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Abstract. We give a complete classification of free and non-free multiplicities
on the A3 braid arrangement. Namely, we show that all free multiplicities on

A3 fall into two families that have been identified by Abe-Terao-Wakefield

(2007) and Abe-Nuida-Numata (2009). The main tool is a new homological
obstruction to freeness derived via a connection to multivariate spline theory.

1. Introduction

Let V = K` be a vector space over a field K of characteristic zero. A central
hyperplane arrangement A = {H1, . . . ,Hn} is a set of hyperplanes Hi ⊂ V passing
through the origin in V . In other words, if we let {x1, . . . , x`} be a basis for the dual
space V ∗ and S = Sym(V ∗) ∼= K[x1, . . . , xl], then Hi = V (αHi

) for some choice of
linear form αHi

∈ V ∗, unique up to scaling. A multi-arrangement is a pair (A,m)
of a central arrangement A and a map m : A → Z≥0, called a multiplicity. If
m ≡ 1, then (A,m) is denoted A and is called a simple arrangement.

The module of derivations on S is defined by DerK(S) =
⊕`

i=1 S∂xi
, the free

S-module with basis ∂xi = ∂/∂xi for i = 1, . . . , `. The module DerK(S) acts on
S by partial differentiation. Our main object of study is the module D(A,m) of
logarithmic derivations of (A,m):

D(A,m) := {θ ∈ DerK(S) : θ(αH) ∈ 〈αm(H)
H 〉 for all H ∈ A},

where 〈αm(H)
H 〉 ⊂ S is the ideal generated by α

m(H)
H . If D(A,m) is a free S-module,

then we say (A,m) is free or m is a free multiplicity of the simple arrangement A.
For a simple arrangement, D(A,m) is denoted D(A); if D(A) is free we say A is
free.

The module of logarithmic derivations is central to the theory of hyperplane
arrangements, initiated and studied by Saito in [Sai75, Sai80]. In particular, it
is important to know when A is a free arrangement. Indeed, possibly the most
important open question in hyperplane arrangements is whether freeness is a com-
binatorial property; see, for instance, [OT92]. Yoshinaga [Yos04] has shown that
freeness of an arrangement is closely related to freeness of the canonical restricted
multi-arrangement defined by Ziegler [Zie89]. Hence the freeness of multiarrange-
ments is important to the theory of hyperplane arrangements as well.

The braid arrangement of type A` is defined as {Hij = V (xi−xj) : 0 ≤ i < j ≤ `}
in V ∼= K`+1. Free multiplicities on braid arrangements have been studied in [Ter02,
ST98, AY09, Yos02, ANN09]. Until recently there have been very few tools to study
multi-arrangements. In two papers [ATW07, ATW08], Abe-Terao-Wakefield extend
the theory of the characteristic polynomial and deletion-restriction arguments to
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multi-arrangements. These allow new methods for determining the freeness (and
non-freeness) of multiarrangements. In particular, the tool of local and global
mixed products is introduced for characterizing non-freeness of multi-arrangements
in some instances. Abe [Abe07] uses these tools to give the first non-trivial complete
classification of free and non-free multiplicities on a hyperplane arrangement, the
so-called deleted A3 arrangement. The main result of this paper is the next natural
step; namely a complete characterization of free and non-free multiplicities on the
A3 braid arrangement.

There are two main classes of multiplicities that have been characterized as free
on the A3 braid arrangement. The first class may be described as follows. Suppose
that, for some index i, the inequalities m(Hjk) ≥m(Hij)+m(Hik)−1 are satisfied
for every pair of distinct indices j 6= i, k 6= i (geometrically, three hyperplanes
which intersect in codimension two have relatively high multiplicity compared to
the other three hyperplanes). If these inequalities are satisfied, we say that the
index i is a free vertex for m. If m has a free vertex, then it is known that m is
a free multiplicity [ATW08, Corollary 5.12] (see also Corollary 3.17). To describe
the second (much more complex) class of free multiplicities, take four non-negative
integers n0, n1, n2, and n3 and consider the multiplicity m(Hij) = ni + nj + εij ,
where εij ∈ {−1, 0, 1}. We call these ANN multiplicities, due to a classification of
all such multiplicities as free or non-free by Abe, Nuida, and Numata in [ANN09].
It turns out the multiplicity m(Hij) = ni + nj is always free, and the classification
of all ANN multiplicities depends on measuring the deviation from these using
signed-eliminable graphs. We describe this classification in more detail in Section 6.
Our main result is that all free multiplicities on A3 fall into these two classes.

Theorem 1.1. The multi-braid arrangement (A3,m) is free if and only if m has
a free vertex or m is a free ANN multiplicity.

We prove Theorem 1.1 via a connection to multivariate splines first noted by
Schenck in [Sch14] and further developed by the first author in [DiP16]. Our main
tool, Theorem 3.16, is a new criterion for freeness of a multi-braid arrangement
(A3,m) in terms of syzygies of ideals generated by powers of the linear forms
defining the hyperplanes of A3. This condition gives a robust obstruction to freeness
which we use to establish Theorem 1.1.

Our paper is arranged as follows. In Section 2, we introduce the notation and
background we will use throughout the paper. Section 3 uses homological techniques
to prove Theorem 3.16, which says that the multi-arrangement (A3,m) is free pre-
cisely when a certain syzygy module is “locally generated.” Readers may safely
skip the rest of that section and simply read the theorem statement if they desire.
In Sections 4 and 5, we prove Theorem 1.1 using Theorem 3.16 along with combi-
natorial arguments using syzygies and Hilbert functions. In Section 6, we recover
the non-free multiplicities in the classification of Abe-Nuida-Numata [ANN09]. We
conclude with remarks on using the free ANN multiplicities of [ANN09] to construct
minimal free resolutions for certain ideals generated by powers of linear forms. In
Appendix A, we illustrate the classification of Theorem 1.1 in the case of two-valued
multiplicities.

2. Notation and preliminaries

In this section we set up the main notation to be used throughout the paper.
The data of the A3 arrangement is captured in a labeling of the vertices of K4,
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the complete graph on four vertices; namely the edge between vi and vj in K4

corresponds to the hyperplane Hij = V (xi−xj). As such we will also denote A3 by
AK4 . Put mij = m(Hij). We will record the multiplicities of the hyperplanes as
a lexicographically ordered list m = (m01,m02,m03,m12,m13,m23) which we can
also associate to the obvious labelling of the edges of K4. We will often refer to the
multiplicities as a, b, c, d, e, f according to the edge-labeling in Figure 1.

v0

a

v1

e

v3

c

f
v2

b

d

Figure 1. Labelling Convention

For simplicity, we set S = K[x0, x1, x2, x3] and αij = xi − xj for all i > j. Our
goal is to study when the module of multi-derivations

D(A3,m) = {θ ∈ derK(S) : θ(αij) ∈ 〈α
mij

ij 〉 for all 0 ≤ i < j ≤ 3}

is free as an S-module.

Remark 2.1. Note that there is a line contained in every hyperplane of A3, namely
the line described parametrically as {(t, t, t, t) : t ∈ K}. Thus A3 is not essential ;
an essential arrangement is one in which all hyperplanes intersect in only the origin.
Projecting along this line we obtain an arrangement in K3 whose hyperplanes may
be described as follows. Set x = x1−x0, y = x2−x0, z = x3−x0. Then the essential
A3 arrangement in K3 is Ae3 = {V (x), V (y), V (z), V (y − x), V (z − x), V (z − y)}.
See Figure 2 for a picture of this arrangement in R3. Set R = K[x, y, z]. It is
not difficult to see that D(A3,m) ∼= D(Ae3,m) ⊗R S. Hence freeness of (A3,m)
and (Ae3,m) are equivalent. We will suppress the distinction between Ae3 and A3,
calling both the A3 arrangement. We will also suppress the distinction between
the polynomial rings S = K[x0, x1, x2, x3] and R = K[x, y, z], simply letting S refer
to the ambient polynomial ring in both situations. It will be obvious from context
(but not important) which polynomial ring is meant.

In the next section, which is the technical heart of the paper, we will show
that freeness of D(A3,m) is determined by syzygies of certain ideals which we now
define. For any edge e = {i, j}, we set the ideal J(ij) = 〈αmij

ij 〉. More generally,

for any subset σ ⊂ {0, 1, 2, 3}, we set

J(σ) =
∑
{i,j}⊂σ

J(ij).

For instance, J(012) = J(01)+J(02)+J(12). Using x, y, z in place of x1−x0, x2−
x0, x3−x0 as in Remark 2.1 and the multiplicity labels (a, b, c, d, e, f) as in Figure 1,
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Figure 2. Essential A3 arrangement

the following is a list of all ideals J(σ) for σ ⊂ {0, 1, 2, 3}.

J(01) = 〈xa〉 J(012) = 〈xa, yb, (x− y)d〉
J(02) = 〈yb〉 J(013) = 〈xa, zc, (x− z)e〉
J(03) = 〈zc〉 J(023) = 〈yb, zc, (y − z)f 〉
J(12) = 〈(x− y)d〉 J(123) = 〈(x− y)d, (x− z)e, (y − z)f 〉
J(13) = 〈(x− z)e〉 J(0123) = 〈xa, yb, zc, (x− y)d, (x− z)e, (y − z)f 〉
J(23) = 〈(y − z)f 〉

Theorem 3.16 will show that the freeness of the multi-arrangement (A3,m) depends
on the relationship between the “global” first syzygy module syz(J(0123)) and its
“local” first syzygies syz(J(ijk)), for 0 ≤ i < j < k ≤ 3.

3. Technical machinery

The bulk of this section is technical, and the goal is simply to prove Theorem 3.16.
Later sections require only the statement of this theorem, so readers wishing to
avoid the technical details can safely skip to Section 4.1. In particular, additional
notation introduced in this section is not used elsewhere in the paper.

A graphic arrangement is a subarrangement of a braid arrangement. More pre-
cisely, let G be a vertex-labeled graph on `+1 vertices {v0, . . . , v`} with no loops or
multiple edges. Denote by E(G) the set of edges of G. We denote the edge between
vertices vi, vj by {i, j}. The graphic arrangement corresponding to G is

AG =
⋃

{i,j}∈E(G)

V (xj − xi) ⊂ K`+1.

A graphic multi-arrangement (AG,m) is a graphic arrangement AG with an as-
signment m : E(G)→ N of a positive integer m(e) to every edge e ∈ E(G).

3.1. Homological necessities. Our main tool to study freeness of D(AG,m) is a
chain complex R/J [G] whose top homology is the module D(AG,m), introduced
in [DiP16]. We now define this complex.

Denote by ∆(G) the clique complex of G. This is the simplicial complex on the
vertex set of G whose simplices are given by sets of vertices that induce a complete
subgraph (clique) of G. Denote by ∆(G)i the set of cliques of G with (i+1) vertices,
i.e., the simplices of ∆(G) of dimension i.
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Definition 3.1. Let G be a graph with ` + 1 vertices and set S = K[x0, . . . , x`].
Define the complex R[G] to be the simplicial co-chain complex of ∆(G) with co-
efficients in S; that is, R[G]i =

⊕
γ∈∆(G)i

S[eγ ], where [eγ ] is a formal symbol corre-

sponding to the i-dimensional clique γ. The differential δi : R[G]i → R[G]i+1 is
the simplicial differential of the co-chain complex of ∆(G) with coefficients in S.

Remark 3.2. By definition, H•(R[G]) is isomorphic to the cohomology of ∆(G)
with coefficients in S.

In the following definition, if e = {i, j} ∈ E(G), we will denote αij = xi − xj by
αe.

Definition 3.3. Let (AG,m) be a graphic multi-arrangement. Let σ = {j0, j1, . . . , ji}
be a clique of G. Then

J(σ) := 〈αme
e |e ∈ E(σ)〉.

If σ is a vertex of G, then J(σ) = 0.

Definition 3.4. Given a graphic multi-arrangement (AG,m), J [G] is the sub-
chain complex ofR[G] with J [G]i =

∑
γ∈∆(G)i

J(γ)[eγ ]. R/J [G] denotes the quotient

complex R[G]/J [G] with R/J [G]i =
⊕

γ∈∆(G)i

(S/J(γ))[eγ ].

Lemma 3.5. The module of multi-derivations D(AG,m) of the graphic multi-
arrangement (AG,m) is H0(R/J [G]).

Proof. Let F ∈ R[G]0. Write F = (. . . , Fv, . . .)v∈V (G). Then F ∈ ker(δ̄0) if and
only if, for all e = {i, j} ∈ E(G), we have

(δ(F ))e = Fi − Fj ∈ J(e) = 〈(xi − xj)m(e)〉.

This last statement is the definition of D(AG,m). �

With Lemma 3.5 as our justification, we will call R/J [G] the derivation complex
of G.

Example 3.6. Take G to be the three-cycle with labeling as in Figure 3.

σ1

v0 v1

v2

Figure 3. Three-cycle for Example 3.6

The short exact sequence of complexes 0 → J [G] → R[G] → R/J [G] → 0 is
shown below.
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J [G] 0 J(01)⊕ J(02)⊕ J(12) J(012) 0

R[G] 0 S3 S ⊕ S ⊕ S S 0

R/J [G] 0 S3 S

J(01)
⊕ S

J(02)
⊕ S

J(12)

S

J(012)
0

δ0 δ1

δ0 δ1

δ0 δ1

The differentials are

δ0 =


0 1 2

01 −1 1 0
02 −1 0 1
12 0 −1 1

 δ1 =
( 01 02 12

012 1 −1 1
)
.

The homologies Hi(R[G]) vanish for i = 1, 2, and H0(R[G]) = S. The corre-
sponding long exact sequence in (co)homology splits up to yield the short exact
sequence

0→ S → H0(R/J [G])→ H1(J [G])→ 0,

and an isomorphism H1(R/J [G]) ∼= H2(J [G]) = 0. The short exact sequence
actually splits, so H0(R/J [G]) ∼= S ⊕H1(J [G]).

The map δ1 : J(01)⊕ J(02)⊕ J(12)→ J(012) is surjective by definition, hence
H2(R/J [G]) = 0. Also, H1(J [G]) = ker(δ1) = syz(J(012)), the module of syzygies
on J(012). Hence H0(R/J [G]) = D(AG,m) ∼= S ⊕ syz(J(012)).

Remark 3.7. The ideal J(012) in Example 3.6 is codimension two and Cohen-
Macaulay. Hence D(AG,m) ∼= S ⊕ syz(J(012)) is a free module regardless of the
choice of m01,m02,m12. It is well-known that rank two arrangements are totally
free for the same reason; they are second syzygy (or reflexive) modules of rank two.

Remark 3.8. In Example 3.6, we understand syz(J(012)) to represent syzygies
among the generators (x0 − x1)m01 , (x1 − x2)m12 , (x0 − x2)m02 , even if this is not
a minimal generating set. For instance, if m01 + m12 ≤ m02 + 1, then J(012) is
generated by (x0 − x1)m01 and (x1 − x2)m12 . In this case, syz(J(012)) is generated
by the Koszul syzygy on (x0 − x1)m01 , (x1 − x2)m12 and the relation of degree m02

expressing (x0−x2)m02 as a polynomial combination of (x0−x1)m01 , (x1−x2)m12 .

In Example 3.6, Hi(R/J [G]) = 0 for i = 1, 2, and D(AG,m) was free. This is
no coincidence.

Theorem 3.9. [DiP16, Theorem 3.2] The graphic multi-arrangement (AG,m) is
free if and only if Hi(R/J [G]) = 0 for all i > 0.

Theorem 3.9 follows from a result of Schenck using a Cartan-Eilenberg spectral
sequence [Sch97]. Although we use Theorem 3.9 in this paper primarily to study
the multi-braid arrangements (A3,m), we show in the following example how it
may be used to classify free multiplicities on other graphic arrangements.

Example 3.10 (Deleted A3 arrangement). Consider the graph G in Figure 4.
This is the simplest example of a graph where freeness of (AG,m) depends on the
multiplicities m.
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v0

xa

v1

(z − x)e

v3
zc yb v2

(y − x)d

Figure 4. Graph for the deleted A3 arrangement

The maps in cohomology (the differentials of R[G]) are given by

δ0 =



0 1 2 3

01 −1 1 0 0
02 −1 0 1 0
03 −1 0 0 1
12 0 −1 1 0
13 0 −1 0 1

 δ1 =

( 01 02 03 12 13

013 1 0 −1 0 1
012 1 −1 0 1 0

)
,

where the rows and columns are labeled by faces (see Figure 4). Let us set x =
x1 − x0 = α01, y = x2 − x0 = α02, z = x3 − x0 = α03. Then α23 = x3 − x2 = z − y
and α13 = x3 − x1 = z − x. Suppose the edge {i, j} is assigned multiplicity mij .
Set m01 = a,m02 = b,m03 = c,m12 = d,m13 = e. We have

J(012) = 〈xa, yb, (y − x)d〉
J(013) = 〈xa, zc, (z − x)e〉.

Remark 3.11. The following characterization of free multiplicities on the deleted
A3 arrangement in Example 3.10 is derived in [Abe07] using techniques for multi-
arrangements developed in [ATW07, ATW08]. We show how this characterization
may be obtained homologically from Theorem 3.9.

Proposition 3.12. Let AG be the deleted A3 arrangement from Example 3.10.
With notation as in Example 3.10, (AG,m) is free if and only if either c+e ≤ a+1
or b+ d ≤ a+ 1.

Proof. We haveHi(R[G]) = 0 for i > 0 since ∆(G) is contractible, andH1(R/J [G]) ∼=
H2(J [G]) via the long exact sequence corresponding to 0 → J [G] → R[G] →
R/J [G]→ 0. The complex J [G] has the form⊕

{i,j}∈G

J(ij)
δ1−→ J(013)⊕ J(023).

The map δ1 is given by the matrix

δ1 =

( 01 02 03 12 13

013 1 0 −1 0 1
012 1 −1 0 1 0

)
.

Let us determine when δ1 is surjective, hence when H2(J [G]) ∼= H1(R/J [G]) = 0.
We see that, given (f1, f2, f3, f4, f5) ∈ J [G]1, δ1(f1, f2, f3, f4, f5) = (f1 + f3 −
f5, f1 − f2 − f4). This map surjects onto J(σ1)⊕ J(σ2) if and only if either J(013)
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is generated by xa, zc or J(012) is generated by yb, (y − x)d. This in turn happens
if and only if either c+ e ≤ a+ 1 or b+ d ≤ a+ 1. By Theorem 3.9, (AG,m) is free
if and only if c+ e ≤ a+ 1 or b+ d ≤ a+ 1. �

Remark 3.13. Let G be a graph on n+1 vertices. As a consequence of Theorem 3.9,
the Hilbert polynomial (and indeed Hilbert function) of D(AG,m), when (AG,m)
is free, is given by the Euler characteristic of R/J [G], namely

HP (D(AG,m), d) =
dim ∆(G)∑
i=0

(−1)iHP (R/J [G]i, d)

=
dim ∆(G)∑
i=0

(−1)i
∑
γ∈∆(G)i

HP (S/J(γ), d).

Assuming D(AG,m) is free, generated in degrees 0, A1, . . . , Ak, we also have

HP (D(AG,m), d) =

(
d+ n− 1

n− 1

)
+

k∑
i=1

(
d+ n− 1−Ai

n− 1

)
.

Equating the leading coefficients of these two expressions yields k = n. Equating
second coefficients yields the well-known expression A1 + · · · + An = |m|, where
|m| =

∑
ijmij . Equating coefficients of dn−3 yields the equality of so-called second

local and global mixed products, GMP (2) = LMP (2), defined in [ATW07].
This gives some insight into how a better understanding of the homologies of

R/J [G] will lead to more precise obstructions to freeness. Indeed, the Hilbert
polynomial takes no account of graded dimensions that eventually vanish, while
freeness may depend heavily on such information. It is this Artinian information
that we now characterize.

3.2. Freeness via syzygies. For the remainder of the paper, we specialize to the
A3 braid arrangement. In this section we characterize free multiplicities on A3

in Theorem 3.16 as multiplicities for which a certain syzygy module is generated
locally. We label K4 as in Figure 5. Just as in Remark 2.1, we choose variables
x = x1 − x0, y = x2 − x0, z = x3 − x0.

v0

xa

v1

(z − x)e

v3

zc

(z − y)f
v2

yb

(y − x)d

Figure 5. Complete graph on four vertices

Lemma 3.14. For any multiplicity m = (a, b, c, d, e, f), D(AK4 ,m) is free if and
only if H2(J [K4]) = 0.
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Proof. Since the clique complex ∆(K4) is a three-dimensional simplex, it is con-
tractible and Hi(R[K4]) = 0 except when i = 0. From the long exact sequence in
homology associated to

0→ J [K4]→ R[K4]→ R/J [K4]→ 0,

we conclude that Hi(R/J [K4]) ∼= Hi+1(J [K4]) for i ≥ 1. It follows from The-
orem 3.9 that (AK4

,m) is free if and only if Hi(J [K4]) = 0 for all i > 1. The
complex J [K4] has the form

0→
⊕

ij∈∆(K4)1

J(ij)→
⊕

ijk∈∆(K4)2

J(ijk)→ J(0123)→ 0.

The final map is clearly surjective, so H3(J [K4]) = 0. Hence (AK4
,m) is free if

and only if H2(J [K4]) = 0. �

The following lemma gives a presentation for the homology module H2(J [K4]).

Lemma 3.15. Let K4 have multiplicities m(τ) ∈ Z+ for each edge τ ∈ E(K4).
Endow the formal symbols [eτ ] with degrees m(τ). We define the module of locally
generated syzygies K ⊂

⊕
τ∈E(K4)

Seτ as follows. For each σ ∈ ∆(K4)2, set

Kσ =

{∑
τ⊂σ

aτ [eτ ] :
∑

aτα
m(τ)
τ = 0

}
,

and K =
∑
σKσ. Also define the global syzygy module V ⊂

⊕
τ∈E(K4)

S[eτ ] by

V =

 ∑
τ∈E(K4)

aτ [eτ ] :
∑

aτα
m(τ)
τ = 0

 .

Then K ⊂ V and H2(J [K4]) ∼= V/K as S-modules.

Proof. The proof is very similar to the proof of [SS97, Lemma 3.8]. Set up the
following diagram with exact columns, whose first row is the complex J [K4].

0 0 0

⊕
τ∈E(K4)

J(τ)
⊕

σ∈∆(K4)2

J(σ) J(0123)

⊕
τ∈E(K4)

S[eτ ]
⊕

σ∈∆(K4)2

 ⊕
τ∈E(K4)
τ⊂σ

S[eτ,σ]

 ⊕
τ∈E(K4)

S[eτ ]

0
⊕

σ∈∆(K4)2

Kσ V

0 0

ι
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The middle row is in fact exact. We argue this as follows. Given τ ∈ ∆(K4)1,
let ∆τ be the sub-complex of ∆(K4) consisting of simplices which don’t contain τ ;
∆τ is the union of two triangles joined along the one edge which does not intersect
τ . The middle row splits as a direct sum of sub-complexes of the form

S[eτ ]→ S[eτ,σ1
]⊕ S[eτ,σ2

]→ S[eτ ],

where σ1, σ2 are the two triangles which meet along τ . The (co)homology of each
of these sub-complexes may be identified with the simplicial cohomology of ∆(K4)
relative to ∆τ , which vanishes in all dimensions.

Now the long exact sequence in homology yields the isomorphisms H1(J [K4]) ∼=
ker(ι) and H2(J [K4]) ∼= coker(ι). The image of

⊕
σ∈∆(K4)2

Kσ under ι is precisely

K, so we are done. �

As a consequence of Theorem 3.9 and Lemma 3.15, the multiplicity m is free if
and only if the syzygy module of J(0123) is “locally generated,” as we summarize
in the next theorem.

Theorem 3.16. The multiplicity m is free on K4 if and only if the syzygies on the
ideal J(0123) are generated by the syzygies on the four sub-ideals J(012), J(013),
J(023), J(123). With notation as in Figure 5, the multiplicity m = (a, b, c, d, e, f)
is free if and only if the syzygies on

〈xa, yb, zc, (y − x)d, (z − x)e, (z − y)f 〉

are generated by the syzygies on the four sub-ideals

〈xa, yb, (y − x)d〉 〈xa, zc, (z − x)e〉

〈yb, zc, (z − y)d〉 〈(z − y)d, (z − x)e, (y − x)f 〉.

Corollary 3.17. Let K4 be labeled as in Figure 5. If J(0123) is minimally gener-
ated by three of the six powers xa, yb, zc, (y − x)d, (z − x)e, (z − y)f , and these
three correspond to all the edges adjacent to a single vertex, then D(AK4 ,m) is
free. Up to relabeling the vertices, this may be expressed by the three simultaneous
inequalities a+ b ≤ d+ 1, a+ c ≤ e+ 1, b+ c ≤ f + 1.

Remark 3.18. Corollary 3.17 appears in [ATW08, Corollary 5.12], where the multi-
arrangements (A3,m) with these multiplicities are additionally identified as induc-
tively free multi-arrangements.

Proof. In this case, the module syz(J(0123)) is generated by three Koszul syzygies
and three relations of degree d, e, f , expressing (y+ z)d, (x+ z)e, (x− y)f in terms
of xa, yb, zc. Each of the modules syz(J(012)), syz(J(013)), syz(J(023)) contributes
a Koszul syzygy and one of the syzygies of degree d, e, f , respectively. Hence the
syzygies on J(0123) are generated by the syzygies on the four sub-ideals. The result
follows from Theorem 3.16. �

Definition 3.19. We call a vertex i satisfying the three inequalities mjk ≥ mij +
mik − 1 of Corollary 3.17 a free vertex ; if one of 0, 1, 2, 3 is a free vertex then we
say that m has a free vertex.
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4. classification, part I

In this section we prove the classification of Theorem 1.1 for multiplicities satis-
fying the inequalities mij ≤ mik +mjk + 1 for all choices of i, j, k (giving a total of
12 irredundant inequalities). The reason for imposing these inequalities is detailed
at the beginning of Section 4.2; briefly, these place restrictions on the degrees in
which the syzygy modules syz(J(ijk)) are generated. The remaining multiplicities
are considered in Section 5. Sections 4 and 5 taken together constitute the proof
of Theorem 1.1.

4.1. Non-free A3 multiplicities via Hilbert function evaluation. By Theo-
rem 3.16, we may establish that the multiplicity (A3,m) is not free by exhibiting
a degree d in which the Hilbert functions of

∑
syz(J(ijk)) and syz(J(0123)) differ.

In general it may be quite difficult to determine these Hilbert functions; however,
we are able to obtain bounds. Throughout, we adopt the convention that

(
A
B

)
= 0

if A < B.
We begin by describing a lower bound on the global syzygies. From the exact

sequence

0→ syz(J(0123))→
⊕
i,j

S(−mij)→ S → S/J(0123)→ 0,

we have

HF (syz(J(0123)) +HF (S) =

∑
i,j

HF (S(−mij))

+HF (S/J(0123)).

Computing the Hilbert function of the module S/J(0123) is difficult, so we settle
for the following inequality.

Proposition 4.1. For all d,

HF (syz(J(0123), d) ≥

∑
i,j

(
(d−mij) + 2

2

)− (d+ 2

2

)
.

Proof. From above,

HF (syz(J(0123)) ≥

∑
i,j

HF (S(−mij))

−HF (S).

Evaluating the right-hand side at d gives the desired inequality. �

Remark 4.2. The bound in Proposition 4.1 can be improved (possibly made exact)
by using inverse systems [EI95] to evaluate dim syz(J(0123))d exactly via a fat
point computation. This translates the ideal J(0123) into a fat point ideal whose
base locus is six points (corresponding to the six edges of K4); these points are the
intersection points of four generic lines (corresponding to the four triangles of K4).
A complete classification of fat point ideals on six points, including their Hilbert
function and minimal free resolution, appears in [GH07]. Surprisingly, the weaker
bound of Proposition 4.1 suffices for the classification of free multiplicities.

Now we turn our attention to the local syzygies. The Hilbert functions of the
syzygies on the individual J(ijk) provide an upper bound on the Hilbert function
of the local syzygy module:
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Proposition 4.3.

HF

∑
i,j,k

J(ijk)

 ≤∑
i,j,k

HF (J(ijk)) .

The computation of the Hilbert functions of the individual local syzygy modules
is more technical and is done by Schenck [GS98], which we cite below in Lemma 4.5.

Remark 4.4. Our intuition for Schenck’s result below is the following. Observe that
J(012) is isomorphic to 〈xa, yb, (y−x)c〉. We study K[x, y]/〈xa, yb, (y−x)c〉, which
is isomorphic to (

K[x, y]

〈xa, yb〉

)/
〈(y − x)c〉.

Lemma 4.5 is equivalent to the statement that in this quotient ring, (y − x)c is a
Lefschetz element (i.e., multiplication by this element is either injective or surjec-
tive). The Hilbert function increases as the degree decreases from the socle degree
(a+b−2) to d(a+b−2)/2e. On the other hand, since (y−x)c is a Lefschetz element,
the Hilbert function of the ideal 〈(y−x)c〉 in this quotient ring is 1 in degree c and
increases with the degree as long as possible. By the Hilbert-Burch Theorem, there
are two minimal first syzygies. Their degrees are where the ideal’s Hilbert function
would exceed that of the ring. Unfortunately, these degrees depend on the parity
of a, b, and c. The two mysterious quantities in the statement of Lemma 4.5, Ωijk
and aijk, encode the parity cases simultaneously.

The following lemma is an immediate consequence of [GS98, Theorem 2.7].

Lemma 4.5. Let J(ijk) = 〈(xi − xj)mij , (xi − xk)mik , (xj − xk)mjk〉 ⊂ S. Set

Ωijk =

⌊
mij +mjk +mik − 3

2

⌋
+ 1

and aijk = mij + mjk + mik − 2Ωijk. Then, if (xi − xj)
mij , (xi − xk)mik , and

(xj − xk)mjk are a minimal generating set,

syz(J(ijk)) ∼= S(−Ωijk − 1)aijk ⊕ S(−Ωijk)2−aijk .

Otherwise, suppose without loss of generality that mij +mjk ≤ mik + 1. Then

syz(J(ijk)) ∼= S(−mik)⊕ S(−mij −mjk).

Remark 4.6. We remark for later use that if mij ≤ mik +mjk + 1 for all i, j, k then

syz(J(ijk)) ∼= S(−Ωijk − 1)aijk ⊕ S(−Ωijk)2−aijk ,

in other words, even if (xi − xj)mij , (xi − xk)mik , and (xj − xk)mjk are not quite a
minimal generating set for J(ijk), the Betti numbers for syz(J(ijk)) are the same
as if they were.

Proof. If (xi−xj)mij , (xi−xk)mik , (xj −xk)mjk are a minimal generating set, then
the minimal free resolution of J(ijk) has the form

0→ S(−Ωijk − 1)aijk ⊕ S(−Ωijk)2−aijk φ−→ S(−mij)⊕ S(−mik)⊕ S(−mjk)

by [GS98, Theorem 2.7]. Otherwise, if mij+mjk ≤ mik+1 then J(ijk) is generated
by (xi − xj)mij , (xj − xk)mjk . So the syzygies on the generators (xi − xj)mij , (xi −
xk)mik , (xj − xk)mjk are given by the Koszul syzygy on (xi − xj)mij , (xj − xk)mjk
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and a syzygy of degree mik (expressing (xi − xk)mik as a polynomial combination
of (xi − xj)mij , (xj − xk)mjk). See Remark 3.8. �

Remark 4.7. Since the module syz J(012) can be identified with the non-trivial
derivations on the multi-arrangement (A2,m) = (AK3

,m) (see Example 3.6),
Lemma 4.5 also follows from a result of Wakamiko [Wak07] on the exponents of the
multi-arrangement (A2,m).

Combining the local and global bounds above, we produce a criterion for non-
freeness of the multi-arrangement (A3,m). Define the function LB(m, d) by

LB(m, d) =

[∑
i,j

(
d+ 2−mij

2

)]
−
(
d+ 2

2

)
−
∑
i,j,k

HF (syz(J(ijk)), d)

= 3

(
d+ 2

2

)
−

[∑
i,j

(
d+ 2−mij

2

)]
−

[∑
i,j,k

HF (S/J(ijk), d)

]
.

The two different expressions for LB(m, d) are the same; this is immediate from
the exact sequence

0→ syz(J(ijk))→ S(−mij)⊕ S(−mik)⊕ S(−mjk)→ S → S/J(ijk)→ 0,

which holds for each i, j, k.

Theorem 4.8. We have

HF (syz J(0123), d)−HF

∑
i,j,k

syz J(ijk), d

 ≥ LB(m, d).

In particular, if LB(m, d) > 0 for any integer d ≥ 0, then (A3,m) is not free.

Proof. The inequality

HF (syz J(0123), d)−HF

∑
i,j,k

syz J(ijk), d

 ≥ LB(m, d)

follows immediately from Propositions 4.1 and 4.3. By Theorem 3.16, m is a free
multiplicity on A3 if and only if

HF (syz J(0123), d)−HF

∑
i,j,k

syz J(ijk), d

 = 0

for all d ≥ 0. �

4.2. Non-free multiplicities via discriminant. The function LB(m, d) from
Theorem 4.8 is eventually polynomial in d. Denote the Hilbert polynomial by

L̃B(m, d); this is quadratic with leading coefficient −3/2.
In this section we assume that all of the ideals J(ijk) are ‘close to’ minimally

generated by their three generators. Explicitly, we impose the inequalities mij ≤
mik +mjk + 1 for all choices of i, j, k (giving a total of 12 irredundant inequalities).
Forllowing Remark 4.6 it is straightforward to check that under these assumptions,
syz(J(ijk)) is generated in degrees Ωijk + 1,Ωijk + 1 if mij + mik + mjk is even
and degrees Ωijk,Ωijk + 1 if mij +mik +mjk is odd, where the constants Ωijk are
as in Lemma 4.5. Set I = {0, 1, 2, 3}. We have
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LB(m, d) =

 ∑
{i,j}⊂I

(
d+ 2−mij

2

)− (d+ 2

2

)

−
∑

{i,j,k}⊂I

((
d+ 1− Ωijk

2

)
+

(
d+ 2− Ωijk

2

))
.

Lemma 4.9. Let |m| =
∑
mij. The polynomial L̃B(m, d) attains its maximum

value at

dmax =
1

6
(2|m| − 9) .

Furthermore, assume m does not have a free vertex. Then LB(m, d) = L̃B(m, d)
for d ≥ bdmaxc.

Proof. Using the second expression for LB(m, d) (just prior to Theorem 4.8) and

expanding the binomial coefficients as polynomials in d, we see that L̃B(m, d) is a
quadratic polynomial Ad2 +Bd+ C with

• A = −3/2
• B = −9/2 + |m|
• C = 3−

∑
ij

(
mij−1

2

)
−
∑
ijkHP (S/J(ijk), d),

where HP (S/J(ijk), d) is the Hilbert polynomial of S/J(ijk) (since S/J(ijk) is
zero-dimensional as a scheme over P2, this is a constant). It follows immediately

that L̃B(m, d) achieves its maximum at dmax = (2|m|−9)/6. For the second claim,
it suffices to show that

(1) bdmaxc ≥ mij − 2 for all i, j, and
(2) bdmaxc ≥ Ωijk − 1 for all i, j, k.

For the first inequality, assume without loss of generality that {i, j} = {0, 1}. We
have

2m23 ≥ 2
2(m03 +m13) ≥ 2(m01 − 1)
2(m02 +m12) ≥ 2(m01 − 1)

2m01 ≥ 2m01.

Summing down this list of inequalities yields 2|m| ≥ 6m01 − 2, so

bdmaxc =

⌊
1

6
(2|m| − 9)

⌋
≥
⌊
m01 −

11

6

⌋
= m01 − 2.

For the second inequality, assume without loss of generality that {i, j, k} = {0, 1, 2}.
We have

2(m01 +m02 +m12) ≥ 2(m01 +m02 +m12)
m13 +m03 ≥ m01 − 1
m03 +m23 ≥ m02 − 1
m13 +m23 ≥ m12 − 1.

Summing down this list we obtain 2|m| ≥ 3(m01 + m02 + m12) − 3. In fact,
we will show that 2|m| ≥ 3(m01 + m02 + m12). Assume to the contrary that
2|m| < 3(m01 + m02 + m12); then 2(m03 + m13 + m23) < m01 + m02 + m12.
Rearranging yields

(m13 +m03 −m01) + (m03 +m23 −m02) + (m13 +m23 −m12) < 0.
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According to the displayed inequalities above, each of the three parenthesized terms
in the above sum is at least −1. Consequently, each of these terms must be at most
1, i.e. m01 ≥ m13 +m03− 1, m02 ≥ m03 +m23− 1, and m12 ≥ m13 +m23− 1. But
then 3 is a free vertex.

So, assuming m does not have a free vertex, we have 2|m| ≥ 3(m01 +m02 +m12).
Hence

bdmaxc =

⌊
1

6
(2|m| − 9)

⌋
≥
⌊
m01 +m02 +m12 − 1

2

⌋
− 1 = Ω012 − 1. �

Lemma 4.10. Let D be the discriminant of the quadratic polynomial L̃B(m, d) in
the variable d.

(1) If D2 − 9/4 > 0, then (A3,m) is not free.
(2) If |m| 6≡ 0 (mod 3) and D2 − 1/4 > 0, then (A3,m) is not free.

Proof. We examine when the polynomial L̃B(m, d) is positive at some integer d > 0.

For this to happen, L̃B(m, d) must have two real roots, say r1 and r2, and there
must be an integer strictly between them. Equivalently, there must be an integer
in the interval Q = (r1, r2) = (dmax− 1

2 |r1− r2|, dmax + 1
2 |r1− r2|). From the form

of dmax given in Lemma 4.9,

(1) If |m| ≡ 0 (mod 3) then dmax = N + 1/2 for some integer N
(2) If |m| 6≡ 0 (mod 3) then dmax = N ± 1/6 for some integer N

From the quadratic formula and the fact that the leading coefficient of L̃B(m, d)
is −3/2, we have (r1 − r2)2 = 4D2/9. Hence if 4D2/9 > 1, then Q contains an
integer. Moreover, if |m| 6≡ 0 (mod 3) and 4D2/9 > 1/9, then Q also contains an
integer. Now the result follows from Lemma 4.9 and Theorem 4.8. �

Remark 4.11. In the following theorem, we performed the straightforward but te-
dious computations with the computer algebra system Mathematica.

Theorem 4.12. Let

P (m) = (m01+m23−m02−m13)2+(m02+m13−m03−m12)2+(m03+m12−m01−m23)2

and set mijk = mij +mjk +mik. Assume that mij ≤ mik +mjk + 1 for every i, j,
and k. Assume further that m does not have a free vertex. If any of the conditions
below are satisfied, then m is not a free multiplicity on A3 = AK4 .

• |m| ≡ 0 mod 3, none of the mijk are odd, and P (m) > 0
• |m| ≡ 0 mod 3, two of the mijk are odd, and P (m) > 6
• |m| ≡ 0 mod 3, four of the mijk are odd, and P (m) > 12
• |m| 6≡ 0 mod 3 and none of the mijk are odd.
• |m| 6≡ 0 mod 3, two of the mijk are odd, and P (m) > 2
• |m| 6≡ 0 mod 3, four of the mijk are odd, and P (m) > 8.

Remark 4.13. The polynomial P (m) of Theorem 4.12 is essentially an upper bound
on the difference between GMP (2) and LMP (2), the second global and local mixed
products introduced in [ATW07]. Indeed, this theorem could be proved using these
techniques.

Proof of Theorem 4.12. Let D be the discriminant of L̃B(m, d). From the proof of

Lemma 4.9, L̃B(m, d) = Ad2 +Bd+ C with

• A = −3/2
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• B = −9/2 + |m|
• C = 3−

∑
ij

(
mij−1

2

)
−
∑
ijkHP (S/J(ijk), d).

Hence D2 = B2 − 4AC = 9|m|+ |m|2 − 6
∑
ijm

2
ij + 6

∑
ijkHP (S/J(ijk), d). The

polynomial HP (S/J(ijk), d) is a constant, in fact,

HP (S/J(ijk), d) =

(
Ωijk + 1

2

)
−

∑
{s,t}⊂{i,j,k}

(
Ωijk + 1−mst

2

)
.

Since the constant Ωijk depends on the parity of mijk = mij + mik + mjk, the
discriminant D will also. A straightforward computation now yields that 2(D2 −
9/4) is equal to P (m) − 3q, where q is the number of mijk that are odd. Note
that

∑
ijkmijk = 2|m|, so q equals zero, two, or four. The dependence on the

congruence class of |m| modulo three follows from Lemma 4.10. In the case that
|m| 6≡ 0 mod 3 and none of the mijk are odd, 2(D2 − 1/4) = P (m) + 4, which is
always positive. Hence we always have non-freeness in this case. �

Definition 4.14. Let ni ∈ Z≥0 for i = 0, 1, 2, 3 and εij ∈ {−1, 0, 1} for 0 ≤ i <
j ≤ 3. An ANN multiplicity on A3 is a multiplicity of the form mij = ni +nj + εij .

ANN multiplicities are classified as free or non-free in [ANN09] (not just on A3

but on any braid arrangement).

Proposition 4.15. Let m be a multiplicity so that mij ≤ mik +mjk + 1 for every
i, j, and k. Then m is a free multiplicity for A3 if and only if m has a free vertex
or m is a free ANN multiplicity.

Proof. If m has a free vertex then it is free by Corollary 3.17. We now show
that if any of the conditions of Theorem 4.12 fail, then m is an ANN multiplicity.
We will do this by explicitly constructing non-negative integers N0, N1, N2, N3 and
εij ∈ {−1, 0, 1} so that mij = Ni +Nj + εij for 0 ≤ i < j ≤ 3. The main thing we
have to be careful about is the non-negativity of the Ni.

We introduce some notation. For a vertex i of a triangle ijk, set ni,ijk = (mij +
mik − mjk)/2. Since we assume mjk ≤ mij + mik + 1 for every triple i, j, k, it
follows that ni,ijk ≥ −1/2. Also, for a directed four-cycle ijst set cijst = (mij −
mjs +mst −mit)/2.

If all of the mijk are even, then every expression ni,ijk is a non-negative integer.
In this case, negating Theorem 4.12 means P (m) = 0; hence cijst = 0 for every
directed four cycle, and the expressions ni,ijk are independent of the triangle cho-
sen to contain i (for instance, n0,012 = n0,023 = n0,013). Set N0 = n0,012, N1 =
n1,012, N2 = n2,012, and N3 = n3,013. We have Ni ≥ 0 and mij = Ni + Nj for all
i, j, so m is an ANN multiplicity.

Now suppose two of the mijk are odd, and P (m) ≤ 6. Suppose without loss
of generality that m012 and m023 are even, while m013 and m123 are odd. Set
N0 = n0,012, N1 = n1,012, N2 = n2,023, and N3 = n3,023. Note that, given our
assumptions, all the Ni are non-negative integers.

N0 +N1 = n0,012 + n1,012 = m01

N0 +N2 = n0,012 + n2,023 = m02 + c0123

N0 +N3 = n0,012 + n3,023 = m03 + c0123

N1 +N2 = n1,012 + n2,023 = m12 + c0123

N1 +N3 = n1,012 + n3,023 = m13 + c0132 + c0312

N2 +N3 = n2,023 + n3,023 = m23
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Note also that, under our assumptions, c0123 is an integer while c0132 and c0312 are
not. We also have c0123 +c0312 = c0132. Since P (m) ≤ 6, we have only the following
possibilities:

• c0123 = 1, c0312 = −1/2, c0132 = 1/2
• c0123 = −1, c0312 = 1/2, c0132 = −1/2
• c0123 = 0, c0312 = c0132 = 1/2
• c0123 = 0, c0312 = c0132 = −1/2.

In any of the above situations, set ε01 = ε23 = 0, ε02 = ε03 = ε12 = −c0123, and
ε13 = −c0132−c0312. By the above observations, we have shown mij = Ni+Nj+εij
is an ANN multiplicity.

Finally, suppose all of the mijk are odd and P (m) ≤ 12. In fact, P (m) is the
sum of squares of three integers which add to zero, so inspection yields P (m) ≤ 8.

Set Ñ0 = n0,012, Ñ1 = n1,013, Ñ2 = n2,023, and Ñ3 = n3,123. Note that, given our

assumptions, all the Ñi are non-integers. We modify them shortly. We have

Ñ0 + Ñ1 = n0,012 + n1,013 = m01 + c0213

Ñ0 + Ñ2 = n0,012 + n2,023 = m02 + c0123

Ñ0 + Ñ3 = n0,012 + n3,123 = m03 + c0123 + c0213

Ñ1 + Ñ2 = n1,013 + n2,023 = m12 + c0123 + c0213

Ñ1 + Ñ3 = n1,013 + n3,123 = m13 + c0123

Ñ2 + Ñ3 = n2,023 + n3,123 = m23 + c0213.

Under our assumptions, c0123, c0213, and c0231 are all integers. We also have c0123 +
c0231 = c0213. Since P (m) ≤ 8, at most two of c0123, c0213, and c0231 can be non-
zero, and all must have absolute value at most one.

First assume c0123 = 0 and c0231 = ±1. We have

Ñ0 + Ñ1 = n0,012 + n1,013 = m01 + c0213

Ñ0 + Ñ2 = n0,012 + n2,023 = m02

Ñ0 + Ñ3 = n0,012 + n3,123 = m03 + c0213

Ñ1 + Ñ2 = n1,013 + n2,023 = m12 + c0213

Ñ1 + Ñ3 = n1,013 + n3,123 = m13

Ñ2 + Ñ3 = n2,023 + n3,123 = m23 + c0213.

Since c0213 ≥ −1 and mij ≥ 1 for all i, j, at most one of the Ñi is equal to −1/2.

Without loss, assume Ñ0 ≥ −1/2 whileNi ≥ 1/2 for i = 1, 2, 3. Now setN0 = dÑ0e,
N1 = bÑ1c, N2 = dÑ2e, and N3 = bÑ3c. With these assumptions, we have

N0 +N1 = n0,012 + n1,013 = m01 + c0213

N0 +N2 = n0,012 + n2,023 + 1 = m02 + 1
N0 +N3 = n0,012 + n3,123 = m03 + c0213

N1 +N2 = n1,013 + n2,023 = m12 + c0213

N1 +N3 = n1,013 + n3,123 − 1 = m13 − 1
N2 +N3 = n2,023 + n3,123 = m23 + c0213.

So m is an ANN multiplicity with ε01 = ε03 = ε12 = ε23 = −c0213, ε02 = −1, and
ε13 = 1.

The case c0213 = 0 is symmetric to the above case. We now consider the case
c0231 = 0, which implies c0123 = c0213. If c0123 = 0 as well, then we again have at
most one of Ñi equal to −1/2, and we argue that m is an ANN multiplicity in the
same way as above.
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Now suppose that c0231 = 0 and c0123 = c0213 = 1. Then

Ñ0 + Ñ1 = n0,012 + n1,013 = m01 + 1

Ñ0 + Ñ2 = n0,012 + n2,023 = m02 + 1

Ñ0 + Ñ3 = n0,012 + n3,123 = m03 + 2

Ñ1 + Ñ2 = n1,013 + n2,023 = m12 + 2

Ñ1 + Ñ3 = n1,013 + n3,123 = m13 + 1

Ñ2 + Ñ3 = n2,023 + n3,123 = m23 + 1.

In this case it is also clear that at most one of Ñi can equal −1/2. If all Ñi are at

least 1/2, then we can take Ni = bÑic for i = 0, 1, 2, 3. Then we will clearly have

an ANN multiplicity. Suppose then that one of the Ñi is equal to −1/2. Without

loss of generality we can assume that Ñ0 = −1/2. Using the third listed equation

above, Ñ3 ≥ 7/2. In this case we can set N0 = dÑ0e = 0, N1 = bÑ1c, N2 = bÑ2c,
and N3 = bÑ3c − 1, giving an ANN multiplicity.

Finally, suppose that c0231 = 0 and c0123 = c0213 = −1. Then

Ñ0 + Ñ1 = n0,012 + n1,013 = m01 − 1

Ñ0 + Ñ2 = n0,012 + n2,023 = m02 − 1

Ñ0 + Ñ3 = n0,012 + n3,123 = m03 − 2

Ñ1 + Ñ2 = n1,013 + n2,023 = m12 − 2

Ñ1 + Ñ3 = n1,013 + n3,123 = m13 − 1

Ñ2 + Ñ3 = n2,023 + n3,123 = m23 − 1.

Set Ni = dÑie for i = 0, 1, 2, 3. Then Ni ≥ 0 for i = 0, 1, 2, 3 and we have an ANN
multiplicity. �

5. classification, Part II

In this section we complete the classification of free multiplicities on A3 given
in Theorem 1.1. Our strategy is to show that, if we assume m has no free vertex
and that the syzygies of J(0123) are locally generated as required by Theorem 3.16,
then we are forced to have the twelve inequalities mij ≤ mik + mjk + 1 for every
triple i, j, k. Then Proposition 4.15 guarantees that such a multiplicity is free if
and only if it is a free ANN multiplicity. We introduce some notation for studying
the local syzygies.

Notation 5.1. Label the exponents with the letters a through f as in Figure 1,
and refer to the forms as A = (x1−x0)a, and so on. The local ideals J(012), J(013),
J(023), and J(123) then have (not necessarily minimal) generating sets {A,B,D},
{A,C,E}, {B,C, F}, and {D,E, F}.

Notation 5.2. Consider the free S-module of rank six with basis [A], [B], . . . , [F ].
A syzygy on J(0123) is an expression of the form ga[A] + gb[B] + gc[C] + gd[D] +
ge[E] + gf [F ] satisfying gaA + gbB + gcC + gdD + geE + gfF = 0. Its support
is the set of generators with nonzero coefficient; for example, the Koszul syzygy
A[B]−B[A] has support {A,B}.

We say that a syzygy is local if its support is a subset of {A,B,D}, {A,C,E},
{B,C, F}, or {D,E, F}, and locally generated if it is a linear combination of local
syzygies.
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Notation 5.3. We introduce notation, and an abuse thereof, to describe the syzy-
gies on the local ideal J(012) = 〈A,B,D〉. We extend this notation to the other
triangles in the obvious way.

We denote the Koszul syzygy A[B]−B[A] by Kab; it has degree a+ b. Similarly,
the Koszul syzygies Kad and Kbd have degrees a + d and b + d respectively. The
support of the Koszul syzygy Kab is {A,B}. There are also syzygies with support
{A,B,D}; from Lemma 4.5 these have degree as low as a+b+d−1

2 (when {A,B,D}
is a minimal generating set) and as low as d if D is not a minimal generator (with
obvious adjustments for symmetry).

Since many of our arguments below concern only the supports of the syzygies,
we abuse notation and refer to any syzygy with support {A,B} by the name Kab.
(Thus, while Kab may not refer to the Koszul syzygy, it does refer to an S-linear
multiple, so all relevant intuition about Koszul syzygies continues to work.) Finally,
Sabd will refer to any syzygy supported on a subset of {A,B,D}.

Without loss of generality, let Kbe have the least degree among the non-local
Koszul syzygies Kaf ,Kbe,Kcd. We will show that if m is a free multiplicity with
no free vertex and Kbe is locally generated (as it must be by Theorem 3.16), then
m is a free ANN multiplicity. To that end we make the following assumptions for
the remainder of the section.

Assumptions 5.4.

(1) There is no free vertex.
(2) b+ e ≤ min{a+ f, c+ d}
(3) Kbe is locally generated. That is, we may write

(∗) Kbe = Sabd + Sace + Sbcf + Sdef .

Lemma 5.5. Given Assumptions 5.4 and referring to Equation (∗),
• If Sdef is not supported on E then e ≥ a+ c− 1
• If Sace is not supported on E then e ≥ d+ f − 1
• If Sabd is not supported on B then b ≥ c+ f − 1
• If Sbcf is not supported on B then b ≥ a+ d− 1.

Proof. We prove the first statement. The remaining statements are proved in the
same way. Fixing coordinates, we may write A = xa, B = yb, C = zc, E = (x− z)e.

Observe Sace = ga[A] + gc[C] + ge[E], where ga, gb, gc ∈ S. On the one hand,
geE = −(gaA + gcC), so ge ∈ (〈A,C〉 : E). On the other hand, since we assumed
Sdef is not supported on E, no other terms in Equation (∗) are supported on [E], so
ge = −B. In particular, B ∈ (〈A,C〉 : E). In other words, yb ∈ (〈xa, zc〉 : (x− z)e),
so we conclude that (〈xa, zc〉 : (x− z)e) = 〈1〉. Consequently, E ∈ 〈A,C〉, which
happens if and only if e ≥ a+ c− 1. �

Lemma 5.6. Given Assumptions 5.4 and referring to Equation (∗), Sace and Sdef
must both be supported on the edge E. Likewise Sabd and Sbcf must both be supported
on B.

Proof. In light of Lemma 5.5, it suffices to show that we have the four strict in-
equalities e < a + c− 1, e < d + f − 1, b < c + f − 1, and b < a + d− 1. We show
the inequality e < a+ c− 1; the rest follow by symmetry. Suppose to the contrary
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that e ≥ a+ c− 1. Then, since b+ e ≤ min{a+ f, c+ d},
a+ f ≥ b+ e ≥ b+ a+ c− 1
c+ d ≥ b+ e ≥ b+ a+ c− 1.

Consequently we have f ≥ b+c−1 and d ≥ b+a−1. Since we assumed e ≥ a+c−1,
we conclude that vertex 0 is a free vertex, violating Assumption 5.4.(1). �

Notation 5.7. We say that an edge is in the support of the local expression (∗)
for Kbe if it is in the support of one of the summands.

Lemma 5.8. In the local expression

Kbe = Sabd + Sace + Sbcf + Sdef ,
each summand must be supported on three edges.

Proof. By Lemma 5.6, we already know that each summand is supported on either
E or B. Next we claim that the local expression for Kbe must be supported on at
least three of the edges A,C,D, and F . Suppose to the contrary that two of these
edges are absent from the support. Up to symmetry there are two possibilities:
either the two edges are adjacent (A and C) or the two edges are opposite (A and
F ). In the first case, we have Sace = 0, contradicting Lemma 5.6. If the local
expression is supported on A and F , then this forces

Kbe = Kbd +Kce +Kbc +Kde,

which is impossible due to degree considerations, as we now explain. Looking at
coefficients on [C] yields (pE+qB)[C] = 0, so pE+qB = 0. Since B and E have no
common factor, deg(pE) ≥ b+ e, so deg(Kce) ≥ b+ c+ e > b+ e, a contradiction.
(If p = q = 0 then Sace = Sdef = 0, again contradicting Lemma 5.6.)

Now suppose that the local expression for Kbe is supported on all but one of
the edges A,C,D, and F , without loss of generality the edge A. Then we have the
equation below.

Kbe = ( E[B] −B[E] )
= gabd( D[B] −B[D] )

+ gace( E[C] −C[E] )
+ gbcf ( jb[B] +jc[C] jf [F ] )
+ gdef ( hd[D] +he[E] +hf [F ] ).

Equating coefficients on [B] and inspecting degrees yields d ≤ e, while equating
coefficients on [E] yields c ≤ b. Since b+ e ≤ c+ d, this implies d = e and c = b.

Since c+e = b+e, we conclude that gace is a scalar, so, looking at the coefficients
on [C], we conclude that (up to scalar) gbcf jc = E. Thus Sbcf is equivalent (up
to scalar) to EC = gbcf jbB + gbcf jfF , and we conclude EC ∈ 〈B,F 〉. But 〈B,F 〉
is a primary ideal and En is not in 〈B,F 〉 for any n (since B,E, F form a regular
sequence), so C ∈ 〈B,F 〉, i.e. b + f ≤ c + 1. Since b = c, this implies f = 1. But
then we have the multiplicity (a, b, b, d, d, 1) and b+ e = b+ d ≤ a+ f = a+ 1, so
we have a free vertex (in fact, vertices 2 and 3 are both free), a contradiction.

Now we show that each of the local syzygies is supported on all three of its edges.
It is enough to do this for Sabd = αabd[A] + βabd[B] + δabd[D]. We already know
from Lemma 5.6 that Sace is supported on B (i.e. βabd 6= 0). It suffices to show
that Sabd is supported on A (the argument for support on D is the same). Adding
coefficients on [A] in Equation (∗) yields αabd + αace = 0. If Sabd is not supported
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on A, then αabd = 0, so αace = 0 as well. Then the local expression (∗) is not
supported on A, a contradiction. �

We are now ready to complete the proof of Theorem 1.1.

Proposition 5.9. If m is a free multiplicity without a free vertex, then mij ≤
mik +mjk + 1 for every triple i, j, k.

Proof. Theorem 3.16 guarantees Assumption 5.4.(3), so we may take all of As-
sumptions 5.4 without loss. By the proof of Lemma 5.6, we already have (stricter
versions of) the four inequalities b ≤ c + f + 1, b ≤ a + d + 1, e ≤ a + c + 1, and
e ≤ d + f + 1. Hence we need to establish the eight remaining inequalities with
a, c, d, and f on the left-hand side. We demonstrate the inequality a ≤ b + d + 1.
By symmetry, the remaining seven inequalities are established in precisely the same
way.

Since b + e ≤ c + d, we have b + e ≤ (b + c + d + e)/2. By Lemma 5.8, Sace
is supported on [A], [C], and [E]. It follows that the degree of Sace is at least
(a+ c+ e− 1)/2 by Lemma 4.5. Since Sace appears in the expression for Kbe, we
have

a+ c+ e− 1

2
≤ b+ e ≤ b+ c+ d+ e

2
.

Simplifying yields a ≤ b+ d+ 1, as desired. �

Proof of Theorem 1.1. Suppose m is a free multiplicity without a free vertex. By
Proposition 5.9, mij ≤ mik + mjk + 1 for every triple i, j, k. By Proposition 4.15,
m must be a free ANN multiplicity. �

Remark 5.10. A deformation of the A3 arrangement (technically, the cone over a
deformation of the A3 arrangement) is a central hyperplane arrangement of the
form

x = α1w, . . . , αaw
y = β1w, . . . , βbw
z = κ1w, . . . , κcw

y − x = δ1w, . . . , δdw
z − x = ε1w, . . . , εew
y − z = φ1w, . . . , φfw

w = 0,

where αi, βi, κi, δi, εi, φi are all elements of the ground field K. Arrangements of
this type were first investigated systematically by Stanley [Sta96] and have since
been the subject of many research papers.

Our results may be used to show that freeness of a deformation of the A3 ar-
rangement can be detected just from its intersection lattice. This is readily de-
duced from general characterizations of freeness due to Yoshinaga [Yos04] and
Abe-Yoshinaga [AY13]. Integral to both of these characterizations is the freeness
of the multi-arrangement obtained from restricting the arrangement to a chosen
hyperplane, where the multiplicity assigned to each hyperplane H in the restriction
counts the number of hyperplanes that restrict to H. In the case of a deformation
of A3, restricting to the hyperplane w = 0 clearly results in the multi-arrangement
(A3, (a, b, c, d, e, f)); freeness of this multi-arrangement is determined from Theo-
rem 1.1.
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6. Abe-Nuida-Numata multiplicities

In this section we relate our results more closely to the classification of ANN
multiplicities by Abe-Nuida-Numata in [ANN09]. We first state their classification
precisely for the A3 arrangement. We then show that the non-free multiplicities
in their classification follow from Theorem 4.12 and Proposition 5.9. Finally, we
illustrate how the free multiplicities in their classification may be used to provide
the minimal free resolution of the ideal J(0123) generated by powers of linear forms.

We introduce the notation from [ANN09]. Let G be a signed graph on four
vertices. That is, each edge of G is assigned either a + or a −, and so the edge set
EG decomposes as a disjoint union EG = E+

G ∪ E
−
G . Define

mG(ij) =

 1 {i, j} ∈ E+
G

−1 {i, j} ∈ E−G
0 otherwise.

The graph G is signed-eliminable with signed-elimination ordering ν : V (G) →
{0, 1, 2, 3} if ν is bijective, and, for every three vertices vi, vj , vk ∈ V (G) with
ν(vi), ν(vj) < ν(vk), the induced subgraph G|vi,vj ,vk satisfies the following condi-
tions.

• For σ ∈ {+, 1}, if {vi, vk} and {vj , vk} are edges in EσG then {vi, vj} ∈ EσG
• For σ ∈ {+, 1}, if {vk, vi} ∈ EσG and {vi, vj} ∈ E−σG then {vk, vj} ∈ EG

For a signed-eliminable graph G with signed elimination ordering ν, v ∈ VG and

i ∈ {0, 1, 2, 3}, define the degree d̃egi(v) by

d̃egi(v) := deg(v, VG, E
+
G |ν−1{1,...,i})− deg(v, VG, E

−
G |ν−1{1,...,i}),

where deg(w, VH , EH) is the degree of the vertex w in the graph (VH , EH) and
(VG, E

σ
G|S) with respect to S ⊂ VG is the induced subgraph of G whose edge set is

{{vi, vj} ∈ EσG | vi, vj ∈ S}. Furthermore set d̃egi = d̃egi(ν
−1(i)) for i = 0, 1, 2, 3.

All signed-eliminable graphs on four vertices are listed (with an elimination or-
dering) in [ANN09, Example 2.1], along with those which are not signed-eliminable.
For use in the proof of Corollary 6.2, we also list those graphs which are not signed-
eliminable in Table 1. The property of being signed-eliminable is preserved under
interchanging + and −. Consequently, we list these graphs in Table 1 up to auto-
morphism with the convention that a single edge takes one of the signs +,−, while
a double edge takes the other sign.

Theorem 6.1. [ANN09, Theorem 0.3] Let k, n0, n1, n2, and n3 be nonnegative
integers, and G be a signed graph on four vertices. Define the multiplicity m on the
braid arrangement A3 by mij = 2k+ni+nj+mG(ij). Set N = 4k+n0+n1+n2+n3.
Assume one of the three conditions:

(1) k > 0
(2) E−G = ∅
(3) E+

G = ∅ and mij > 0 for every {i, j} ∈ EK4
.

Then (A3,m) is free with exponents (0, N + d̃eg2, N + d̃eg3, N + d̃eg3) if and only
if G is signed-eliminable.

We first show how we can recover the non-free ANN multiplicities on A3 using
Theorem 4.12.
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Table 1. Graphs on four vertices which are not signed-eliminable

Corollary 6.2. Let k, n0, n1, n2, and n3 be non-negative integers, let G be a signed
graph on K4, and let m be the ANN multiplicity mij = 2k + ni + nj +mG(ij). If
one of the two following conditions is satisfied, then m is not a free multiplicity.

(1) One or more of the inequalities {mij +mik + 1 ≥ mjk | 0 ≤ i < j < k ≤ 3}
fails and m does not have a free vertex.

(2) All of the inequalities {mij + mik + 1 ≥ mjk | 0 ≤ i < j < k ≤ 3} are
satisfied and G is not signed-eliminable.

Proof. If the ANN multiplicity fails one or more of the inequalities {mij+mik+1 ≥
mjk | 0 ≤ i < j < k ≤ 3}, then it is free if and only if it has a free vertex by
Proposition 4.15, completing the proof of (1).

We now assume the inequalities mij +mik + 1 ≥ mjk on all triples 0 ≤ i < j <
k ≤ 3. We apply Theorem 4.12. It is evident that P (mij) = P (2k + ni + nj +
mG(ij)) = P (mG(ij)). Hence it is enough to show that P (mG(ij)) satisfies one of
the inequalities of Theorem 4.12 if G is not signed-eliminable. This can be verified
on a case-by-case basis; going across Table 1 from left to right and top to bottom:

• Two of mijk odd, P (mG(ij)) = 14 > 6
• None of mijk odd, P (mG(ij)) = 8 > 0
• None of mijk odd, P (mG(ij)) = 8 > 0
• None of mijk odd, P (mG(ij)) = 8 > 0
• Two of mijk odd, P (mG(ij)) = 14 > 6
• Two of mijk odd, P (mG(ij)) = 18 > 6
• None of mijk odd, P (mG(ij)) = 24 > 0
• Two of mijk odd, P (mG(ij)) = 18 > 6
• Two of mijk odd, P (mG(ij)) = 14 > 6
• Two of mijk odd, P (mG(ij)) = 26 > 6
• All of mijk odd, P (mG(ij)) = 24 > 12
• All of mijk odd, P (mG(ij)) = 32 > 12 �

We conclude by remarking on how to use free ANN multiplicities to construct
the minimal free resolution of the ideal S/J(0123).

Corollary 6.3. The multi-arrangement (A3,m) is free if and only if D(A3,m) is
a third syzygy module of S/J(0123) (in a non-minimal resolution).

Proof. If D(A3,m) is a third syzygy module, it is free by the Hilbert Syzygy The-
orem. On the other hand, suppose D(A3,m) is free. Let K =

∑
σKσ be as in

Lemma 3.15 and the inclusion ι :
⊕

σKσ → V be as in the diagram in the proof of
Lemma 3.15. Consider the chain complex

0→ ker(ι)→
⊕

σ∈∆(K4)2

Kσ
ι−→

⊕
τ∈E(K4)

Seτ → S → S/J(0123)→ 0
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Since D(A3,m) is free, the above complex is exact by Theorem 3.16. The modules
Kσ, being syzygy modules of codimension two ideals, are free modules. The long ex-
act sequence in homology applied to the diagram in the proof of Lemma 3.15 yields
that H1(J [K4]) ∼= ker(ι). Since D(A3,m) ∼= H0(R/J [K4]) ∼= S ⊕ H1(J [K4]),
D(A3,m) is a (non-minimal) third syzygy of S/J(0123). �

Remark 6.4. While the minimal free resolution of an ideal in two variables generated
by powers of linear forms is known (see [GS98]), there is relatively little known
about minimal free resolutions of ideals generated by powers of linear forms in
three variables. See [Sch04, Conjecture 6.3] for a conjecture on the minimal free
resolution for an ideal generated by powers of seven linear forms in three variables.

Using Corollary 6.3, we can use the result of Abe-Nuida-Numata to construct
the minimal free resolution of J(0123) whenever m is a free ANN multiplicity.

Corollary 6.5. Let G be a signed-eliminable graph on four vertices with signed-
elimination ordering ν. Let k, n0, n1, n2, n3 be nonnegative integers and m be the
multiplicity on A3 with mij = 2k+ni+nj+mG(ij). Also set N = 4k+(n0+n1+n2+
n3), and let Ωijk be as in Lemma 4.5. Then the ideal J(0123) = 〈(xi − xj)mij |0 ≤
i < j ≤ 3〉 has free resolution:

0→
3⊕
i=1

S(−N−d̃egi)→
⊕
i,j,k

(
S(−Ωijk)aijk ⊕ S(−Ωijk − 1)2−aijk

)
→
⊕
i,j

S(−mij)→ J(0123)

Furthermore, if none of the six generators are redundant, this resolution is minimal.

We describe three special cases of Corollary 6.5. If m is constant with mij = 2k,
then

0→ S(−4k)3 → S(−3k)8 → S(−2k)6 → S

is a minimal free resolution for S/J(0123). If m is constant with mij = 2k + 1,
then to use Corollary 6.5 we take G to be the complete graph on four vertices with

all edges signed positively. Then d̃eg2 = 1, d̃eg2 = 2, and d̃eg3 = 3. Hence

0→ S(−4k−1)⊕S(−4k−2)⊕S(−4k−3)→ S(−3k−1)4⊕S(−3k−2)4 → S(−2k−1)6 → S

is a minimal free resolution for S/J(0123). Finally, suppose that mij = ni + nj for
positive integers n0, n1, n2, n3. Then

0→ S(−
∑

ni)
3 →

⊕
ijk

S(−ni − nj − nk)2 →
⊕
i,j

S(−ni − nj)→ S

is a minimal free resolution for S/J(0123).
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Appendix A. Two-Valued Families

In this appendix we illustrate pictorially the classification of Theorem 1.1 for
two-valued multiplicities on A3. Given two positive integers r and s, we assume
mij = r or mij = s for all i, j. In Table 2, the labeling of K4 in the left column
shows the assignment of multiplicities and the graph on the right shows which pairs
(r, s) correspond to free multiplicities (the obvious patterns continue). The hollow
dots represent free multiplicities, while the solid dots represent non-free multiplic-
ities. If present, the vertical line of free multiplicities along r = 1 corresponds to
multiplicities with a free vertex. Free multiplicities clustered around the diagonal
correspond to free ANN multiplicities.
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Table 2. Free (hollow) and non-free (solid) two-valued multiplic-
ities on A3

Michael DiPasquale, Department of Mathematics, Oklahoma State University, Still-
water, OK 74078-1058, USA

E-mail address: mdipasq@okstate.edu

URL: http://math.okstate.edu/people/mdipasq/

Christopher A. Francisco, Department of Mathematics, Oklahoma State University,

Stillwater, OK 74078-1058, USA
E-mail address: chris.francisco@okstate.edu

URL: https://math.okstate.edu/people/chris/

Jeffrey Mermin, Department of Mathematics, Oklahoma State University, Stillwa-

ter, OK 74078-1058, USA

E-mail address: mermin@math.okstate.edu

URL: https://math.okstate.edu/people/mermin/

Jay Schweig, Department of Mathematics, Oklahoma State University, Stillwater,
OK 74078-1058, USA

E-mail address: jay.schweig@okstate.edu

URL: https://math.okstate.edu/people/jayjs/

http://math.okstate.edu/people/mdipasq/
https://math.okstate.edu/people/chris/
https://math.okstate.edu/people/mermin/
https://math.okstate.edu/people/jayjs/

	1. Introduction
	2. Notation and preliminaries
	3. Technical machinery
	3.1. Homological necessities
	3.2. Freeness via syzygies

	4. classification, part I
	4.1. Non-free A3 multiplicities via Hilbert function evaluation
	4.2. Non-free multiplicities via discriminant

	5. classification, Part II
	6. Abe-Nuida-Numata multiplicities
	References
	Appendix A. Two-Valued Families

