Compressed ideals

Jeff Mermin
Department of Mathematics
Cornell University

Ithaca, NY 14853
May 18, 2006

Abstract: Compressed ideals have been used by Macaulay and others to
study Hilbert functions and lex ideals in a polynomial ring. We formalize the
theory of compression, classify the compressed ideals, and provide new proofs
of theorems of Macaulay, Kruskal-Katona, and Bigatti, Hulett, and Pardue.

1 Introduction

Lex ideals are important in the study of a polynomial ring R = k[z1,-- -, z,)]
because they can be used to classify the Hilbert functions of ideals in R. An
important tool in the study of lex ideals, dating back to Macaulay [Ma], has
been compression, which allows one to move carefully towards the lex ideal
while controlling the Hilbert function. Compressed ideals are combinatorially
very well-behaved, which allows us to compare their invariants to those of lex
ideals in ways which are impossible for monomial or even Borel ideals. The goal
of this paper is to codify the theory of compression and show how it may be
used to recover some classical results on Hilbert functions and Betti numbers.

Throughout the paper, R is the polynomial ring k[z1,---,z,] and S is the
quotient of R by the squares of the variables, S = R/(z%,---,z2).

In section 2, we introduce notation that will be used throughout the paper,
and develop the basic theory of compression.

In section 3, we study compressed ideals, culminating in the classification of
compressed ideals of R and S, respectively, in Theorems 3.12 and 3.13. Theorem
3.10 reduces many questions about lex ideals to questions about lex ideals of
kla, b, c] and an inductive step. This will be illustrated in sections 4 and 5.

In section 4, we use compressed ideals to give new proofs of the theorems of
Macaulay [Ma] and Kruskal-Katona [Kr, Ka] that every Hilbert function in R
(and, respectively, S), is attained by a lex ideal.

In section 5, we show that Betti numbers are nondecreasing under compres-
sion. As an application, we recover the theorem of Bigatti, Hulett, and Pardue
[Bi, Hu, Pa] that lex ideals have maximal graded Betti numbers in R.



In the short section 6, we make some comments about possible applications
to the Hilbert scheme.

Acknowledgements: I thank Irena Peeva, Steve Sinnott, and Mike Still-
man for many helpful discussions. I am particularly grateful to Irena Peeva,
who discovered the same proof of Theorem 5.2 simultaneously and indepen-
dently, but allowed me to keep it.

2 Preliminaries

Let k be an infinite field, and set R = k[z1,---,2,], and S = R/(z%,---, z2).

n

Notation 2.1. The Hilbert function of a graded module M over a graded k-
algebra A (or, more generally, any graded k-vector space) associates to every
degree d the k-dimension of the vector space My = {f € M : deg f = d},

Hlle7M (d) = dlmk (Md)

For simplicity, we use the notation |My| or |M|q for Hilba ar(d).

Definition 2.2. We say that a monomial ideal L of R (or of S) is lex if it
satisfies the following condition:

Suppose that v € L is a monomial of degree d, and v is a degree d
monomial lex-before u. Then we have v € L.

Lex ideals are important because of the following theorem, due to Macaulay

[Mal:

Theorem 2.3 (Macaulay). Let I be a homogeneous ideal of R. Then there
exists a lex ideal L such that L has the same Hilbert function as I.

Macaulay’s theorem also holds over S, where it is known as Kruskal and
Katona’s theorem [Kr,Ka].

Notation 2.4. Throughout this section, fix a subset A of {z,---,2,}. We
denote by k[A] the polynomial ring in the variables of .4 and by k[.A°] the
polynomial ring in the variables of .A°. By abuse, if we work in S rather than
in R, k[A] and k[.A°] will refer to the quotients of those polynomial rings by the
squares of their respective variables.

Notation 2.5. Let N be a monomial ideal of R (or of S). Then we may decom-

pose N as the direct sum N = @ fN¢, where f ranges over the monomials of
fek[A]

k[A°] and each Ny is, by Macaulay’s theorem, a monomial ideal of k[.A].

Example 2.6. Take N = (a?,ab,ac,b? bc) C k[a,b,c,d], and A = {a,b,d}.
Then N = 1(a?, ab, b*) @ c(a, b) & c(a, b) & c>(a,b) & - - -.



Definition 2.7. If every N; is a lex ideal of k[A], we say that N is .A-

compressed. In general, let Ty be the lex ideal with the same Hilbert function

as Ny, and set T' = @ fTs. We say that T is the A-compression of N.
fek[A]

Example 2.8. Taking N and A as in example 2.6 above, /V is not .4-compressed
since N1 = (a?, ab, b?) is not lex in k[a,b,d]. The A-compression of N is T =
1(a?, ab,ad) & c(a,b) & c*(a,b) & - - - = (a?, ab, ac, ad, be).

Theorem 2.9. Let N be any monomial ideal of R (or S), and let T be its
A-compression. Then T is an ideal of R (respectively, S).

Proof. 1t suffices to show that z;(fIy) C T, for all i and f. Observe that
Ty C T, if and only if |T¢|4 < |Ty|q for all d, since the Ty are lex ideals of k[A].
If 2; € A, then z;T; C Ty because Ty is an ideal of k[A], so we have
i fTy C fTy CT.
If z; ¢ A, we have x;fN; C x; fNg,¢ since N is an ideal. Thus Ny C Ny ¢
and |N¢|g < |Ng,¢l|a for all d. Hence |T¢|q < [T, ]q for all d, and so T¢ C Ty, ¢.
Thus I‘Z'fo C Iifolf cT. O

3 Structure of compressed ideals

We make a number of observations about A-compressed ideals.

Proposition 3.1. Suppose that N C R is A-compressed. Set B = R[y]. Then
NB is A-compressed as an ideal of B.

Remark 3.2. Proposition 3.1 holds regardless of the position of y in the lexi-
cographic order.

Proposition 3.3. If N is lex, then N is A-compressed.
Proposition 3.4. If N is A-compressed and A D B, then N is B-compressed.
Proposition 3.5. N is {z;}-compressed for any z;.

Definition 3.6. Let r be a positive integer. If N is A-compressed for every
r-element set A, we say that N is r-compressed. If N is A-compressed for every
proper subset A of {z1,---,2,}, we simply say that N is compressed.

Definition 3.7. A monomial ideal N is 0-Borel-fized or strongly stable if it
satisfies the following condition:

Let m € N be a monomial and suppose that z; divides m and 7 < j.
Then Ztm € N as well.

i

Proposition 3.8. N is 2-compressed if and only if N is strongly stable.



Remark 3.9. Up to this point, everything has held in somewhat more gener-
ality. The ring R could have been replaced by, for example, a quotient of the
form kf[zq, -+, zn]/ (25", -+, 28) with e; < --- < e, < 0o without meaningful
modification to any of the statements or proofs. (Macaulay’s theorem in such a
ring is known as Clements-Lindstréom’s theorem [CL].) Beginning with Theorem
3.10, however, it will be essential that we work over the correct ring.

Theorem 3.10. Let N be a monomial ideal of R. N is 3-compressed if and
only if N is lex.

Theorem 3.10 is a corollary of the following sharper result:

Proposition 3.11. Suppose that N C R is 2-compressed and also A-compressed
for every set A of the form {z;,z;y1,2n}. Then N is lex.

Proof. Let u € N be a monomial of degree d, and let v be another monomial of
degree d, lex-before u. We will show that v € N.

Write u = [[ z{* and v =[] :L‘{’. Let i be minimal such that e; # f;; we have
e; < f;. Put w= H;':1 ', v’ =%, and v/ = 7z Set D = deg u’, and observe
that u € k[z;11,--+ ,2n], v € ki, -+, 24].

Since u = wu’ € N and N is strongly stable, we have wmﬁ_l €N.

Since N is {x;, ¥;112, }-compressed, we have wz;z?~1 € N.

Since N is strongly stable, we have wz;v' = v € N. O

Propositions 3.5 and 3.8 and Theorem 3.10 combine to give us the following
structure theorem for compressed ideals of R:

Theorem 3.12. We classify the compressed ideals of R as follows:
o Ifn < 3, every monomial ideal is compressed.
o Ifn =3, the compressed ideals are precisely the strongly stable ideals.
e Ifn > 3, the compressed ideals are precisely the lex ideals.
We can also describe the compressed ideals of S, as follows:
Theorem 3.13. Let N be a compressed ideal of S. Then:
e Ifn is odd, N is lex.
o If n = 2r is even, the vector space Ny is lex for every d # r.

e Ifn=2r andu € N, v ¢ N are degree r monomials with v lez-before u,
then u = xox3++ Trp1 and v = 14 2Tr 43" Top.

In particular, if NV is not lex, then Ny is generated by {(z1)q4} ~ {v} and u,
where u and v are as above and {(z1)4} denotes the monomials in (z1)4. That
is, if IV is not lex, N4 is generated by the lex segment terminating at u, with a
single gap at v. Note that u is the successor of v in the lex order.



Proof. Suppose that u € N and v ¢ N both have degree r, and v is lex-before
u. Write v =[] 2" and v = H:E{’ Set A={z;:¢; # fi}.

N cannot be A-compressed, so we must have A = {z1,---,2,}. On the
other hand, A C supp(u) Usupp(v). Thus A = supp(u) Usupp(v) and n = 2r.

We have supp(u) Nsupp(v) = @, and z; divides v, since v is lex-before u. If
n = 2 we are done, otherwise suppose that z; divides v, for some 2 < i < r 4 1.
Then there exists z; dividing v with j > »+ 1. Since N is {z;, z; }-compressed,
we have ui—; € N. Then, since N is ({&1,---, 25} \ {2;, ¢;})-compressed, we
have v € N. Thus every z;,2 < i < r+ 1, must divide u, so u = zox3- - Try1
and v = 21T, 42%r 43+ Top. O

4 Macaulay’s Theorem

Macaulay’s theorem classifies the Hilbert functions over R in terms of lex ideals:

Theorem 4.1 (Macaulay). Fvery Hilbert function over R is attained by a lex
tdeal. That is, let I be any homogeneous ideal of R. Then there exists a lex
ideal L such that Hilbg 1 = Hilbg s.

Macaulay’s original proof is probably the first example of a compression
argument (using A = {23, -+, 2,}), but is sufficiently opaque that he felt it
necessary to warn his readers away, saying:

This proof of the theorem ... is given only to place it on record.
It is too long and complicated to provide any but the most tedious
reading.

A number of other proofs have appeared since, most notably that of Green
[Gr]. In this section, we present one more.

Our proof is by induction on n, and so will make free use of Theorem 2.9,
which was proved using Macaulay’s theorem on the smaller ring k[.A]. We begin
with some remarks on compression:

Definition 4.2. Let {m;} and {n;} be two sets of monomials, ordered so that
m; is before m; in the graded lex order (respectively, n; before n;) whenever
i < j. We say that {m;} is lexzicographically greater than {n;} if the following
condition is satisfied:

Let j be minimal such that m; # n;. Then m; is before n; in the
graded lex order.

If T and J are two monomial ideals, and {I},{J} are the sets of monomials
appearing in each, we say that I is lezicographically greater than J if {I} is
lexicographically greater than {.J}.

Lemma 4.3. Let N be a monomial ideal, A C {x1,--+,2x,} any set of variables,
and T the A-compression of N. Then T has the same Hilbert function as N,
and T is lexicographically greater than N.



Proof. Every Ty has the same Hilbert function as Ny, and is lexicographically
greater than NV;. O

Lemma 4.4. Let N be any homogeneous ideal, and let 2 be any collection of
proper subsets of {x1,--- ,z,}. Then there exists an ideal T, having the same
Hilbert function as N, which is A-compressed for all A € 2.

Proof. Set Ty = N and proceed inductively as follows: If 4 € 2 is such that
T; is not A-compressed, let T;;1 be the A-compression of T;. Then all T; have
the same Hilbert function, and T;41 is lexicographically greater than T; for all
i. Since “lexicographically greater than” is a well-ordering on the (finite) sets
of monomials in R, this process must stabilize in degree less than or equal to d,
say at Tj(q), for all d. Let T' be the ideal whose degree-d components are the
Ts(d)- O

Corollary 4.5. Let N be any homogeneous ideal. Then there exists a com-
pressed ideal T having the same Hilbert function as N.

We are now ready for the proof of Macaulay’s theorem:

Proof of Macaulay’s Theorem 4.1. We may assume by Grobner basis theory
that N is monomial. If n = 1 or 2, the theorem is now obvious.

Otherwise, by corollary 4.5, we may assume that N is compressed. If n > 4,
Theorem 3.12 shows that N is lex.

This leaves the case that R = k[a, b, c] and N is strongly stable. Tt suffices to
show for every degree d that, if Ly is the vector space spanned by the lex-first
|Ng| monomials of R, we have |(a,b,¢)Lq| < |(a,b,c)Nq|. Since Ny is strongly
stable, we have

[(a, b, ¢)Ng| = [Na| + |Na 0 ka, b]| + | Na N ka]|
and likewise
|(a;b,e)La| = |La| + |La N k[a, b]| + |Lq N k[a]].

|N4| = |L4| by construction, and Ny N k[a] = Ly N k[a] = (a?), so it suffices to
show that |Ng N kla, b]| > |Lq N k[a, b]|.

Suppose that u,v are degree d monomials with u € N, v ¢ N, and v lex-
before u. Then ¢ divides v, as otherwise the strongly stable condition, applied
to u, would require v = (%)?(2)7u € N. In particular, any v € Ls \ Ny is not
in k[a, b], yielding the desired inequality. O

Macaulay’s theorem is known to hold in many quotients of R [Kr, Ka, CL,
Sh, MP1, MP2, Me]. The first extension was due to Kruskal [Kr] and Katona
[Ka], who showed that it holds in § = R/(z%,---,2%):

n

Theorem 4.6 (Kruskal, Katona). Macaulay’s theorem holds in S. That is,
if N is any homogeneous ideal of S, there exists a lex ideal L such that L and
N have the same Hilbert function.



We prove Kruskal-Katona’s theorem, in the spirit of our proof of Macaulay’s
theorem:

Proof. We may assume by Grobner basis theory that N is monomial. If n = 1
or 2, the theorem is now obvious.

Otherwise, we may assume by corollary 4.5 that N is compressed. If N is
lex we are done.

If N is not lex, we have by Theorem 3.13 that n = 2r and that N fails
to be lex only in degree r, and only by containing v = z2---2,41 but not
V= Z1%py2- - Tn. Let {N} be the set of monomials of N, and let L be the
vector space spanned by {N} ~ {u} U {v}. Clearly, L has the same Hilbert
function as N; we claim that it is an ideal. Indeed N (hence L) contains every
multiple of v (as z;v = z,(Z-v)) and no divisor of u (as xl, € N would force

Tr

Zoy € N). O

5 Betti numbers

Definition 5.1. If I is a homogeneous R-module, a free resolution of I is an
exact sequence IF : --- —» Fy — Fy — I — 0, with each F; a free module.
F is minimal if each F; has minimum possible rank. The F; may be graded
F; = @R(—d)b%d so that each map F;11 — F; is homogeneous of degree zero.
If a minimal free resolution is graded in this way, the graded Betti numbers of
I are the b; 4.

Bigatti [Bi], Hulett [Hu], and Pardue [Pa] showed that the graded Betti
numbers of lex ideals of R are maximal among those of all homogeneous ideals
with a fixed Hilbert function:

Theorem 5.2 (Bigatti, Hulett, Pardue). Let I be a homogeneous ideal of
R, and let L be the lex ideal having the same Hilbert function as I. Then, for
all i,d, we have b; 4(L) > b; 4(I).

Analogous results are known in many rings which satisfy Macaulay’s theorem
[AHH, GHP, MPS], and are widely conjectured in general [FR].

In this section we show that the graded Betti numbers are nondecreasing
under A-compression, and provide a new proof of the results of Bigatti, Hulett,
and Pardue over R. Our argument is in the spirit of Hartshorne’s proof that
the Hilbert scheme is connected [Ha).

Lemma 5.3. Let k have characteristic zero, let R = k[a,b], and let N be a
monomial ideal of R. Let L be the lex ideal with the same Hilbert function as
N. Then there exists a change of variables f such that the initial ideal of f(N)
with respect to the lex order is L, and the initial ideal of f(N) with respect to
the inverse lex order is N.

Proof. Set f(a) = a and f(b) = a + b. (Alternatively, a generic linear form for
F(b) will work.) O



Lemma 5.4. Let R = k[a, b, c] (over an arbitrary infinite field k), and let N be
strongly stable but not lex. Then there exists an ideal N such that:

e N and N have the same Hilbert function.
e N is the initial ideal of N with respect to the grevlex order.

e The initial ideal of N with respect to the lex order is strictly lezicographi-
cally greater than N.

e N and N have the same graded Betti numbers.

In particular, if N’ is the lez initial ideal of N, we have b; ;(N') > bm(]{f) =
b; ;(N) for all i,j.

Proof. Let RP° and NP° be the polarizations of R and N with respect to the
variable b. (So if N is minimally generated by {a®"1b%2¢%"3}, we have NP°
generated by {a®“1biby---b., ,c®2}). Let f: RP® — R be defined by sending
each b; to a generic linear function of the form f; = f1 ja+ fa ;6 + f3 ;¢ Let N
be the image of NP° under f.

That N and N have the same Hilbert function and graded Betti numbers
is immediate from the theory of polarization (e.g., [Pe2]) (in particular, the
operation (~) extends to any graded free resolution of N: a straightforward
argument in the degree of the b-variables shows that the forms b; — b form a
regular sequence on R/N; then, since the f; are generic, we may assume that
the forms b; — f; form a regular sequence as well. Then, by a well-known Tor
argument, the Betti numbers of N and N over R are equal to those of NP° over

RP°).
To see that NV is the grevlex initial ideal of IV, observe that, if m = a®1b°2¢®*
is any monomial of N, then we have m = c¢®3(goa®*2 + --- + g.,a®1b%2) +

c®*1(other terms) € N. Subtracting an appropriate linear combination of n,
for n = a®1t1h*2~"¢® € N gives us m + c®*1(other terms) € N, whose initial
term is m.

To see that the lex initial ideal of N is lexicographically greater than NNV,
let u € N be the lex-first degree d monomial such that there exists v ¢ N
lex-before u; choose v to be the first such. Since the f are generic, there exists
a linear combination Y m, for m € N the monomials lex-before or equal to
u, with leading term v: since N is strongly stable, we have u = a®$°?, and
so v = a®1 b c?2~i=1; we could have chosen fi =aja+bfor j <i+ 1 and
fi =aja+b+yjcfor j>i+1. O

Remark 5.5. We believe, based on some extremely limited computer experi-
ments, that if k has characteristic zero, the functions f; = a+band f; = a+b+c,
for ¢ > 1, produce N satisfying the desired conditions.

Remark 5.6. We believe that the functions f; may be chosen so that the lex
initial ideal of NV is the lexicographic ideal L. Unfortunately, we have no proof
at this time.



Remark 5.7. A similar argument in two variables shows that lemma 5.3 holds
in arbitrary characteristic.

Remark 5.8. The operation (~) defined in the proof of lemma 5.4 does not
depend on the dimension of R. The proof continues to hold if {a,b,c} is a
subset of {z1,--+,2,}.

Theorem 5.9. Let N be any monomial ideal of R, and let A be any subset of
variables. If T is the A-compression of N, then b; ;(T) > b; ;(N) for all i, j.

Proof. By induction on the cardinality of A, we may assume that N is 5-
compressed for all proper subsets B of A. If | 4| > 4, we have N = T, by
Theorem 3.12. If | A| = 2 or 3, the proof of lemma 5.3 or 5.4, respectively, gives
us a monomial ideal N’ satisfying:

e The A-compression of N/ is T.
e N’ is lexicographically greater than N
® bij(N') > bi;(N).

Since the monomial ideals with a fixed Hilbert function are well-ordered by
“lexicographically greater than”, we are done by induction. O

In fact, combining the proof of Theorem 5.9 and the proof in [Pel] we obtain
the following stronger result:

Theorem 5.10. Under the assumptions of Theorem 5.9, the Betti numbers
b; ;(N) of N can be obtained from the b; ;(T) by a sequence of consecutive can-
cellations.

We obtain as a corollary the result of Bigatti [Bi], Hulett [Hu], and Pardue
[Pa].

Theorem 5.11 (Bigatti, Hulett, Pardue). Let I be any homogeneous ideal
of R, and let L be the lex ideal with the same Hilbert function as I. Then
b@j(L) Z b@j([) fOT all 2,_]

Proof. Let N be the initial ideal of I in any order, so b; ;(N) > b; ;(I). Now
apply Theorem 5.9 to the ideal N, with A = {z1,---,z,}. O

Remark 5.12 (On multidegrees). Fix A, and endow R with a multigraded
structure as follows: If m = fg is a degree d monomial with f € k[.A°] and
g € k[A], set the coarse multidegree of m to be cmdeg(m) = (f,d). Then we may
define coarsely homogeneous ideals, coarse Hilbert functions, etc., by analogy
to the usual definitions in a graded ring. With this notation, an .A-compressed
ideal is coarsely lex, and our results may be restated in more familiar terms:

e Theorem 2.9 states that every coarse Hilbert function is attained by a
coarsely lex ideal.



e Theorem 5.9 states that, if IV is coarsely homogeneous, and T is coarsely
lex with the same coarse Hilbert function, then the coarse Betti numbers
of T are greater than or equal to those of V.

e Lemmas 5.3 and 5.4, together with Theorem 3.12, show that the coarse
Hilbert scheme is connected.

6 Remarks on the Hilbert scheme

We close with some remarks about possible applications to the Hilbert scheme,
which parametrizes all ideals with a fixed Hilbert function.

It is known that the Hilbert scheme is connected. Hartshorne proves this
[Ha] by showing that there is a path to the lex ideal from any point on the
Hilbert scheme. Reeves [Re] and Pardue [Pa] have shown that there exists a
path of length at most d42, where d < n is the degree of the Hilbert polynomial.

In section 5, we have shown that one can walk to lex by walking to a sequence
of compressions. These moves are much simpler than those defined in [Re], which
involved Borel fans. It is natural to ask how many of our “compression steps”
are necessary to reach the lex ideal from any monomial ideal. There might be a
nice bound in terms of (n — 2) and the radius of the Hilbert scheme of k[a, b, ]
(since by proposition 3.11 it suffices to be simultaneously Borel and compressed
with respect to the n — 2 sets {z;, ziy1,2n}.)

Furthermore, it should be possible to perform multiple such compressions at
once, as the coordinate changes involved in the compressions with respect to,
say, {@;, iy1, 2n} and {z;12, 2,13, Zn }, might not interact harmfully.

In exploring these questions, we would like it to be the case that if N is
B-compressed and T is its A-compression, then T' is B-compressed as well. Un-
fortunately, this is not true in general; in fact it can be impossible to find A for

which this holds:

Example 6.1. Let N = (a?,ab, ac,b? bc) C k[a, b, c,d]. Then N is compressed
with respect to every proper subset of {a,b,c,d} except {a,b,d}. Its {a,b,d}-
compression is T = (a?, ab, ac, ad, be), which is not {b, c}-compressed.

In [MP2] we show that compression with respect to the set {z1,---,z,_1}
is well-behaved in the sense that it takes strongly stable ideals to strongly stable
ideals. More research in this direction might prove productive.
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