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1 Introduction

My research is in the field of Commutative Algebra, and has involved Hilbert functions, Betti numbers,
and monomial ideals, especially lex ideals.

A well-studied and important numerical invariant of a homogeneous ideal over a graded polynomial
ring is its Hilbert function. It measures the sizes of the graded components of the ideal. A case of
particular importance is the Hilbert function of the vanishing ideal of a projective algebraic variety X ;
this function gives the dimensions of the spaces Pd of forms of degree d vanishing on X . Hilbert’s
motivation for studying Hilbert functions came from another source: Invariant Theory. For many years,
Hilbert functions have been both central objects and fruitful tools in many fields, including Algebraic
Geometry, Combinatorics, Commutative Algebra, and Computational Algebra.

Let S = k[x1, . . . , xn] be a polynomial ring over a field k graded by deg(xi) = 1 for all i. If J ⊂ S is
a homogeneous ideal, the Hilbert function of J is given by HilbJ(d) = dimk(Jd), where Jd denotes the
degree-d part of J . It measures the size of the ideal and encodes a lot of important information. Hilbert’s
insight was that it is determined by finitely many of its values. He proved that there exists a polynomial
hJ(t) ∈ Q[t] such that HilbJ(d) = hJ(d) for d � 0. Two major applications of Hilbert functions in
Algebraic Geometry are the celebrated Riemann-Roch Formula (proved using a Hilbert polynomial) and
Chern classes.

Algorithms for the computation of Hilbert functions are implemented in computer algebra systems
such as MACAULAY, MACAULAY2, and COCOA. Hilbert functions are used in some algorithms to
speed up computation or to compute other invariants.

Gröbner Basis Theory (from Computational Algebra) reduces many questions on properties of Hilbert
functions to properties of Hilbert functions of ideals generated by monomials. This makes it possible to
use combinatorial arguments.

What are the possible Hilbert functions of ideals in S? Macaulay showed [Ma] in 1927 that every
Hilbert function is attained by a lex ideal (defined below).

Definition 1. Let L be an ideal in S minimally generated by monomials l1, . . . , lr. We say that L is
lex if the following property is satisfied: if m is a monomial that is greater lexicographically than li and
deg(m) = deg(li) for some 1 ≤ i ≤ r, then m ∈ L.

Lex ideals are highly structured: they are defined combinatorially and their Hilbert functions are
easy to describe. Thus, Macaulay’s theorem yields a characterization of all possible Hilbert functions of
homogeneous ideals in S. The theorem also plays an important role in the study of homogeneous ideals;
for example,

• Hartshorne’s proof that the Hilbert scheme is connected [Ha] uses lex
ideals in a fundamental way.

• The homological properties of lex ideals are combinatorially tractable
[EK]. This leads to results by Bigatti [Bi], Hulett [Hu], Pardue [Pa], show-
ing that lex ideals have extremal Betti numbers.
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Other important numerical invariants of a homogeneous ideal J in S are its Betti numbers. A free
resolution of S/J is an exact sequence

F : · · · → F2 → F1 → F0 → S/J → 0

with each Fi a free module. Free resolutions were introduced by Hilbert, and have been widely studied
since they encode a lot of information about the ideal. F is minimal if each free module Fp has mini-
mum possible rank (among all free resolutions); there exists a unique minimal free resolution up to an
isomorphism. The Betti numbers of S/J are the ranks of the free modules in a minimal free resolution,
bp(S/J) = rk Fp.

We can grade each Fi so that all the maps in F are homogeneous of degree 0. If we do so, we can
write Fp = ⊕sFp,s, where Fp,s is generated in degree s. Then the graded Betti numbers of S/J are the
ranks of these modules, bp,s(S/J) = rk Fp,s.

2 Research Summary and Plans

2.1 Lexifying ideals

Macaulay’s Theorem states that every Hilbert function in the ring S is attained by a lex ideal. One of
the problems that I am interested in is:

Problem 2.1.1. In what other rings does Macaulay’s Theorem hold?

Kruskal [Kr] and Katona [Ka] showed that Macaulay’s theorem holds in the squarefree ring R =
S/(x2

1, · · · , x
2
n). This result is of great importance to the field of Combinatorics because it classifies the

possible f -vectors of simplicial complexes. (Every simplicial complex ∆ on n vertices is associated, under
the Stanley-Reisner correspondence), to a monomial ideal I∆ of R. The Hilbert function of R/I∆ is the
f -vector of ∆.)

Clements and Lindstrom [CL] extended Kruskal and Katona’s result to the ring S/(xe1

1
, · · · , xer

r ) for
any sequence of positive integers e1 ≤ · · · ≤ er.

Shakin [Sh] characterized the Borel-fixed ideals B such that Macaulay’s Theorem holds in the quotient
S/B. (Borel-fixed ideals are much-studied monomial ideals because they arise as generic initial ideals.
They may be defined entirely combinatorially and are one of the largest classes of ideals whose minimal
free resolutions are known [EK].)

In [MeP1,MeP2], [Me1], and [MM2], we have studied rings of the form S/M , with M a monomial
ideal, and shown the following:

Theorem 2.1.2. [MeP1]

• If Macaulay’s Theorem holds in S/M , and L is a lex ideal of S/M , then
Macaulay’s Theorem holds in S/M + L.

• If Macaulay’s Theorem holds in S/M , then it also holds in S[y]/M .

Theorem 2.1.3. [Me1] If M is generated by a regular sequence, then Macaualay’s Theorem holds in
S/M if and only if M has the form (xe1

1
, · · · , x

er−1

r−1
, xer−1

r y), where e1 ≤ · · · ≤ er is an increasing sequence
and y ∈ {xr, · · · , xn}.

Theorem 2.1.4. [MeP1] Let P = (xe1

1
, · · · , xer

r ) with e1 ≤ · · · ≤ er, and K a compressed ideal of S/P ,
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generated in degree d. If J is any homogeneous ideal of S/(K+P ), there exists a lex ideal L ⊂ S/(K+P )
such that the Hilbert functions of L and J agree in all degrees greater than or equal to d.

Theorem 2.1.5. [MM2] Let {x1, . . . , xn} = V1

∐

· · ·
∐

Vr, such that, whenever a < b < d with xa ∈ Vi

and xb, xd ∈ Vj , there exists xc ∈ Vi with b < c < d. Put Qi = (xj : xj ∈ Qi) and P =
∑

Q2
i . Then

Macaulay’s theorem holds in S/P .

The monomial ideals of the ring S/P in Theorem 2.1.5 correspond under the Stanley-Reisner corre-
spondence to r-colored simplicial complexes, i.e., complexes on {x1, . . . , xn} such that no face contains
more than one vertex from any of the Vi. Thus, Theorem 2.1.5 characterizes the f -vectors of r-colored
complexes with a fixed coloring. It generalizes a theorem of Frankl, Furedi, and Kalai [FFK], which
characterized the f -vectors of r-colorable complexes.

I plan to continue my work on Problem 2.1.1.; for example, I will consider toric varieties. These
varieties, which come equipped with a torus action, are of considerable importance in Algebraic Geometry,
Commutative Algebra, and Combinatorics. They correspond to quotients of S by certain binomial ideals;
these are highly structured (for example, they come with a natural multigrading that refines the grading
by degree) and seem likely candidates to have an analog of Macaulay’s theorem.

2.2 The lex-plus-powers conjecture

Bigatti [Bi], Hulett [Hu], and Pardue [Pa] showed that the lex ideals have maximal Betti numbers in S;
that is, if L is the lex ideal having the same Hilbert function as J , bp,s(S/L) ≥ bp,s(S/J) for all p, s.
Aramova, Herzog, and Hibi [AHH] proved the analogous result in the squarefree ring S/(x2

1, · · · , x
2
n). In

view of these results and of a geometrically motivated conjecture of Eisenbud, Green, and Harris [EGH1,
EGH2], Graham Evans [FR] made the lex-plus-powers conjecture:

The Lex-plus-powers Conjecture 2.2.1. Let J be a homogeneous ideal of S containing a regular
sequence f1, · · · , fr with ei = deg(fi) ≤ ej = deg(fj) whenever i ≤ j. Set P = (xe1

1
, · · · , xer

r ). If L is a
lex ideal such that L+ P has the same Hilbert function as J , then bp,s(S/L+P ) ≥ bp,s(S/J) for all p, s.

The Eisenbud-Green-Harris conjecture asserts the existence of a lex ideal L such that L+ P has the
same Hilbert function as J .

Both conjectures are wide open. Some special cases are proved by G. Caviglia, S. Cooper, G. Evans,
C. Francisco, D. Maclagan, B. Richert, and S. Sabourin [CM,Co1,Co2,ER,Fr,Fr2,Ri,RS]. An expository
paper describing the the conjectures is [FR].

In a series of papers [MPS, Mu, MM1], Murai, Peeva, Stillman, and I prove the lex-plus-powers
conjecture in the case that the regular sequence consists of powers of the variables.

Theorem 2.2.2. [MPS] Set P = (x2
1, · · · , x

2
n). Let N be any homogeneous ideal of S containing P . Let

L be the lex ideal such that N+P and L+P have the same Hilbert function (L exists by Kruskal-Katona’s
Theorem). Then bp,s(S/L+ P ) ≥ bp,s(S/N + P ) for all p, s.

Theorem 2.2.3. [MM1] Set P = (xe1

1
, · · · , xer

n ) with e1 ≤ · · · ≤ er. Let N be any homogeneous ideal
of S containing P . Let L be the lex ideal such that N + P and L+ P have the same Hilbert function (L
exists by Clements-Lindström’s Theorem). Then bp,s(S/L+ P ) ≥ bp,s(S/N + P ) for all p, s.

In view of these, we made the following conjecture in [MeP2] (under some additional assumptions, for
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example char(k) = 0):

Conjecture 2.2.4. Let S/M be a ring in which Macaulay’s theorem holds. Let J be any homogeneous
ideal of S/M , and let L be the lex ideal with the same Hilbert function as J . Then:

(i) The Betti numbers of L over S/M are greater than or equal to those of J .

(ii) The Betti numbers of L+M over S are greater than or equal to those of
J +M .

Note that the first claim is usually about infinite resolutions, while the second deals exclusively with
finite resolutions.

Theorem 2.2.3 proves Conjecture 2.2.4 (ii) in the Clements-Lindström case. Murai and Peeva [MuP]
prove Conjecture 2.2.4 (i) in this case using a walk on the Hilbert scheme.

In [MM2], Murai and I produced a counterexample to Conjecture 2.2.4(i). Conjecture 2.2.4(ii) remains
wide open, however.

I plan to continue my work on Conjectures 2.2.1 and 2.2.4. The proof of Theorems 2.2.2 and 2.2.3
make heavy use of compressed ideals. I plan to explore in what other rings one can use compressed ideals
to study Betti numbers.

2.3 Compression

Compression is the main technique that I have used in various settings. This techinique was introduced
by Macaulay [Ma]. Compression and compressed ideals have been used to study Hilbert functions in
Macaulay [Ma], Clements-Lindstrom [CL], Mermin-Peeva [MeP1,MeP2], and Mermin [Me1,Me2]. Com-
pression was used to study Betti numbers in [MPS] and [Me2].

Definition 2.3.1. Let N be a monomial ideal of S, and let A be a subset of {x1, · · · , xn}. Let ⊕f denote
a sum over all monomials of k[Ac]. We may decompose N as a direct sum of k[A]-modules, N = ⊕ffNf ,
with each Nf a monomial ideal of k[A]. We say that N is A-compressed if every Nf is a lex ideal of
k[A]. For each f , let Tf be the lex ideal of k[A] with the same Hilbert function as Nf . Put T = ⊕ffTf .
We say that T is the A-compression of N . If N is A-compressed for all p-element sets A, we say that
N is p-compressed. If N is A-compressed for all proper subsets A of {x1, · · · , xn}, we say that N is
compressed.

In [Me2] I have shown that 3-compressed ideals are lex. This leads to a very simple new proof of
Macaulay’s theorem, and gives hope that many questions about lex ideals can be solved by looking at
compressed ideals instead. For example, Bigatti, Hulett, and Pardue’s theorem [Bi,Hu,Pa] is an immediate
corollary of the result in [Me2] that Betti numbers over S are nondecreasing under compression.

In [MPS], we used compression in the squarefree ring R = S/(x2
1, · · · , x

2
n) in order to prove Theo-

rem 2.2.2. It is not known how Betti numbers behave under compression, in any ring other than S, but
it seems reasonable to expect they do not decrease. In fact, since any compression step may be viewed
as replacing the ideal with a lex ideal in an associated multigrading, it seems reasonable to conjecture
that these multigraded Betti numbers are nondecreasing under compression. I intend to conduct research
exploring further the ideas in [Me2] and [MPS] on the following:

Problem 2.3.2. How do Betti numbers behave under compression?
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2.4 Cellular resolutions

One of the most successful recent ideas in the study of resolutions is that of cellular resolutions [BS,BPS,JW,
MS]. Let M ⊂ S be a monomial ideal and

F : · · ·
φ2

→F1

φ1

→F0

φ0

→M → 0

be a free resolution; write each Fp = ⊕S(fp,j). We say that F is cellular (respectively simplicial, CW )
if there exists a regular cell complex (respectively simplicial complex, CW-complex) ∆ and bijections ψp

from the fp,j to the p-dimensional cells of ∆ which commute with the boundary maps: ∂p (ψp(fp,j)) =

ψp−1

(

φp(fp,j)
)

, where ∂ is the boundary map in the topological chain complex of ∆ and (·) represents

evaluating all xi at 1.
The Taylor resolution, which (non-minimally) resolves every monomial ideal, is simplicial [BPS]. The

situation for minimal resoutions is more complicated. Monomial ideals with “generic” exponents (such
as complete intersections) are minimally resolved by the Scarf complex [BPS], which is simplicial. The
largest other class of monomial ideals whose minimal resolutions are known is the stable ideals, which
are resolved by the Eliahou-Kervaire resolution [EK]. The Eliahou-Kervaire resolution is not simplicial,
but I show in [Me4] that it is cellular. In [Ve], Velasco constructs ideals whose minimal resolutions are
not supported on any CW-complex.

There are general techniques [BS, BPS, PV] for using a cellular minimal resolution of an ideal M to
obtain minimal resolutions of related ideals. For example, Sinefakopoulos [Si] uses a cellular structure on
the minimal resolution of a power of the homogenous maximal ideal (x1, · · · , xn) to construct minimal
resolutions of certain p-Borel-fixed ideals. (This is an important class of ideals which arise as generic
initial ideals in characteristic p, whose resolutions were previously unknown.)

I am interested in the following problem:

Problem 2.4.1 Identify (classes of) monomial ideals whose minimal resolutions are cellular, and con-
struct those resolutions.

One simplicial resolution which I find particularly interesting is the Lyubeznik resolution [Ly, No]. A
monomial ideal usually has many Lyubeznik resolutions (corresponding to orderings on its generators),
each of which sits canonically inside the Taylor resolution. Their intersection is the Scarf complex, which
is in general not a resolution. I am interested in exploring two questions about the Lyubeznik resolution:

Problem 2.4.2

• How can one choose a Lyubeznik resolution which is as close to minimal
as possible?

• When can one use the various Lyubeznik resolutions to construct the min-
imal resolution?
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