) ≥ 24 (see Prop 12). In the second case, the

vertices are either of type D4 or S4 isotropy subgroup. If there is a vertex of

type S4, then deg(p) ≥ 24. If we have a vertex of type D4. There must be

some edges in the isotropy graph labeled with odd integers otherwise the graph

would be non-trivial under the cusp killing homomorphism. Thus, deg(p) =

8(2k + 1)n for some n, k ≥ 1 and deg(p) ≥ 24 .

4.4 Proof of Theorem 1

In this section, we prove Theorem 1. The proof relies on accounting

for short curves in the peripheral subgroups of our knot complements. We

defined the length of a parabolic element in §2.7.2. We discuss discuss length

for peripheral elements fixing ∞ below. Let Q be a 1-cusped hyperbolic 3-

orbifold and fix a representation for ΓQ in PSL(2,C) such that PQ is upper

triangular and we consider ΓQ acting on upper half space. Denote by 1
c

the
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height of a maximal horoball tangent to ∞ and denote by Sc the horosphere

centered at ∞ of Euclidean height 1
c
. If γ ∈ ΓQ is a parabolic element fixing

∞, we measure the len(γ) by its translation length in Sc. If γ =

(
1 x
0 1

)
,

then len(γ) = c · |x|. Therefore, if γ corresponds to an exceptional slope, then

by the Six Theorem c · |x| ≤ 6 (see Thm 8). Finally, by Lemma 6, we will

only consider representation of ΓQ such that

(
1 1
0 1

)
∈ ΓQ. Since the interiors

of maximal horoballs are disjoint, we know that c ≥ 1. Also,

(
1 x
0 1

)
and(

1 −x
0 1

)
correspond to the same slopes in terms of Dehn surgery parameters,

so for convenience we consider them as one curve in our accounting of short

parabolic elements.

With ΓQ, PQ as above, recall that if A is the area of the the fundamental

domain for PQ in the horosphere of Euclidean height 1, the cusp volume of Q

is ∫ ∞
1
c

A

z
dz =

c2 · A
2

.

Proof of Theorem 1. Assume S3−K admits a non-trivial exceptional surgery,

ΓK has integral traces, and kΓK is class number 1. Also, assume p : S3−K →

Q, where Q has a rigid cusp (see §2.0.2). We break the proof into three cases,

one for each cusp type of Q.

Case 1: Q has a S2(2, 4, 4) cusp. We know deg(p) ≥ 24 (see

Lemma 13). By Lemma 6 and the Six Theorem (see §8), PK is of the form:〈(
1 1
0 1

)
,

(
1 6i
0 1

)〉
and c = 1 (with c defined above). In this case, the cusp

volume of Q is 3
24

. By §2.6, there is one such orbifold, which is arithmetic with
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invariant trace field Q(i). However, no knot complement can cover such an

orbifold (see Thm 2).

Case 2: Q has a S2(3, 3, 3) cusp. By Lemma 6, we can find a

representation for ΓK where the PK is of the form:

〈(
1 1
0 1

)
,

(
1 nω
0 1

)〉
,

such that ω2 +ω+ 1 = 0. By the Six Theorem (see §2.7), n ≤ 6. However, 3n

must be a multiple of 12. Hence, n = 4 and deg(p) = 12 (see Lemma 13). Here,

the two shortest parabolic elements (excluding inverses) are µ =

(
1 1
0 1

)
and

λ =

(
1 2 + 4ω
0 1

)
, (|2 + 4ω| = 2

√
3). In order to have two curves γ1, γ2 ∈ PK

with len(γi) ≤ 6, the horoballs tangent to B∞ have Euclidean height greater

than 1√
3

and so c ≤
√

3. (Note if λ is a longer element ,say λ =

(
1 3 + 4ω
0 1

)
,

then we must have c ≤ 6√
13
<
√

3). Thus, the cusp volume of S3 − K is in

the range [
√

3, 3
√

3] (1 ≤ |c| ≤
√

3) and the cusp volume of Q is in the range

[
√

3
12
,
√

3
4

].

Since any orbifold Q with S2(3, 3, 3) cusp and cusp volume
√

3
12

,
√

3
6

, or

1
4

is arithmetic (see §2.6), the only knot complement that can cover Q is the

figure 8 knot (see Thm 2), which is excluded by the hypothesis that S3 −K

is non-arithmetic. Hence, we only have to consider orbifolds with possible

cusp volume, 3
√

3+
√

15
24

,
√

21
12

, or
√

3
4

(see §2.6). The first case, implies that Q

is H3/Γ(5, 2, 2, 3, 3, 3) which has an order 60 isotropy group. Thus, it cannot

have a 12-fold manifold cover. In the second case, we know no such orbifold

can be covered by a knot complement by Lemma 8. Finally, we show the third

case cannot occur by appealing to Lemma 10.
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Case 3: Q has S2(2, 3, 6) and S3 −K admits a strong inversion

Since the element of 6 torsion is part of a dihedral group of order 12, we know

deg(p) = 12n.

If deg(p) > 24, we claim S3−K cannot admit two exceptional surgeries.

In this case, PK =

〈(
1 1
0 1

)
,

(
1 2nω
0 1

)〉
with n > 3 and ω2 + ω + 1 = 0.

Since |c| ≥ 1, if γ ∈ PK with len(γ) ≤ 6, then γ =

(
1 ±1
0 1

)
(see §2.7.2).

However, these curves both correspond to surgery along the meridian.

If deg(p) = 24, then PK is same as in Case 2 above. Therefore, S3−K

has cusp volume in [
√

3, 3
√

3] and Q has cusp volume in [
√

3
24
,
√

3
8

]. For cusp

volume in [
√

3
24
,
√

3
8

), these orbifolds fit Adams’ list and only the figure 8 knot

complement can cover Q as shown in Case 2. If the cusp volume is exactly
√

3
8

, we appeal to Lemma 10.

If deg(p) = 12, we may consider ΓQ = PQ · ΓK . In this case,

PQ =

〈
r =

(
` 0
0 `−1

)
, t =

(
1 ω
0 1

)〉
where ` = e

iπ
6 .

Since S3−K admits a strong inversion N+(ΓK) = 〈r3,ΓK〉 or 〈r3, t,ΓK〉.

In the second case, we may consider ΓQ acting on ΓK by conjugation. Since

r3, t ∈ N+(ΓK), the distinct conjugates of ΓK are ΓK , r·ΓK ·r−1 and r2·ΓK ·r−2.

Since ΓQ = PQ · ΓK , if γ ∈ ΓQ, then γ = p · g with p ∈ PQ and g ∈ ΓK .

Therefore, ΓQ = 〈r, µ1 =

(
1 1
0 1

)
, µ2, ...µn〉, where r defined above and µi is a

meridian of ΓK . Conjugation of r · ΓK · r−1 and r2 · ΓK · r−2 by ΓQ produces
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a homomorphism onto S3. Here, µ1 maps trivially and r maps to an element

of order 3. Hence, ΓQ admits a Z/3Z quotient by the action of ΓQ on ΓK .

However, since Q has a S2(2, 3, 6) cusp, this is not a valid abelian quotient for

ΓQ (see Prop 11).

Thus, we may assume N+(ΓK) = 〈r3,ΓK〉. Then the conjugates of ΓK

in P · ΓK are ΓK , r · ΓK · r−1,r2 · ΓK · r−2, t · ΓK · t−1, rt · ΓK · (rt)−1 and

r2t ·ΓK · t−1r−2. In this case, t maps to product of three 2-cycles in S6. Hence,

PQ · ΓK has a Z/2Z quotient. Therefore, Q is covered by an orbifold Q′ with

a S2(3, 3, 3) cusp with [PQ : PQ′ ] = 2 and ΓQ′ = PQ′ · ΓK . However, S3 − K

would be a 6-fold cover of Q′, which is a contraction to the minimum degree

cover of p : S3 −K → Q′ (see Lem 13).

4.5 Remarks on Theorem 1

First, we remark that for small volume manifolds we may use the lower

bounds on the degree of the covering p : S3 −K → Q to our advantage. Let

S3−K be a knot complement arising from 1
m

surgery on the unknotted cusp of

the Berge manifold (see Chapter 3). We observe that S3−K is hyperbolic (see

Rem 3.2.1). Notice the volume of S3−K is bounded from above by the volume

of the Berge manifold, 4v0. If S3−K admits hidden symmetries, S3−K would

cover an orbifold with a rigid cusp (see Thm 4). If Q has S2(3, 3, 3) cusp, then

the deg(p) ≥ 12 and so the volume of Q would be less than v0
3
≈ 0.3383138

(see Lemma 13). In particular, this volume forces Q to be arithmetic (see Prop
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6 and §2.6). Now consider Q with a S2(2, 3, 6) cusp. Since S3 −K is strongly

invertible (see Rem 3.2.1), deg(p) ≥ 24 by Case 3 of the above proof. Here

volume of Q would be less than v0
6
≈ 0.1691569. Again, this volume forces Q

to be arithmetic (see Prop 6 and §2.6). For either cusp, this would imply that

S3−K is the figure 8 knot (see Thm 2), but the figure 8 knot does not admit

finite cyclic fillings (see [37]). Therefore, it cannot be of the form β1,m.

If Q has a S2(2, 4, 4) cusp, then deg(p) ≥ 24 and volume of Q is less

than v0
6
≈ 0.1691569344, no non-arithmetic orbifolds with S2(2, 4, 4) cusps

exists at such low volume (see Thm 5 and Prop 6). Therefore, S3 − K does

not admit hidden symmetries. This is a slight improvement from the results

of the previous chapter because it exhibits an infinite family of knot comple-

ments such that all of the members do not admit hidden symmetries and are

commensurable with exactly two other knot complements (see Lem 5).

Also, Long and Reid recently produced knot complements with invari-

ant trace fields with class number > 1 (see [20, §7]). However, these knot

complements admit a high degree of symmetry (of order ≥ 257) and the quo-

tient QT of these knot complements under this symmetry is homeomorphic to

orbifold Dehn surgery on the link in Figure 4.10. This link complement has

volume 4v0. If any knot complement covering QT admits hidden symmetries,

then QT would have to cover an orbifold Qr with a rigid cusp. However, the

degree of such a cover would put Qr on Adams’ list of small volume orbifolds

(see §2.6). In fact, just as above such an orbifold Qr would be arithmetic, but

the figure 8 knot complement is the only arithmetic knot complement and it

83



Figure 4.10: An orbifold Q resulting from (m, 0)-surgery (m ≥ 257) along the
unknotted cusp of the above link has invariant trace field with class number
bigger than 1

does not admit a symmetry of such high order.
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Chapter 5

Links in the isotropy graph

In this chapter, we establish a relationship between the complexity of

the isotropy graph of an orbifold and the existence of an incompressible surface

in the orbifold. Specifically, we prove the following theorem.

Theorem 5.1. Let O be an orbifold with a single rigid cusp and base space

D3 that has an isotropy graph with 8 or more vertices. Then either every pair

of edge cycles in the isotropy graph of O is linked or O contains a closed,

embedded, incompressible 2-orbifold.

For this theorem, we have the immediate corollary regarding knot com-

plements with hidden symmetries.

Corollary 5.2. Let O be an orbifold covered by a small hyperbolic knot com-

plement S3 −K. Then, either the isotropy for O has fewer than 8 vertices or

every pair of disjoint cycles of the isotropy graph is an embedded, non-split,

two-component link.

In some sense, the above theorem can be viewed as an analog to the

proposition in Thurston’s notes that shows that a non-orientable orbifold N

with base space D3 is either H3/T where T is the group of reflections in some
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tetrahedron or N contains a closed, incompressible 2-orbifold (see [38, Prop

13.5.2] and §2.4). In the later case, the orientable double cover of N is Haken

(see §2.0.4).

5.1 Graphs and incompressible 2-orbifolds

In this section, we use properties of the isotropy graph G associated to

an orbifold O (see § 4.1) in order to find cases where O contains an incom-

pressible 2-orbifold.

Proposition 5.3. If a trivalent graph G has eight or more vertices, then it

contains at least two disjoint cycles.

Proof. Throughout the proof we will assume that G has n vertices with n ≥ 8.

Since G is trivalent, this implies that G has 3n
2

edges.

First, we claim that G has one cycle. If G has no cycles, then 3n
2
≤ n−1

since a tree has n− 1 edges and the disjoint union of m trees has n−m edges.

However, this implies n ≤ −2, which is a contradiction.

Thus, G has at least one cycle. Assume that C is a smallest cycle in G,

in the sense that C has the fewest edges of any cycle. Denote by k the number

of edges in C and denote by G − C the graph obtained by removing vertices

in C and all edges incident to these vertices.

Case 1: Assume k ≤ 4. Then G−C has at least 3n
2
−k−k edges since

there are k edges in C and at most k edges connecting to the vertices of C.
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To be a tree or the disjoint union of trees G−C would have at most n− k− 1

edges. If 3n
2
− 2k ≤ n− k − 1. However, this contradicts n ≥ 8.

Case 2: Assume k > 4. C has more than 4 vertices. Then, all edges

that connect to vertices of C but are not a part of C, connect to vertices outside

of C. Otherwise, C would not be a smallest cycle. Also, there are no vertices

of G−C that have degree 1 because this would also contradict the minimality

of C.

Hence, G− C cannot be a tree and must contain a cycle.

Let O be an orbifold such that |O| is simply connected and denote by

G the isotropy graph of O. Consider G as an embedded graph in |O|. We say

that G has a pair of split cycles, C1 and C2 if there exist two 3-balls B1 and B2

embedded in |O| such that B1 and B2 are disjoint and C1 ⊂ B1 and C2 ⊂ B2.

If G does not contain a pair of split cycles, then any pair of two disjoint cycles

in G from a non-split 2-component link.

We now prove Theorem 1.

Proof of Theorem 1. Denote by G the isotropy graph of O. Assume that G

has a least 8 vertices. There exist at least two disjoint cycles in G (see Prop

3). Assume that G contains a pair of split cycles.

Pick two such split cycles C1, C2. We may isotope G in O such that 1)

there exists an embedded ball B1 containing C1, 2) there exists an embedded

ball B2 containing C2, 3) G intersects the Seifert surface F1 bounding C1
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minimally, and 4) B1 ∩ G is the cycle C1, untwisted, unknotted parts of the

edges incident to C1 and a set of untwisted, unknotted arcs that transversely

intersect F1. Denote the boundary of B1 by S1 and the boundary of B2 by S2.

We say the inside of Bi is the side of Si that contains the cycle Ci. (Hence,

the outside S1 contains part of the outside of S2 and all of the inside of S2).

Assume B1 contains an arc α which connects two vertices of C1 (like-

wise, for B2 and C2) that can be isotoped inside B1 without forcing any other

pieces of G into B1. Then, assume α is isotoped inside B1 to reduce inter-

section number of G and S1. This isotopy prevents the existence of a disk

quotient that is boundary compressibling on two sides. Note, such an arc α

is part of a cycle and therefore will not affect the incompressibility of S1 the

inside of B1.

Notice S1 and S2 are separating and incompressible on the side contain-

ing the cycle since any embedded disk is either boundary parallel or intersects

G in two places along the cycle contained in the sphere. Assume that that

there exists a compressing disk D for S1. Then D is contained in the outside of

S1 and intersects S1 circle which divides S1 into two pieces D′ and D′′. Either

D ∪D′ or D ∪D′′ is a sphere that encloses C1 and contains the union a set of

knotted arcs and vertices of G. Otherwise, D would be boundary parallel to

S1 and not a compressing disk. Call this sphere S ′.

Also, S ′ is incompressible on the inside because a compressing disk

would lead a sphere hitting G in 2 points which would contradict the irre-

ducibility of O.
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S1
S1

D D

Figure 5.1: Two examples of compressing disks outside of S1

We may repeat this process for each compressing disk. Since this pro-

cess will put a new vertex or crossing of G inside S ′, (see Fig 5.1) it must

terminate by the fact that ΓO has finite Wirtinger presentation. Furthermore,

no disks can intersect the inside of S2 and the surface constructed here is

incompressible on both sides.

It is worth mentioning that we cannot relax the condition on the number

of vertices in G. Since we are interested in hyperbolic 3-orbifolds with a rigid

cusp, the isotropy graphs we are interested in are all trivalent. Therefore, they

all have an even number of vertices. The K(3, 3, 3) has six vertices but does

not contain two disjoint cycles. Thus, we cannot improve on the hypothesis of

the above theorem.
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