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Abstract: We construct a regular cell complex which supports the Eliahou-
Kervaire resolution of a stable ideal.

1 Introduction

Throughout the paper S = k[x1, . . . , xn] is a polynomial ring in n variables.
An important object in the study of a homogeneous ideal of S is its minimal

free resolution, which encodes a lot of information about the homological and
combinatorial structure of the ideal. While algorithms to compute minimal free
resolutions are known, the problem of describing them explicitly has proven
intractable, even for monomial ideals. Thus, there has been a lot of work in
recent decades describing the minimal free resolutions of well-behaved classes of
monomial ideals.

One of the most important results in this vein is the Eliahou-Kervaire reso-
lution [EK], which elegantly describes the minimal resolution of a stable ideal in
terms of its monomial generators. The stable ideals are a large class of mono-
mial ideals which includes (in characteristic zero) the Borel-fixed ideals. These
occur as generic initial ideals of arbitrary ideals [BSti,Ga], and so arise in many
contexts.

Another important tactic has been to study non-minimal free resolutions.
These reveal slightly less information than do minimal free resolutions, but are
often much easier to describe. For example, the Taylor resolution [Ta] is a very
clean (but usually highly non-minimal) resolution for any monomial ideal.

One of the most exciting recent developments in the study of resolutions
has been the idea of simplicial resolutions [BPS], resolutions which can be de-
scribed completely in terms of a simplicial complex. The Taylor resolution is
simplicial, as are the minimal resolutions of “generic” monomial ideals. Bayer
and Sturmfels [BStu] extended the idea of simplicial resolutions to regular cell
complexes. We say that a resolution is cellular (respectively simplicial, CW )
if it can be encoded by a regular cell complex (respectively, a simplicial or
CW complex). Velasco [Ve] uses this theory to construct families of monomial
ideals whose minimal resolutions are characteristic-dependent, as well as mono-
mial ideals whose minimal resolutions cannot be described by any CW complex.
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Batzies and Welker [BW], using discrete Morse theory, show how to construct
(not necessarily minimal) CW resolutions inside the Taylor resolution of any
monomial ideal. There are techniques for using cellular resolutions to construct
resolutions of new ideals; for example, Sinefakopoulos [Si1] builds the minimal
resolutions of certain p-Borel-fixed ideals from a polytopal resolution of a power
of the maximal ideal.

There are few examples of interesting resolutions which are cellular but not
simplicial. Corso and Nagel [CN] show that Ferrers ideals of bipartite graphs
are cellular. Sinefakopoulos constructs in [Si2] a cellular complex supporting
the minimal resolution of any Borel ideal generated in a single degree. Even
these examples are polytopal complexes (i.e., they can be embedded in Rn so
that each cell is a polytope), however, so it was unclear that the full generality
of the cellular case in [BStu] was necessary.

In Theorem 5.3 I show that the Eliahou-Kervaire resolution of any stable
ideal is cellular. This is not a duplication of Sinefakopoulos’s work, even in
the case of a Borel ideal generated in one degree: his complex has very different
combinatorial structure than mine (see Figures 5 and 4) and describes a different
basis for the resolution than that given by Eliahou and Kervaire. In fact, the
complex I construct is not polytopal in any obvious way. On the other hand, my
construction does appear to coincide with a CW complex described by Batzies
and Welker [BW] in this case. However, I have been unable to understand their
construction well enough to determine if it produces the same complex, or even
if the complex so produced is regular.

In section 2, I briefly describe cellular resolutions and Eliahou-Kervaire res-
olution. In section 3, I recall a well-known cell complex that supports the
Eliahou-Kervaire resolution of a power of the maximal ideal in k[x1, x2, x3]. In
sections 4 and 5, I generalize this construction to arbitrary dimension. My
intuition seems to be similar to that of Clark [Cl], who studies poset ideals.

Acknowledgements: I thank Achilleas Sinefakopoulos for introducing me
to the topic, and also Craig Huneke, Irena Peeva, Steve Sinnott, and Mike
Stillman for helpful discussions. Also, I am grateful to Jim Belk, Ken Brown,
Jeremy Martin, and Jay Schweig for helping me simplify the topology. (Any
errors which I have reintroduced are of course mine alone.)

I am supported by an NSF postdoctoral fellowship (award No. DMS-0703625).

2 Background and Notation

Let S = k[x1, · · · , xn] be the polynomial ring in n variables. We impose a
grading and multigrading on S by setting deg xi = 1 and mdeg xi = xi.

A monomial of S is an element of the form m = xa1
1 · · ·xan

n . The exponent
vector of m is a = (a1, · · · , an). For convenience, we will frequently write
m = xa. The monomial xa has degree |a| =

∑
ai and multidegree xa. By

abuse of notation, we will routinely identify monomials (and multidegrees) with
their exponent vectors.

A monomial ideal is an ideal M which is generated by monomials. All ideals
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appearing in this paper will be monomial ideals. Every monomial ideal has a
unique minimal generating set of monomials gens(M); we call the elements of
this set the generators of M .

Definition 2.1. For a monomial m = xa, we set max(m) = max{i : ai 6= 0},
the largest index with a positive exponent in m. Since the monomial 1 is the
empty product, we set max(1) = 0. The variable xmax(m) is thus the minimal
variable dividing m in any of the natural term orders; we will attempt to avoid
this source of confusion by discussing monomial orders as little as possible.

Definition 2.2. We say that a monomial ideal M is stable if it satisfies the
condition:

Let m ∈ M be a monomial, and suppose i < max(m). Then
m xi

xmax(m)
∈ M as well.

Stable ideals were introduced by Eliahou and Kervaire [EK] as a class of
ideals minimally resolved by the Eliahou-Kervaire resolution. The class of stable
ideals includes Borel ideals, which occur as generic initial ideals in characteristic
zero [Ga,BSti].

Proposition 2.3. Let M be a stable ideal and m ∈ M a monomial. Then there
exists a unique generator g and monomial h such that m = gh and, for every
xi dividing h, we have i ≥ max(g).

Definition 2.4. Let M , m, g, and h be as in Proposition 2.3. Then g and h

are called the beginning and end of m, respectively, and we write beg(m) = g

and end(m) = h.

Proof of Proposition 2.3. If m is a generator of M , set g = m and h = 1.
Otherwise, set m′ = m

xmax(m)
. Since m is not a generator, there exists some

xi dividing m such that m
xi

∈ M . Since M is stable, it follows that m′ =
m
xi

xi

xmax(m)
∈ M as well. By induction on the degree of m, we may write m′

uniquely in the form m′ = g′h′; set g = g′ and h = h′xmax(m). The uniqueness
of this decomposition is immediate since xmax(m) must divide h.

A free resolution of an ideal M is an exact sequence

F : · · ·F2 → F1 → F0 → M → 0,

with each Fi a free S-module. When M is a monomial ideal, F inherits a natural
multigraded structure if we require that the maps φi : Fi → Fi−1 preserve
multidegree. The resolution F is minimal if each Fi has minimum possible
rank, or, equivalently, if every entry in the matrices associated to the maps φi

is contained in the homogeneous maximal ideal.
Stable ideals are minimally resolved by the Eliahou-Kervaire resolution [EK],

defined below.
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Definition 2.5. Let M be a monomial ideal. An EK-symbol for M is a pair
of the form [f, α], where f ∈ gens(M) is a minimal generator of M and α is a
squarefree monomial satisfying max(α) � max(m). The EK-symbol [f, α] has
multidegree fα and homological degree deg(α).

Definition 2.6. For a squarefree monomial α and a variable xi dividing α, put
sgn(xi, α) = 1 if the cardinality of the set {xj : xj divides α and j ≤ i} is odd,
and sgn(xi, α) = −1 if it is even.

For an EK-symbol [f, α], the differential is given by

d(f, α) =
∑

xi divides α

sgn(xi, α)xi

[
f,

α

xi

]
−

∑

xi divides α

sgn(xi, α) end(xif)

[
beg(xif),

α

xi

]
,

where we treat a pair [f ′, α′] as zero if it is not an EK-symbol (i.e., if
max(α′) ≥ max(f ′)).

Definition 2.7. For the formal definition of a regular cell complex, see [BH,
Chapter 6.2] or [BLSWZ, Chapter 4.7]. For our purposes, a regular cell complex
∆ is a finite collection of closed d-balls ∆d (called d-cells) for every dimension
d, such that the boundary of each d-cell is a union of (d − 1)-cells. There is an
orientation or incidence function ε : W × W → {−1, 0, 1} which satisfies:

• ε(F, G) = 0 unless F ∈ Wd and G ∈ Wd−1 for some d.

• For all F and H ,
∑

G ε(F, G)ε(G, H) = 0.

ε(F, G) indicates whether G appears with positive or negative orientation in
the boundary of F .

We say that a cell complex ∆ is simplicial if each cell is a simplex, and
polytopal if it can be embedded into some Rn in such a way that each cell is a
polytope.

Intuitively, we say that a resolution F is supported on a cell complex ∆ if
the vertices of ∆ can be labelled with monomials in a way that allows us to read
off the maps of F from the incidence function ε. We formalize this as follows.

Definition 2.8. Let ∆ be a regular cell complex and F a resolution such that
each free module Fd has a basis fG indexed by the d-cells of ∆. We say that F
is supported on ∆ if it is possible to label the cells of ∆ with monomials such
that:

• Each cell is labelled by the least common multiple of its vertices,

label(G) = lcmv∈G(label(v)).

• The differential maps of F are given by

φ(fF ) =
∑

G

ε(F, G)
label(F )

label(G)
.
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Implicit in this definition is the requirement that the number of d-dimensional
cells in ∆ be equal to the rank of the free module Fd.

Example 2.9. In this example, we show that the Taylor resolution (which non-
minimally resolves every monomial ideal) is supported on a simplicial complex.
For a monomial ideal M = (g0, . . . , gm), the module Fs is the free module with
basis consisting of the formal symbols [gi0 , . . . , gis

] with 0 ≤ i0 < i1 < · · · < is ≤
m. The symbol [gi0 , . . . , gis

] has multidegree lcm(gi0 , . . . , gis
) and differential

φs([gi0 , . . . , gis
]) =

s∑

j=0

(−1)j lcm(gi0 , . . . , gis
)

lcm(gi0 , . . . , ĝij
, . . . , gis

)
[gi0 , . . . , ĝij

, . . . , gis
].

For example, if M = (x2, xy, y3), the Taylor resolution of M is given by

0 → S[x2, xy, y3]

0
BB@

x

1
y2

1
CCA

−−−−−−→

S[xy, y3]
⊕

S[x2, y3]
⊕

S[x2, xy]

0
BB@

0 −y3 −y

−y2 0 x

x x2 0

1
CCA

−−−−−−−−−−−−−−−−→

S[x2]
⊕

S[xy]
⊕

S[y3]

(x2 xy y3)
−−−−−−→ M → 0.

Now let ∆ be the simplex on m vertices labelled g0, . . . , gm, and label each
face of ∆ by label(F ) = lcm{gi : gi ∈ F}. The d-faces of F are indexed by
ordered tuples [gi0 , . . . , gid

] with 0 ≤ i0 < · · · < id ≤ m, and the simplicial
boundary maps are given by

d([gi0 , . . . , gis
]) =

s∑

j=0

(−1)s[gi0 , . . . , ĝij
, . . . , gi,s],

which differ from the Taylor boundary maps only by the absence of the mono-

mials, which can be recovered as
label([gi0 ,...,gis ])

label([gi0 ,... cgij
,...,gis ]) .

Thus, we say that the resolution of M is supported on the (simplicial) com-
plex ∆.

In the example M = (x2, xy, y3), the labelled simplex is as in Figure 1.

x 2

xy

x  y2

x  y
x  y

2 3

2 3

xy 3 y 3

Figure 1: The Taylor resolution of (x2, xy, y3).
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3 Powers of the maximal ideal in three variables

In this section, we recall the well-known cell complex which supports the reso-
lution of a power of the maximal ideal of R = k[a, b, c]. I am not sure where,
if anywhere, the picture in Figure 2 has been published; I first saw it in a class
taught by Irena Peeva in 2005.

[a  c, ab]2

[c , ab]3

a
2
b ab

2
b

3

a 2c abc b
2
c

ac2
bc2

c3

a 3

Figure 2: The Eliahou-Kervaire resolution of (a, b, c)3.

We construct the complex supporting the resolution of (a, b, c)d as follows:
First, we intersect the first orthant of R3 with the hyperplane x1 +x2 +x3 = d,
and take the lattice points as vertices. We label the vertices in the natural way
(so that (d, 0, 0) is labelled by ad, etc.), and draw edges as follows:

For every vertex m = nc divisible by c, add oriented edges pointing from
m to nb and na (these edges will have labels nbc and nac, and correspond to
the EK symbols [nc, b] and [nc, a], respectively), and for every vertex m = nb

divisible by b but not by c, add an oriented edge pointing from m to na (this
will be labelled nab and correspond to the EK-symbol [nb, a]).

The faces consist of squares with vertices nc2, nbc, nab, nac for every mono-
mial n of degree d−2 (corresponding to the EK-symbol [nc2, ab]), and triangles
with vertices arbd−r−1c, arbd−r, ar+1bd−r−1 for 0 ≤ r ≤ d− 1 (corresponding to
the EK-symbol [arbd−r−1c; ab]); we orient them clockwise.

It is straightforward to verify that the complex constructed above supports
the Eliahou-Kervaire resolution; it is much less obvious how it can be general-
ized for more variables. Our strategy is to break the cells down as simplicial
complexes.

We observe the following:

Remark.

• Each of the rectangular cells in figure 2 has unique top and bottom vertices.
These are its last and first vertices, respectively, in the lex order.

• The edges at the boundary of each rectangular cell describe two oriented
paths of length two from the top vertex to the bottom vertex.
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• If we define the top and bottom vertices of a triangular cell to be its
lexicographically least and greatest vertices, then the edges again trace
out two oriented paths from the top to the bottom. One of these paths
has length one; we will see later that this path is degenerate.

• If the edge [m, xi] points from m to n, then n = m xi

xmax(m)
. We have xi = b

if the edge points from left to right, and xi = a if it points from right to
left. Also, xmax(m) = c if the edge points down, and xmax(m) = b if it is
horizontal.

[a  c, ab]2

[c , ab]3

a
2
b ab

2
b

3

a 2c abc b
2
c

ac2
bc2

c3

a 3

Figure 3: Decomposing the cells in Figure 2.

Example 3.1. The cell named [c3, ab] has top vertex c3 and bottom vertex abc.
There are two paths from c3 to abc, namely (c3, bc2, abc) and (c3, ac2, abc). The
cell named [a2c, ab] has top vertex a2c and bottom vertex a3. The two paths
from a2c to a3 are (a2c, a2b, a3) and (a2c, a3). The second path is a subset of
the first.

Each of the (maximal) paths described above has three vertices; these ver-
tices define a triangle. These triangles are bounded by the dotted lines in figure
3. Note that each of the rectangular faces is the union of the triangles defined
by its two paths, and each of the triangular faces is the triangle defined by its
path.

When there are more than three variables, we will generalize this observation,
defining the faces of the Eliahou-Kervaire resolution as unions of simplices.

Recall that the set of monomials m in a stable ideal is closed under multipli-
cation by xi

xmax(m) whenever i < max(m). This inspires the following notation.

Notation 3.2.

(i) Let m be any monomial and xi be any variable. Set

m → xi =

{
m xi

xmax(m)
if i < max(m)

m if i ≥ max(m)
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(ii) Let m and n be monomials and xi be a variable. Then we inductively
define m → xin = (m → xi) → n.

In order for the second notation above to be well-defined, we need the fol-
lowing lemma.

Lemma 3.3. Let m be any monomial, and let xi and xj be variables. Then
(m → xi) → xj = (m → xj) → xi.

Proof. We may assume that i ≤ j, and we can write m = nxkx`, with max(n) ≤
k ≤ `. There are then six cases to check, depending on the ordering of i, j, k,
and `. For example, if k ≤ i ≤ j ≤ `, then (m → xi) → xj = (m → xj) → xi =
nxkxi. The other cases are unenlightening, and are left as an exercise.

4 Powers of the maximal ideal

Throughout this section, fix positive integers n and d. Denote by I the ideal
(x1, . . . , xn)d, and by ∆ the simplex in Rn obtained by intersecting the first
orthant with the degree d hyperplane z1 + · · · + zn = d. We will construct a
regular cellular subdivision of ∆ which supports the Eliahou-Kervaire resolution
of I .

As in the previous section, we identify lattice points in the first orthant of
Rn with monomials via the exponent vector. Thus, for example, the monomial
x2

1x2x4 is identified with the vector (2, 1, 0, 1). By abuse of notation, we will
treat monomials and vectors as interchangeable. (Thus, for a vector v, max(v) is
the index of its last nonzero entry, and v → xi is defined as for the corresponding
monomial.)

Construction 4.1. Let m be any monomial of degree d, let α = xi1 . . . xij

be a squarefree monomial with max(α) < max(m), and let σ = (σ1, . . . , σj) be
any permutation of (i1, . . . , ij). We denote by ch(m, α, σ) the convex hull of
the points {m, m → xσ1 , m → xσ1xσ2 , . . . , m → α}. We say that ch(m, α, σ) is
nondegenerate if it has dimension j.

We set the cell U(m, α) equal to the union over all σ of the ch(m, α, σ).

A few observations are immediate.

Lemma 4.2. Let m, α, σ be given. Then:

(i) ch(m, α, σ) ⊂ ∆.

(ii) ch(m, α, σ) is a simplex.

(iii) ch(m, α, σ) is nondegenerate if and only if the j + 1 monomials m, m →
xσ1 , . . . , m → α are distinct.

(iv) If σ is the unique decreasing permutation (i.e., σ1 > · · · > σj), then
ch(m, α, σ) is nondegenerate.
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(v) If ch(m, α, σ) is degenerate, then there exists a permutation σ′ such that
ch(m, α, σ′) is nondegenerate and ch(m, α, σ) is a face of ch(m, α, σ′).

Thus, in particular, we can view U(m, α) as the union of the nondegenerate
ch(m, α, σ).

Proof. We prove (v). Suppose that ch(m, α, σ) is degenerate. Then for some k,
we have m → (xσ1 . . . xσk

) = m → (xσ1 . . . xσk+1
); choose the minimal such k. It

follows that σk+1 > σk . Let σ̄ = (σ1, . . . , σk+1, σk , . . . , σj) be the permutation
obtained from σ by swapping the kth and (k + 1)th terms. It is immediate that
ch(m, α, σ) is a (not necessarily proper) face of ch(m, α, σ̄). By induction, it is
a face of some ch(m, α, σ′).

Example 4.3. We return to the cells in Example 3. The top cell is U(c3, ab);
it is divided into two triangles: the left triangle is ch(c3, ab, (a, b)), and the right
triangle is ch(c3, ab, (b, a)). The bottom left cell is U(a2c, ab). It consists of a
single triangle, which is ch(a2c, ab, (b, a)). The degenerate ch(a2c, ab, (a, b)) is
the left edge. The other cells decompose similarly.

Now we study the geometry of the ch(m, α, σ).

Lemma 4.4. Suppose that deg(α) = d − 1 and ch(m, α, σ) is nondegenerate.
Then the vertices of ch(m, α, σ) form a basis for Rn.

The next technical lemma is obvious after unwrapping a lot of notation.

Lemma 4.5. Suppose that deg(α) = n−1 and ch(m, α, σ) is nondegenerate. Let
vo = (v0,1, v0,2, . . . , v0,n) be the exponent vector of m, v1 = (v1,1, v1,2, . . . , v1,n)
be the exponent vector of m → xσ1 , etc. Let k = max(m → α). Then:

(i) For all i, we have vi − vi−1 = eσi
− emax(m→xσ1 ...xσi−1

) (where the ei are

the usual standard basis vectors).

(ii) If q < k, then vn−1,q ≥ vj,q for all j.

(iii) If q > k, then 0 = vn−1,q ≤ vj,q for all j.

(iv) If σn−1 = k, then vn−1,k ≥ vj,k for all j.

(v) If σn−1 6= k, then vn−1,k ≤ vj,k for all k.

(vi) If q is such that vn−1,q ≥ vj,q for all j, and σ` = q, then vj,q = vn−1,q for
j ≥ ` and vj,q = vn−1,q − 1 for j < `.

The following lemma will allow us to recover ch(m, α, σ) given a point in its
interior.

Lemma 4.6. Let z = (z1, . . . , zn) ∈ ch(m, α, σ). Observe that
∑

zi = d.
Denote by dzie the least integer greater than or equal to zi. Using the same
notation as in Lemma 4.5, we can recover vn−1 as follows.
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Step 1: Set a = 0, and start with i = 1.

Step 2: Set vn−1,i = min(d − a, dzie).

Step 3: Add vn−1,i to a, increment i, and return to step 2.

The coefficient cn−1 is given by minzi<vn−1,i
{frac(zi)}. (Here, frac(zi) repre-

sents the fractional part of zi.)

Example 4.7. Suppose that z = (.3, .45, .05, 1.15, .05). We compute d = 2 and
set the counter a equal to 0. We have d.3e = 1 < 2− 0, so v4,1 = 1. We increase
a to 1. We have d.45e = 1 = 2 − 1, so v4,2 = 1. We increase a to 2. Now
2 − 2 = 0 < d.05e, so v4,3 = 0 and a is unchanged. Similarly, v4,4 = v4,5 = 0.

Finally, c4 = min(.3, .45) = .3. (In fact, z = .05(0, 0, 0, 1, 1)+.5(0, 0, 0, 2, 0)+
.1(0, 0, 1, 1, 0)+.05(0, 1, 1, 0, 0)+.3(1, 1, 0, 0, 0) ∈ ch(x4x5, x1x2x3x4, (4, 2, 3, 1)).)

Proof. For each i, one of the following holds:

(i) i < max(vn−1), in which case, by Lemma 4.5 (ii,vi), we have vn−1,i = dzie
(and d − a > vn−1,i by induction on i).

(ii) i = max(vn−1), in which case we have vn−1,i = d − a by induction on i

(and vn−1,i ≤ dzie by Lemma 4.5 (iv,v,vi)).

(iii) i > max(vn−1), in which case we have vn−1,i = 0 = d− a by induction on
i.

By Lemma 4.5 (vi), whenever j is such that vn−1,j > zj , we have frac(zj) =∑
q≥` cq, where ` is such that σ` = j. Since all the cq are positive, this is

minimized for j = σn−1.

Lemma 4.8. Let z = (z0, . . . , zn) be any vector in ∆. Then z may be written
uniquely in the form z =

∑
civi for positive coefficients ci such that

∑
ci = 1

and such that there exists some ch(m, α, σ) having the vi among its vertices.

Note the requirement that the coefficients be nonzero; this means that the
expansion may have fewer than n terms, and, as such, the choice of ch(m, α, σ)
may be nonunique. However, if z lies on the interior of any ch(m, α, σ), the
expansion must contain all n vertices and so is unique.

Proof. Lemma 4.6 tells us vn−1, cn−1, and σn−1. Set z′ = z + cn−1

1−cn−1
(z−vn−1),

so that z = cn−1vn−1 + (1 − cn−1)z
′. Let y ∈ Rn−1 be the vector obtained by

removing the (σn−1)
th entry from z′. By induction on n, y may be written in

the form
∑

div
′
i; reinserting the removed entry to each v′

i gives us the expression
z = cn−1vn−1 + (1 − cn−1)(

∑
divi). It remains to show that vn−1 = vn−2 →

xσn−1 .
Set k = σn−1, and write z′ = (z′1, . . . , z

′
n). A little arithmetic shows that

z′k = vn−1,k − 1, and dz′
je = vn−1,j for all j 6= k such that zj < vn−1,j . Let ` be

minimal such that z` > vn−1,`. Then the algorithm in Lemma 4.6, applied to y,
gives us vn−2,` = vn−1,` + 1 and ` = max(vn−2). Thus, vn−1 − vn−2 = ek − e`,
so, by Lemma 4.5(i), we have vn−1 = vn−2 → σn−1 as desired.
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We have proved the following:

Proposition 4.9. The union of all the ch(m, α, σ) is the simplex ∆. The
intersection of two simplices ch(m, α, σ) and ch(m′, α′, σ′) is a common face.

Notation 4.10. Set α = x1 . . . xn−1. For a collection of points v1, . . . , vs, let
〈v1, . . . , vs〉 represent their convex hull.

Definition 4.11. Let F be any facet of ch(m, α, σ). We say that F is interior
if it also a facet of some ch(m′, α, σ′) 6= ch(m, α, σ). Otherwise, we say that F

is exterior.

Lemma 4.12. Let F be a facet of some ch(m, α, σ), and write F = 〈v1, . . . , vn−1〉,
with the vi increasing in the lex order. For each i ≥ 2, if vi = vi−1 → xj for
some j, set τi = j. If no such j exists, set τi = 0.

Then all the τi are distinct, and exactly one of the following holds:

(i) There exists a unique i such that τi = 0. We have vi+1 = vi → xjxk where
1 ≤ j, k ≤ n− 1 are the two indices not occuring as any τj . F is interior.

(ii) None of the τi are equal to zero. Let j < n be the unique index not occuring
as any τi. F is exterior if v1,j = 0 or if v1,n = 0, and interior otherwise.

Proof. Let m and σ be such that F is a facet of ch(m, α, σ), and write ch(m, α, σ) =
〈w0, . . . , wn−1〉. Let w` be the vertex which is missing from F ; we have vi = wi−1

for i ≤ ` and vi = wi for i > `. Also, τi = σi−1 for i ≤ ` and τi = σi for i ≥ `+2.
Finally (if ` 6= 0, d − 1), we have w`+1 = w`−1 → xσ`

xσ`+1
. If this is not equal

to w`−1 → xσ`+1
we are in case (i); otherwise, we are in case (ii).

In case (i), let σ′ be the permutation obtained from σ by swapping σ` and
σ`+1. Then F is a facet of both ch(m, α, σ) and ch(m, α, σ′).

In case (ii), return to the notation in the statement of the lemma. Suppose
first that v1,n = 0. It follows that vi → xn−1 = vi for all i and that j = n − 1.
Set v0 = v1 + en − en−1, σ1 = n − 1, and σi = τi for all i ≥ 2. Then F is a
facet only of ch(v0, α, σ) and is exterior. Otherwise, let k be minimal such that
vk → xj 6= vk . Let σ = (τ1, . . . , τk, j, τk+1, . . . , τn−2), σ′ = (j, τ1, . . . , τn−2), and
v0 = v1 − ej + en. We have that F is a facet of ch(v1, α, σ), and is a facet of
ch(v0, α, σ′) provided that v0 has nonnegative entries (i.e. v1,j 6= 0). Thus F is
interior if v1,j 6= 0 and exterior otherwise.

Now we are in position to describe the orientations of the ch(m, α, σ). Since
the ch(m, α, σ) form a subdivision of the big simplex ∆, there is a unique
orientation function inherited from ∆. This assigns an orientation of +1 to the
simplex ch(xd−1

1 xn, α, (xn−1, xn−2, . . . , x1)), and satisfies:

(*)

Let G be an interior facet common to F = ch(m, α, σ) and F ′ =
ch(m′, α, σ′). If G occurs with opposite signs in the simplicial
boundaries of F and F ′, then F and F ′ have the same orientation.
If G occurs with the same sign in both boundaries, then F and F ′

have opposite orientations.
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The condition (*) is because d(∆) = d(
∑

F=ch(m,α,σ) o(F )F ) is supported on
the boundary of ∆, i.e., on the exterior facets.

Because any two simplices F = ch(m, α, σ) and F ′ = ch(m′, α, σ′) are con-
nected by a chain F = F0, . . . , Fr = F ′ such that Fi and Fi+1 share a facet,
there is a unique solution to (*). If we use the unorthodox simplicial boundary
d(〈v0, . . . , vn〉) =< v0, . . . , vn−1 > − < v0, . . . , vn−2, vn > + · · · + (−1)n−i <

v1, . . . , v̂i, . . . , vn > + · · · + (−1)n < v1, . . . , vn >, it is straightforward to verify
that the solution is as follows:

Proposition 4.13. Let F = ch(m, α, σ). Then F has positive orientation if
σ differs by an even permutation from the decreasing permutation σ = (n −
1, . . . , 1), and negative orientation otherwise.

Note that the orientation depends only on σ, and not on m. We extend this
observation to orient the lower-dimensional cells.

Notation 4.14. Let σ be a permutation of some subset T ⊂ {1, . . . , n−1}. We
say that σ is positive if σ is an even permutation of the decreasing permutation
on T , and that σ is negative otherwise. If F = ch(m, α, σ) and σ is positive, we
say that F has positive orientation and write o(F ) = o(σ) = 1. If σ is negative,
we say that F has negative orientation and write o(F ) = o(σ) = −1.

Remark. If we view the Taylor resolution as being generated by symbols of the
form [g1, . . . , gs] (where [g1, . . . , gs] = [h1, . . . , hs] if the s-tuples differ by an
even permutation, and [g1, . . . , gs] = −[h1, . . . , hs] if they disagree by an odd
permutation), then ch(m, α, σ) is the Taylor symbol [m → σ, . . . , m → xσ1 , m].
We will see that the Eliahou-Kervaire resolution sits nicely inside the Taylor
resolution.

Our next goal is to show that the topological differentials of the cells U(m, α)
agree with the differentials in the Eliahou-Kervaire resolution.

Fix m and α; we will compute the topological differential of U(m, α). (Es-
sentially, we are analyzing the interior and exterior facets of the simplicial fan
U(m, α) as we did with ∆ above. The analysis is almost the same, so we omit
many proofs.)

U(m, α) is oriented as

U(m, α) =
∑

σ:F=ch(m,α,σ)
nondegenerate

o(F )F.

Set p = deg(α). For ease of notation, we may assume that α = x1 . . . xp.
Choose a nondegenerate F = ch(m, α, σ) and write F =< m, m → xσ1 , . . . , m →

α >. The differential of F contributes three types of terms to the differential of
U .

(1) Removing the first vertex gives the face (−1)p(−1)d−σ1 〈m → xσ1 , . . . , m → α〉 =
(−1)σ1 ch(m → xσ1 ,

α
xσ1

, σ′), where σ′ = (σ2, . . . , σp). This face cannot

arise from the differential of any other F .
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(2) Removing the last vertex gives the face
〈
m, . . . , m → α

σp

〉
= (−1)1+σp ch(m, α

σp
, σ′),

where σ′ = (σ1, . . . , σp−1). This face cannot arise from the differential of
any other F .

(3) Removing the ith vertex gives the face (−1)d−i < m, . . . , ̂m → xσ1 . . . xσi
, . . . , m →

α >. This is cancelled out by removing the ith vertex from F ′ = ch(m, α, σ̄)
(where σ̄ is obtained from σ by swapping the ith and (i + 1)th entries),
unless m → xσ1 . . . xσi−1xσi+1 = m → xσ1 . . . xσi+1 , in which case F ′

is degenerate and the face is (−1)d−i(−1)1+σi ch(m, α
xσi

, σ′), where σ′ =

(σ1, . . . , σ̂i, . . . , σd−1).

Taking the sum
∑

d(o(F )F ) over all F , (and omitting some very tedious
work, we are left with

(1) The sum of all (−1)io(σ′) ch(m → xi,
α
xi

, σ′) (taken over all xi dividing α,
and all σ′ such that the resulting simplex is nondegenerate).

(2) The sum of all (−1)1+io(σ′) ch(m, α
xi

, σ′) (taken over all xi dividing α,
such that m → α

xi
6= m → α, and all σ′ such that the resulting simplex is

nondegenerate).

(3) The sum of all (−1)1+io(σ′) ch(m, α
xi

, σ′) (taken over all xi dividing α,
such that m → α

xi
= m → α, and all σ′ such that the resulting cell is

nondegenerate).

The sum in (1) is simply −
∑

i(−1)i+1U(m → xi,
α
xi

), and the sum of (2)

and (3) is
∑

i(−1)iU(m, α
xi

).

Thus, d(U(m, α)) =
∑

i(−1)iU(m, α
xi

) −
∑

i(−1)iU(m → xi,
α
xi

).
This agrees (up to monomial coefficients) with the Eliahou-Kervaire differ-

ential, φ([m, α]) =
∑

i(−1)ixi[m, α
xi

] −
∑

i(−1)i end(mxi)[m → xi,
α
xi

]. Thus,
we have proved the following:

Proposition 4.15. The complex described in Construction 4.1 supports the
Eliahou-Kervaire resolution.

It remains to show that this is a regular cellular complex, i.e., that the cells
U(m, α) are topological balls.

Lemma 4.16. Let m and α be given, and suppose that F is an interior facet
of of U(m, α). Then F is a facet of at most two nondegenerate ch(m, α, σ).

Proof. This statement is actually immediate from the embedding in ∆, which
is homeomorphic to Rn−1. However, we will need it again in the next section,
where we will not have the luxury of any ambient space, so we give a more
involved proof here.

Without loss of generality, we may suppose α = x1 . . . xp. Following the
notation of Lemma 4.12, we write F = 〈v1, . . . , vp−1〉, with the vi increasing in
the lex order, and, for each i ≥ 2, if vi = vi−1 → xj for some j, we set τi = j.
If no such j exists, we set τi = 0.
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Suppose first that τi = 0 for some i. Then it must be the case that vi =
vi−1 → xkx`, where k, ` < p are the two indices not appearing in τ . If σ =
(τ2, . . . , τi−1, k, `, τi, . . . , τp−1 or (τ2, . . . , τi−1, `, k, τi, . . . , τp−1, then it is clear
that F is a face of ch(m, α, σ). On the other hand, if σj = k with j < i−1, then
ch(m, α, σ) does not contain vi−1, and if σj = k with k > i, then ch(m, α, σ)
does not contain vi.

Now suppose instead that no τi = 0, and let k be the missing index from
τ . If v1 is the exponent vector of m, and let j be the maximal index such that
vj → xk 6= vj . If σ = (τ2, . . . , τi, k, τi+1, . . . , τp−1), then F is not a face of
ch(m, α, σ) if i < j (since this simplex does not contain vj) or if i > j (since
this simplex is degenerate). If v1 is not the exponent vector of m, then any
ch(m, α, σ) containing F must contain m, we must have σ = (k, τ2, . . . , τp).

Construction 4.17. Fix m and α. Let P be the set of all monomials that can
be written in the form m → β for some β dividing α. Partially order the set P

by (m → β) ≤P (m → γ) whenever β divides γ.

Observe that the maximal chains in P are in correspondence with the sim-
plices ch(m, α, σ). (The simplex ch(m, α, σ) corresponds to the chain m <P

m → σ1 <P · · · <P m → α.) Thus, U(m, α) is the order complex of P . We can
label the Hasse diagram of P by labeling the edge from m → β to m → xiβ with
xi. This is an EL-labelling (see for example [Wa]), so, applying [Wa, Theorem
3.2.2], we have:

Lemma 4.18. U(m, α) is a shellable simplicial complex.

Proposition 4.19. U(m, α) is a ball.

Proof. We have observed that U(m, α) is a pure p-dimensional shellable sim-
plicial complex, and that each of its (p − 1)-faces is contained in at most two
p-faces. Thus U(m, α) satisfies the hypotheses of [DK, Proposition 1.2], and so
is a p-ball as desired.

Putting everything together, we have shown the following:

Theorem 4.20. The cells U(m, α) form a cellular subdivision of the (n − 1)-
simplex which supports the Eliahou-Kervaire resolution of any power of the max-
imal ideal of k[x1, . . . , xn].

The resolution of (a, b, c, d)2 is pictured below. It is isomorphic to the com-
plex constructed by Batzies and Welker [BW] using discrete Morse theory. I
have been unable to determine whether these complexes continue to coincide
with more than four variables. Even if they are the same, the constructions are
very different. Where I have constructed the cells explicitly, Batzies and Welker
were demonstrating a special case of a more general construction, building down
from the Taylor resolution. Batzies and Welker show that their complex is CW,
but make no attempt to prove or disprove that the cells are regular.

Our construction is not polytopal. For example, the cell U(x3x4, x1x2) con-
tains the points x1x3 and x2x3 but none of the segment connecting them. It
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ad bd

ac bc

cd

a 2 b 2

d 2

c 2

ab

Figure 4: The Eliahou-Kervaire resolution of (a, b, c, d)2.

is unclear whether or not the complex could be deformed somehow to become
polytopal. On the other hand, Sinefakopoulos [Si1, Si2] gives an elegant in-
ductive construction of a polytopal subdivision of the (n − 1)-simplex which
supports a minimal resolution of a power of the maximal ideal.

ad bd

ac bc

cd

a 2 b 2

d 2

c
2

ab

Figure 5: The Sinefakopoulos resolution of (a, b, c, d)2.

The combinatorial structure of the Sinefakopoulos resolution is very different
from that of the Eliahou-Kervaire resolution, corresponding to their different
embeddings in the Taylor resolution. Although they are isomorphic as algebraic
chain complexes, I think these resolutions are nonetheless worthy of further
study as distinct objects.

5 Stable ideals

Our final task is to exhibit a regular cell complex supporting the Eliahou-
Kervaire resolution of any stable ideal.

Let B be a stable ideal, minimally generated by g1, . . . , gr.
If B is generated entirely in degree d, the cells U(gs, α) form a subcom-

plex of the resolution of (x1, . . . , xn)d constructed in the previous section; this
subcomplex supports the Eliahou-Kervaire resolution of B.

If B is not generated in a single degree, the situation is essentially the same,
but some tweaking is required. Namely, we need to modify the operation → xi
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to make sense in the new setting.

Definition 5.1. Let B be a stable ideal, m ∈ B a monomial, and α a squarefree
monomial. We set m →B α = beg(mα), the beginning of mα.

Remark. If B = (x1, . . . , xn)d and m has degree d, then the operations → xi

and →B xi are the same.

Construction 5.2. For a generator g, squarefree monomial α, and permutation
σ, let ch(g, α, σ) be the simplex on vertices named < g, g →B xσi

, . . . , g →B

α >. Define U(g, α) to be the union of of the nondegenerate ch(g, α, σ).

Treating the ch(g, α, σ) and U(g, α) as abstract objects, we can repeat our
arguments from the previous section to show that the {U(g, α)} support the
Eliahou-Kervaire resolution, and that each cell U(g, α) is a pure shellable sim-
plicial ball.

Thus, the {U(g, α)} form a regular cell complex supporting the Eliahou-
Kervaire resolution of B, as desired. This proves:

Theorem 5.3. Let B be any stable ideal of S. Then there is a regular cell
complex which supports the Eliahou-Kervaire resolution of B.

6 Consequences and further research

Now that we know the Eliahou-Kervaire resolution is cellular, there are tech-
niques given in [BStu] to produce minimal cellular resolutions of new ideals.
However, Borel ideals are sufficiently important that those resolutions are al-
ready well-known; the only new information is that those resolutions are also
cellular. For example, the following result about “Borel-with-holes” ideals is
due to Charalambous and Evans [CE]:

Corollary 6.1 ([CE]). Fix exponents e1, . . . , en, and a Borel ideal B. Let B′

be the “Borel-with-holes” ideal generated by those monomials of B which are
not divisible by any xei

i . Then B′ is minimally resolved by the subcomplex of the
Eliahou-Kervaire resolution generated by the symbols [m, α] such that mα does
not divide any xei

i .

6.1 Generalizing the construction

The Eliahou-Kervaire resolution of a stable ideal I is classically built from a
mapping cone, relying on I having linear quotients with special structure.

Can the construction be generalized to describe the minimal resolution of
any ideal with linear quotients?

Is it possible to describe a cellular structure on any (non-minimal) mapping
cone, as the Taylor resolution puts a simplicial structure on a non-minimal
resolution of any ideal?
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6.2 Different minimal resolutions

Recall that the simplex ch(m, α, σ) corresponds to the Taylor symbol [m →
σ, . . . , m]. It follows that the Eliahou-Kervaire resolution is embedded in the
Taylor resolution, with the EK-symbol [m, α] corresponding to the sum

∑

σ

nondegenerate

o(σ) ch(m, α, σ).

The Sinefakopoulos resolution [Si1,Si2] also produces an embedding of the min-
imal resolution of (x1, . . . , xn) inside the Taylor resolution.

We now know of two different cellular structures (due to Eliahou-Kervaire
[EK] and Sinefakopoulos [Si1,Si2]) on the minimal resolution of mn, and possi-
bly a third (the Morse theory construction of Batzies and Welker [BW]), each
corresponding to a sparse basis for the minimal resolution inside the Taylor
resolution.

What other ideals have multiple interesting realizations for their minimal
free resolutions?

If F• and G• are two different minimal free resolutions of I , it is reasonable
to wonder how they interact. What can be said about their sum or intersection
inside the Taylor resolution? For example, it is known that the intersection of
all (non-minimal) simplicial resolutions of an ideal is its Scarf complex (see [MS,
Chapter 6.2]. Do any other complexes arise in this way? Can an isomorphism
from F• to G• be extended to an automorphism of the Taylor resolution?
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