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Abstract: We study Hilbert functions of graded ideals using lex ideals.

1. Introduction

A well-studied and important numerical invariant of a homogeneous ideal over a stan-

dard graded polynomial ring S is its Hilbert function. It gives the sizes of the graded

components of the ideal.

There are many papers on Hilbert functions or using them. In many of the recent

papers and books, Hilbert functions are described using Macaualay’s representation

with binomials. Thus, the arguments consist of very clever computations with binomi-

als. We have intentionally avoided computations with binomials. Macaulay’s original

idea in 1927 [Ma] is that there exist highly structured monomial ideals - lex ideals - that

attain all possible Hilbert functions. In our proofs and in the open problems, we discuss

the role of lex ideals. It seems to us that Problems 3.1.6 and 3.1.8 are very basic and

natural if one is focused on the lex ideals instead of computations with binomials.

Throughout the paper S = k[x1, . . . , xn] is a polynomial ring over a field k graded

by deg(xi) = 1 for all i. Let P = (xe1

1 , · · · , xen
n ), with e1 ≤ e2 ≤ · · · ≤ en ≤ ∞ (here

x∞
i = 0) and set W = S/P . The Clements-Lindström Theorem [CL] characterizes
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the possible Hilbert functions of graded ideals in the quotient ring W ; Macaulay’s

Theorem [Ma] covers the particular case when W = S. In Section 2, we present an

algebraic proof of the Clements-Lindström Theorem combining ideas of Bigatti [Bi],

Clements and Lindström [CL], and Green [Gr]. The proof is based on the argument

in [MP]. One of our main results is the Comparison Theorem 2.14 which was inspired

by Green’s Theorem. Note that the Comparison Theorem 2.14 holds in the ring W .

As an immediate corollary we obtain the Generalized Green’s Theorem 2.15. Green’s

Theorem 2.16 is over the ring S, and is just a particular case of Theorem 2.15. The-

orem 2.16 was first proved by Green [Gr2] for linear forms, then it was extended to

non-linear forms by Gasharov, Herzog, and Popescu [Ga, HP].

In Section 3, we raise problems and conjectures which are natural extensions of:

◦ Macaulay’s Theorem and Clements-Lindström’s Theorem

◦ Evans’ Conjecture on lex-plus-powers ideals

◦ conjectures by Gasharov, Herzog, Hibi, and Peeva.

We also very briefly discuss Eisenbud-Green-Harris Conjecture. All the problems focus

on the role of lex ideals.

By Macaulay’s Theorem [Ma] lex sequences of monomials have the minimal pos-

sible growth of the Hilbert function. There exist many other monomial sequences with

this property. The study of such sequences is started by Mermin [Me]; they are called

lexlike sequences. In Section 4, we introduce lexlike ideals and prove an extension of

Macaulay’s Theorem for lexlike ideals. By Macaulay’s Theorem, every Hilbert function

is attained by a (unique up to reordering of the variables) lex ideal. One of our main

results, Theorem 4.11, shows that it is also attained by (usually many) lexlike ideals;

this is illustrated in Example 4.12. Furthermore, we extend to lexlike ideals the re-

sult of Bigatti, Hulett, Pardue, that lex ideals have the greatest graded Betti numbers

among all ideals with a fixed Hilbert function. We show in Theorem 4.14 that lexlike

ideals have the greatest graded Betti numbers among all ideals with a fixed Hilbert

function.

In the last section 5, we discuss multigraded Hilbert functions and introduce mul-

tilex ideals.

Acknowledgments. The second author is partially supported by NSF.
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2. The Clements-Lindström and Green’s Theorems

Throughout this section we use the following notation. Let S = k[x1, . . . , xn] be a

polynomial ring over a field k graded by deg(xi) = 1 for all i. Let P = (xe1

1 , · · · , xen
n ),

with e1 ≤ e2 ≤ · · · ≤ en ≤ ∞ (here x∞
i = 0) and set W = S/P . We denote by Wd the

k-vector space spanned by all monomials in W of degree d. Denote m = (x1, . . . , xn)1
the k-vector space spanned by the variables. We order the variables x1 > . . . > xn,

and we denote by �lex the homogeneous lexicographic order on the monomials. For a

monomial m, set max(m) = max{i|xi divides m}.

We say that Ad is a Wd-monomial space if it can be spanned by monomials of

degree d. We denote by {Ad} the set of monomials (non-zero monomials in Wd)

contained in Ad. The cardinality of this set is |Ad| = dimk Ad. By mAd we mean the

k-vector subspace
(

m (Ad)
)

d+1
of Wd+1.

The lex-segment λd,p of length p in degree d is defined as the k-vector space

spanned by the lexicographically first (greatest) p monomials in Wd. We say that λd

is a lex-segment in Wd if there exists a p such that λd = λd,p. For a monomial space

Ad, we say that λd,|Ad| is its Wd-lexification.

Compressed ideals were introduced by Clements and Lindström [CL]. They play

an important role in the proof of the theorem.

Definition 2.1. An Wd-monomial space Cd is called i-compressed if we have the

disjoint union

{Cd} =
∐

0≤j≤d

xd−j
i {Lj}

and each Lj is a lex-segment in
(

W/xi

)

j
. We say that a k-vector space Cd is Wd-

compressed (or compressed) if it is a Wd-monomial space and is i-compressed for all

1 ≤ i ≤ n. A monomial ideal M in W is called compressed if Md is compressed for all

d ≥ 0.

Lemma 2.2. If Cd is i-compressed in Wd, then mCd is i-compressed in Wd+1.

Another class of ideals useful in the proof are Borel ideals, defined as follows.

Definition 2.3. A monomial m′ ∈ W is said to be in the big shadow of a monomial
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m ∈ W if m′ =
xi m

xj

for some xj dividing m and some i ≤ j. We say that a monomial

space Bd in Wd is Borel if it contains all monomials in the big shadows of its monomial

generators.

Lemma 2.4.

(1) If a monomial space Cd is compressed and n ≥ 3, then Cd is Borel.

(2) If n ≤ 2, then every monomial space is compressed.

Proof: We will prove (1). Let m ∈ {Cd} and m′ be a monomial in its big shadow.

Hence m′ =
xi m

xj

for some xj dividing m and some i ≤ j. There exists an index

1 ≤ q ≤ n such that q 6= i, j. Note that that m and m′ have the same q-exponents.

Since Cd is q-compressed and m′ �lex m, it follows that m′ ∈ {Cd}. Therefore, Cd is

Borel.

For a Wd-monomial space Ad set

ri,j(Ad) =
∣

∣

∣
{m ∈ {Ad} | max(m) ≤ i and xj

i does not divide m }
∣

∣

∣
.

The following lemma is a generalization of a result by Bigatti [Bi].

Lemma 2.5. If a monomial space Bd is Wd-Borel, then

∣

∣

∣
{mBd}

∣

∣

∣
=

n
∑

i=1

ri,ei−1(Bd) .

Proof: We will show that {mBd} is equal to the set

n
∐

i=1

xi {m ∈ {Bd} |max(m) ≤ i } \
n

∐

i=1

xi

{

m ∈ {Bd}

∣

∣

∣

∣

∣

max(m) = i and

xei−1
i divides m

}

.

Denote by P the set above. Let w ∈ Bd. For j ≥ max(w) we have that xjw ∈ P . Let

j < max(w). Then v = xj

w

xmax(w)
∈ Bd. So, xjw = xmax(w)v ∈ P .

We recall the definition of lex ideal:

Definition 2.6. Let L be a monomial ideal in W minimally generated by monomials
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l1, . . . , lr. We say that L is lex, ( lexicographic), if the following property is satisfied:

m is a monomial in W

m �lex li and deg(m) = deg(li), for some 1 ≤ i ≤ r

}

=⇒ m ∈ L .

Lemma 2.7. If Ld is an Wd-lex-segment, then mLd is an Wd+1-lex-segment.

Example 2.8. The ideal (x1x2, x1x3, x2x3) is lex in k[x1, x2, x3]/(x2
1, x

2
2, x

5
3).

Lemma 2.9. If Ld is a lex-segment, then it is Borel and Wd-compressed.

The main work for proving a generalized Green’s theorem is in the following

lemma:

Lemma 2.10. Let Cd be an n-compressed Borel Wd-monomial space, and let Ld be

a lex-segment in Wd with |Ld| ≤ |Cd|. For each 1 ≤ i ≤ n and each 1 ≤ j ≤ ei we have

ri,j(Ld) ≤ ri,j(Cd) .

Proof: Note that both Ld and Cd are Wd-Borel and n-compressed.

First, we consider the case i = n. Clearly, rn,en
(Ld) = |Ld| ≤ |Cd| = rn,en

(Cd)

(if en = ∞, then we consider rn,d+1 here). We induct on j decreasingly. Suppose that

ri,j+1(Ld) ≤ ri,j+1(Cd) holds by induction.

If {Cd} contains no monomial divisible by xj
n then

ri,j(Ld) ≤ ri,j+1(Ld) ≤ ri,j+1(Cd) = ri,j(Cd) .

Suppose that {Cd} contains a monomial divisible by xj
n. Denote by e = xb1

1 . . . xbn
n ,

with bn ≥ j, the lex-smallest monomial in Cd that is divisible by xj
n. Let 0 ≤ q ≤ j−1.

Since Cd is Wd-Borel, it follows that cq = xbn−q
n−1

e

xbn−q
n

∈ Cd. This is the lex-smallest

monomial that is lex-greater than e and xn divides it at power q. Let the monomial

a = xa1

1 . . . x
an−1

n−1 xq
n ∈ Wd be lex-greater than e. Since Cd is n-compressed and a is

lex-greater (or equal) than cq, it follows that a ∈ Cd.

For a monomial u, we denote by xn /∈ u the property that xj
n does not divide u.

By what we proved above, it follows that

(2.11)
∣

∣

∣
{u ∈ {Cd} |xn /∈ u, u �lex e }| = |{u ∈ {Wd} |xn /∈ u, u �lex e }

∣

∣

∣
.
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Therefore,

ri,j(Ld) = |{u ∈ {Ld} |xn /∈ u, u �lex e }| + |{u ∈ {Ld} |xn /∈ u, u ≺lex e }|

≤ |{u ∈ {Wd} |xn /∈ u, u �lex e }| + |{u ∈ {Ld} |xn /∈ u, u ≺lex e }|

≤ |{u ∈ {Wd} |xn /∈ u, u �lex e }| + |{u ∈ {Ld} | u ≺lex e }|

≤ |{u ∈ {Wd} |xn /∈ u, u �lex e }| + |{u ∈ {Cd} | u ≺lex e }|

= |{u ∈ {Wd} |xn /∈ u, u �lex e }| + |{u ∈ {Cd} |xn /∈ u, u ≺lex e }|

= |{u ∈ {Cd} |xn /∈ u, u �lex e }| + |{u ∈ {Cd} |xn /∈ u, u ≺lex e }|

= ri,j(Cd) ;

for the third inequality we used the fact that Ld is a lex-segment in Wd with |Ld| ≤ |Cd|;

for the equality after that we used the definition of e; for the next equality we used

(2.11). Thus, we have the desired inequality in the case i = n.

In particular, we proved that

(2.12) rn,1(Ld) ≤ rn,1(Cd) .

Finally, we prove the lemma for all i < n. Both {Cd/xn} and {Ld/xn} are lex-

segments in Wd/xn since Cd is n-compressed. By (2.12) the inequality rn,1(Ld) ≤

rn,1(Cd) holds, and it implies the inclusion {Cd/xn} ⊇ {Ld/xn}. The desired inequal-

ities follow since

ri,j(Cd) = ri,j

(

Cd/(xi+1, . . . , xn)
)

ri,j(Ld) = ri,j

(

Ld/(xi+1, . . . , xn)
)

.

Let Bd be a Borel monomial space in Wd. Set z = xn and n = (x1, . . . , xn−1)1 =

m/z. We have the disjoint union

{Bd} =
∐

0≤j≤d

zd−j{Uj}

where each Uj is a monomial space in W/z. Let Fj be the lexification of the space Uj

in W/z. Consider the Wd-monomial space Td defined by

{Td} =
∐

0≤j≤d

zd−j{Fj} .

Clearly, |Td| = |Bd|. We call Td the n-compression of Bd.
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Lemma 2.13. Let Bd be a Borel monomial space in Wd. Its n-compression Td is

Borel.

Proof: Consider the disjoint unions

{Bd} =
∐

0≤j≤d

zd−j{Uj}

{Td} =
∐

0≤j≤d

zd−j{Fj} .

Since Bd is Borel, it follows that nUj ⊆ Uj+1. Since |Fj | = |Uj |, we can apply

Theorem 2.18(1) by induction on the number of the variables, and it follows that

|nFj | ≤ |nUj | ≤ |Uj+1| = |Fj+1|. As both nFj and Fj+1 are lex-segments, we conclude

that nFj ⊆ Fj+1. If xd−j
n m is a monomial in Td and m ∈ Fj , then for each 1 ≤ i < n

we have that xim ∈ nFj ⊆ Fj+1, so xd−j−1
n xim ∈ Td. If xp divides m, then for each

1 ≤ q ≤ p we have that
xqm

xp
∈ Fj since Fj is lex. Thus, Td contains all the monomials

in the big shadows of its monomials. We have proved that Td is Borel.

Comparison Theorem 2.14. Let Bd be a Borel monomial space in Wd. Let Ld be

a lex-segment in Wd with |Ld| ≤ |Bd|. The following inequalities hold:

ri,j(Ld) ≤ ri,j(Bd) .

for each 1 ≤ i ≤ n and each 1 ≤ j ≤ ei.

Proof: We prove the inequalities by decreasing induction on the number of variables n.

Let Td be the n-compression of Bd. Since Td is Borel and n-compressed by Lemma 2.13,

we can apply Lemma 2.10 and we get

ri,j(Ld) ≤ ri,j(Td)

for each 1 ≤ i ≤ n and each 1 ≤ j ≤ ei. It remains to compare ri,j(Td) and ri,j(Bd). For

i = n, we have equalities rn,j(Td) = rn,j(Bd). Let i < n. Then ri,j(Td) = ri,j(Td/xn)

and ri,j(Bd) = ri,j(Bd/xn), where Td/xn = Ld is a lex-segment and Bd/xn = Ud is

Borel. So, by induction the desired inequalities hold.
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Generalized Green’s Theorem 2.15. Let Bd be a Borel monomial space in Wd.

Let Ld be a lex-segment in Wd with |Ld| ≤ |Bd|. The following inequalities hold:

dim
(

Wd/(Ld ⊕ n(d−j)xj
n)

)

≥ dim
(

Wd/(Bd ⊕ n(d−j)xj
n)

)

for each each 1 ≤ j ≤ en, j ≤ d.

Proof: Note that the desired inequality is equivalent to

rn,j(Ld) ≤ rn,j(Bd) .

It holds by Theorem 2.14.

The following result is a straightforward corollary of Theorem 2.15 since xj
n is a

generic form for every Borel ideal in S.

Green’s Theorem 2.16. Let Bd be a Borel monomial space in Sd. Let Ld be a

lex-segment in Sd with |Ld| ≤ |Bd|. Let g be a generic homogeneous form of degree

j ≥ 1. The following inequality holds:

dim
(

Sd/(Ld ⊕m(d−j)g)
)

≥ dim
(

Sd/(Bd ⊕m(d−j)g)
)

.

Remark 2.17. Theorem 2.16 in the case when j = 1 was proved by Green [Gr2]. The-

orem 2.16 in the case when j > 1 was proved by Gasharov, Herzog, and Popescu [Ga,

HP]. Theorem 2.15 in the case when j = 1 was proved by Gasharov [Ga2, Theorem 2.1].

We are ready to prove Macaulay’s Theorem [Ma] which characterizes the possible

Hilbert functions of graded ideals in S. There are several different proofs of this

theorem, cf. Green [Gr].

Macaulay’s Theorem 2.18. The following two properties are equivalent, and they

hold:

(1) Let Ad be a Sd-monomial space and Ld be its lexification in Sd. Then |mLd | ≤

|mAd |.

(2) For every graded ideal J in S there exists a lex ideal L with the same Hilbert

function.

Proof: First, we will prove that (1) holds. Since Ad and Ld are monomial spaces, (1)

does not depend on the field k. Thus, we can replace the field if necessary and assume
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that k has characteristic zero. This makes it possible to use Gröbner basis theory

to reduce to the Borel case, cf. [Ei, Chapter 15]. We obtain a Borel Sd-monomial

space Bd such that |Bd| = |Ad| and |mBd| ≤ |mAd|. For a Sd-monomial space Dd

set ti(Dd) = ri+1,1(Dd) =
∣

∣

∣
{m ∈ {Dd} | max(m) ≤ i }

∣

∣

∣
. We apply Lemma 2.5 to

conclude that

∣

∣

∣
{mBd}

∣

∣

∣
=

n
∑

i=1

ti(Bd) and
∣

∣

∣
{mLd}

∣

∣

∣
=

n
∑

i=1

ti(Ld) .

Finally, we apply Theorem 2.14 and get the inequality
∣

∣ {mLd}
∣

∣ ≤
∣

∣ {mBd}
∣

∣. We

proved (1).

Now, we prove that (1) and (2) are equivalent. Clearly, (2) implies (1). We

assume that (1) holds and will prove (2). We can assume that J is a monomial ideal

by Gröbner basis theory. For each d ≥ 0, let Ld be the lexification of Jd. By (1), it

follows that L = ⊕d≥0 Ld is an ideal. By construction, it is a lex-ideal and has the

same Hilbert function as J in all degrees.

We continue with the proof of Clements-Lindström Theorem.

Lemma 2.19. Let Ad be a Wd-monomial space. There exists a compressed monomial

space Cd in Wd such that |Cd| = |Ad| and |mCd| ≤ |mAd|.

Proof: Suppose that Ad is not i-compressed. Set z = xi.

We have the disjoint union

{Ad} =
∐

0≤j≤d

zd−j{Uj}

where each Uj is a monomial space in W/z. Let Fj be the lexification of the space Uj

in W/z. Consider the Wd-monomial space Td defined by

{Td} =
∐

0≤j≤d

zd−j{Fj} .

Clearly, |Td| = |Ad|. We will prove that

|mTd| ≤ |mAd| .
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We have the disjoint unions

{mAd} =
∐

0≤j≤d

zd−j+1{Uj + nUj−1}

{mTd} =
∐

0≤j≤d

zd−j+1{Fj + nFj−1} ,

where n = m/z. We will show that

|Fj + nFj−1| = max

{

|Fj |, |nFj−1|

}

≤ max

{

|Uj |, |nUj−1|

}

≤ |Uj + nUj−1| .

The first equality above holds because both Fj and nFj−1 are (W/z)j-lex-segments,

so Fj + nFj−1 is the longer of these two lex-segments. The last inequality is ob-

vious. The middle inequality holds since by construction Fj−1 is the lexification of

Uj−1, so |Fj−1| = |Uj−1| and by induction on the number of variables we can apply

Theorem 2.20(1) to the ring W/z.

Thus, |Fj + nFj−1| ≤ |Uj + nUj−1|. Multiplication by zd−j+1 is injective if d −

j + 1 ≤ ei − 1 and is zero otherwise, therefore we conclude that

∣

∣

∣
zd−j+1(Fj + nFj−1)

∣

∣

∣
≤

∣

∣

∣
zd−j+1(Uj + nUj−1)

∣

∣

∣
.

This implies the desired inequality |mTd| ≤ |mAd|.

Note that {Td} is greater lexicographically than {Ad} (here “lexicographically

greater” means that we order the monomials in {Td} and {Ad} lexicographically, and

then compare the two ordered sets lexicographically). If Td is not compressed, we can

apply the argument above. After finitely many steps in this way, the process must

terminate because at each step we construct a lex-greater monomial space. Thus, after

finitely many steps, we reach a compressed monomial space.

The Clements and Lindström Theorem [CL] is:

Clements and Lindström’s Theorem 2.20. The following two properties are

equivalent, and they hold:

(1) Let Ad be a Wd-monomial space and Ld be its lexification in Wd. Then |mLd | ≤

|mAd |.
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(2) For every graded ideal J in W there exists a lex ideal L with the same Hilbert

function.

Proof: First, we will prove that (1) holds. The theorem clearly holds if n = 1. An

easy calculation shows that the theorem holds, provided n = 2 and we do not have

e2 ≤ d + 1 < e1. By the assumption on the ordering of the exponents, it follows that

the theorem holds for n = 2.

Suppose that n ≥ 3. First, we apply Lemma 2.19 to reduce to the compressed

case. We obtain a compressed Wd-monomial space Cd such that |Cd| = |Ad| and

|mCd| ≤ |mAd|. Both Ld and Cd are (S/P )d-compressed. We apply Lemma 2.5 to

conclude that
∣

∣

∣
{mCd}

∣

∣

∣
=

n
∑

i=1

ri,ei−1(Cd)

∣

∣

∣
{mLd}

∣

∣

∣
=

n
∑

i=1

ri,ei−1(Ld).

Finally, we apply Lemma 2.10 and obtain the inequality
∣

∣ {mLd}
∣

∣ ≤
∣

∣ {mCd}
∣

∣. We

proved (1).

Now, we prove that (1) and (2) are equivalent. CLearly, (2) implies (1). We

assume that (1) holds and will prove (2). We can assume that J is a monomial ideal

by Gröbner basis theory. For each d ≥ 0, let Ld be the lexification of Jd. By (1), it

follows that L = ⊕d≥0 Ld is an ideal. By construction, it is a lex-ideal and has the

same Hilbert function as J in all degrees.

Lexicographic ideals are highly structured and it is easy to derive the inequalities

characterizing their possible Hilbert functions.

3. Open Problems

Throughout this section, M is monomial ideal in S.

3.1. Hilbert functions in quotient rings.

We focus on the problem to identify rings, other than S and S/P , where Macaulay’s and

Clements-Lindström’s theorems hold. First, we introduce the necessary definitions.
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Definition 3.1.1. A homogeneous ideal of S/M is lexifiable if there exists a lex ideal

with the same Hilbert function. We say that M and S/M are Macaulay-Lex if every

homogeneous ideal of S/M is lexifiable.

The following problem is a natural extension of Macaulay’s and Clements-Lind-

ström’s Theorems:

Problem 3.1.2. Identify monomial ideals which are Macaulay-Lex.

Macaulay’s Theorem [Ma] says that 0 is Macaulay-Lex. Clements-Lindström’s

Theorem [CL] says that (xe1

1 , · · · , xen
n ) is Macaulay-Lex when e1 ≤ · · · ≤ en ≤ ∞. In

[MP], we prove the following theorems in this direction:

Theorem 3.1.3. Let M be Macaulay-Lex and L be lex. Then M+L is Macaulay-Lex.

Theorem 3.1.4. Let S/M be Macaulay-Lex. Then (S/M)[y] is Macaulay-Lex.

Macaulay-Lex ideals appear to be rare, however. For example, Shakin [Sh] has

recently shown that a Borel ideal M is Macaulay-Lex if and only if it is piecewise

lex, that is, if M may be written M =
∑

Li with Li generated by a lex segment of

k[x1, · · · , xi].

It is easy to construct examples like [MP, Example 2.13], where a given Hilbert

function is not attained by any lexicographic ideal in the degrees of the minimal gen-

erators of M . This suggests that our definitions should be relaxed somewhat. In [MP]

we introduce the following definition:

Definition 3.1.5. We say that M and S/M are pro-lex above q if every homogeneous

ideal of S/M generated in degrees ≥ q is lexifiable. Let d be the maximal degree of

a minimal generator of M . We say that M and S/M are pro-lex if they are pro-lex

above d.

We have the following variation of Problem 3.2:

Problem 3.1.6. Identify monomial ideals which are pro-lex.

As a first step in this direction, we show in [MP]:

Theorem 3.1.7. Let K be a compressed monomial ideal, and let d be the maximal

degree of a minimal monomial generator of K. If n = 2, assume that K is lex. Let
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P = (xe1

1 , · · · , xen
n ), where e1 ≤ · · · en ≤ ∞ (here x∞

i = 0). The ideal K + P is pro-lex

above d.

It is natural to try to extend to non-monomial ideals:

Problem 3.1.8. Find other graded rings where the notion of lex ideal makes sense

and which are pro-lex.

Of particular interest are the coordinate rings of projective toric varieties. Toric

varieties are an important class of varieties which occur at the intersection of Alge-

braic Geometry, Commutative Algebra, and Combinatorics. They might provide many

examples of interesting rings in which all Hilbert functions are attained by lex ideals.

Problem 3.1.9. Find projective toric rings which are pro-lex (or Macaulay-Lex).

The coordinate rings of toric varieties admit a natural multigraded structure which

refines the usual grading and which yields a multigraded Hilbert function; this is

studied in Section 5.

3.2. The Eisenbud-Green-Harris Conjecture.

The most exciting currently open conjecture on Hilbert functions is given by Eisenbud,

Green, and Harris in [EGH1, EGH2]. The conjecture is wide open.

Conjecture 3.2.1. Let N be a homogeneous ideal containing a homogeneous regular

sequence in degrees e1 ≤ · · · ≤ er. There is a monomial ideal T such that N and

T + (xe1

1 , · · · , xer
r ) have the same Hilbert function.

The original conjecture differs from 3.2.1 in the following two minor aspects:

◦ In the original conjecture r = n.

◦ The original conjecture gives a numerical characterization of the possible Hilbert

functions of N . It is well known that this numerical characterization is equiva-

lent to the existence of a lex ideal L such that L + (xe1

1 , · · · , xer
r ) has the same

Hilbert function as N . By Clements-Lindström’s Theorem, this is equivalent to

Conjecture 3.2.1.

3.3. Betti numbers.

The study of Hilbert functions is often closely related to the study of free resolutions.
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We focus on problems based on the idea that the lex ideal has the greatest Betti

numbers among all ideals with a fixed Hilbert function.

Conjecture 3.3.1. Let k be an infinite field (possibly, one should also assume that k

has characteristic 0). Suppose that S/M is pro-lex above d, J is a homogeneous ideal

in S/M , generated in degrees ≥ d, and L is the lex ideal with the same Hilbert function

as J . Then:

(1) The Betti numbers of J over R are less than or equal to those of L.

(2) The Betti numbers of J + M over S are less than or equal to those of L + M .

Note that the first part of the conjecture is about infinite resolutions (unless M

is generated by linear forms), whereas the second part is about finite ones.

In the case M = 0, Conjecture 3.3.1 holds by a result of Bigatti [Bi], Hulett [Hu],

and Pardue [Pa]. Also, Conjecture 3.3.1(1) holds by a result of Aramova, Herzog, and

Hibi [AHH] over an exterior algebra. Furthermore, Conjecture 3.3.1(2) was inspired

by work of Graham Evans and his conjecture, cf. [FR]:

Conjecture 3.3.2. (Evans) Suppose that a homogeneous ideal I contains a regular

sequence of homogeneous elements of degrees a1, . . . , an in S. Suppose that there exists

a lex-plus-powers ideal L with the same Hilbert function as I. Then the Betti numbers

of L are greater than or equal to those of I.

Conjecture 3.3.2 was inspired by the Eisenbud-Green-Harris Conjecture 3.2.1.

When the regular sequence in Conjecture 3.3.2 consists of powers of the variables,

Conjecture 3.3.2 coincides with Conjecture 3.3.1(2). Also, in the case when M is

generated by powers of the variables, Conjecture 3.3.1(1) coincides with a conjecture

of Gasharov, Hibi, and Peeva [GHP], and in the case when M is generated by squares

of the variables Conjecture 3.3.1(2) coincides with a conjecture of Herzog and Hibi.

Remark 3.3.3. It is natural to wonder whether Conjecture 3.3.1 should have part (3)

that states that the Betti numbers of J over S are less or equal to those of L. There

is a counterexample in [GHP]: take J = (x2, y2) in k[x, y]/(x3, y3) and L = (x2, xy),

then the graded Betti numbers of L over S are not greater or equal to those of J over

S. It should be noticed that J and L do not have the same Hilbert function as ideals

in S.
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4. Lex-like ideals

In this section we work over the polynomial ring S = k[x1, · · · , xn]. Macaulay’s Theo-

rem [Ma] has the following two equivalent formulations (given in Theorem 2.18).

Theorem 4.1. Let Ad be a monomial space in degree d and Ld be the space spanned

by a lex segment in degree d such that |Ad| = |Ld|. Then |mLd | ≤ |mAd |.

Theorem 4.2. For every graded ideal J in S there exists a lex ideal L with the same

Hilbert function.

The goal of this section is to show that a generalization of Macaulay’s Theorem

holds for ideals generated by initial segments of lexlike sequences. Lexlike sequences

were discovered by Mermin in [Me]; we recall the definition.

Definition 4.3. A monomial sequence (of a fixed degree d) is a sequence Xd of all the

monomials of S = k[x1, · · · , xn] of degree d. We denote by Xd(i) the monomial space

generated by the first i monomials in Xd. We say that Xd is lexlike if, for every i, and

for every vector space V generated by i monomials of degree d, we have

|mXd(i)| < |mV | .

The lex sequence in degree d consists of all the degree d monomials ordered lexi-

cographically; it is denoted by Lexd or simply Lex.

Lemma 4.4.

(1) Lexd is a lexlike sequence.

(2) Xd is a lexlike sequence of degree d if and only if, for every i we have

|mXd(i)| = |mLexd(i)| .

Proof: (1) is Macaulay’s Theorem 2.18. (2) follows from (1).

Thus, lexlike sequences have minimal Hilbert function growth, as lex sequences

have.

By Definition 4.3 it follows immediately that the first formulation 4.1 of Macaulay’s

Theorem holds for lexlike sequences:
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Theorem 4.5. Let Ad be a monomial space in degree d and Id be the space spanned

by the initial segment of a lexlike sequence in degree d such that |Ad| = |Id|. Then

|mId | ≤ |mAd |.

However, it is not immediately clear that the second formulation 4.2 of Macaulay’s

Theorem holds for lexlike sequences. The problem is that one has to construct lexlike

ideals and show that they are well defined. Here is an outline of what we do in order

to extend Theorem 4.2: In each degree d we have the lex sequence Lexd. If Ld is

spanned by an initial segment of Lexd, then mLd is spanned by an initial segment of

Lexd+1. This property is very easy to prove. It is very important, because it makes it

possible to define lexicographic ideals. In [Me, Corollary 3.18] Mermin proved that the

same property holds for lexlike sequences. This makes it possible to introduce lexlike

ideals in Definition 4.9. We prove in Theorem 4.10 that Macaulay’s Theorem 4.2 for

lex ideals holds for lexlike ideals as well.

First, we recall a definition in [Me]: Let Xd be a monomial sequence of degree d,

and let Xd−1 be a sequence of all the monomials of S of degree d − 1. We say that

Xd is above Xd−1 if, for all i, there is a j such that mXd−1(i) = Xd(j). By [Me,

Theorem 3.20], if Xd is a monomial sequence above a lexlike sequence Xd−1, then Xd

is lexlike.

Lemma 4.6. Let Y be a lexlike sequence in degree d. In every degree p, there exists

a lexlike sequence Xp such that Xd = Y and Xp+1 is above Xp for all p. In particular,

if a space Vp is spanned by an initial segment of Xp, then mVp is spanned by an initial

segment of Xp+1.

Proof: Repeatedly apply Theorem 3.21 in [Me] to get Xp for p < d. Repeatedly apply

Theorem 3.20 in [Me] to get Xp for p > d.

Definition 4.7. Let X be a collection of lexlike sequences Xd in each degree d, such

that Xd+1 is above Xd for each d. We call X a lexlike tower.

If we multiply a monomial sequence X by a monomial m by termwise multiplica-

tion, then we denote the new monomial sequence by mX. If Y is another monomial

sequence, we denote concatenation with a semicolon, so X;Y . Towers of monomial

sequences are highly structured:

Theorem 4.8. Let X be a lexlike tower. There exists a variable xi, a lexlike tower
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Y of monomials in S, and a lexlike tower Z of monomials in S/xi , such that

X = xiY;Z .

Proof: The variable xi is the first term of X1. Each Xd begins with all the degree d

monomials divisible by xi. Writing Xd = xiYd−1;Zd for each d, we have that Y is a

lexlike tower and Z is a lexlike tower in n − 1 variables.

Remark 4.9. The lexicographic tower is compatible with the lexicographic order in

each degree. A lexlike tower X induces a total ordering <X on the monomials of S

which refines the partial order by degree. It is natural to ask what term orders occur

this way. We show that the lexicographic order is the only one (up to reordering the

variables): Suppose that <X is a term order. Clearly X1 is Lex for the corresponding

order of the variables. Writing X2 = x1Y1;Z1, we apply x1xi <X x1xj whenever

xi <X xj to see that Y1 is Lex and induction on n to see that Z1 is Lex. Thus X2 is

Lex. Now if Xd = x1Yd−1;Zd is Lex, induction on d and n shows that Yd and Zd+1,

and hence Xd+1, are Lex as well.

In the spirit of the definition of lex ideals, we introduce lexlike ideals as follows:

Definition 4.10. Let X be a lexlike tower. We say that a d-vector space is an X-space

if it is spanned by an initial segment of Xd. We say that a homogeneous ideal I is

X-lexlike if Id is an X-space for all d. We say that an ideal I is lexlike if there exists

a lexlike tower X so that I is X-lexlike.

A lex ideal is lexlike by Lemma 4.4(1).

Macaulay’s Theorem for Lexlike Ideals 4.11. Let X be a lexlike tower. Let J

be a homogeneous ideal, and for each d let Id be the X-space spanned by the first

|Jd| monomials of Xd. Then I =
⊕

Id is an X-lexlike ideal and has the same Hilbert

function as J .

Proof: It suffices to show that I is an ideal, that is, that mId ⊂ Id+1 for each degree

d. We have |mId| ≤ |mJd| ≤ |Jd+1| = |Id+1|, and mId and Id+1 are both spanned by

initial segments of Xd+1. Since Xd+1 is above Xd, it follows that mId ⊂ Id+1.

Thus, every Hilbert function is attained not only by a lex ideal (which is unique up

to reordering of the variables) but also by (usually many) lexlike ideals. These distinct
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lexlike ideals are obtained by varying the lexlike tower X. The following example

illustrates this.

Example 4.12. The lexlike ideals (ab, ac, a3, a2d, ad3, b2c) and (ab, ac, ad2, a2d, a4, b4)

have the same Hilbert function as the lex ideal (a2, ab, ac2, acd, ad3, b4).

Proposition 4.13.

(1) If I is a lexlike ideal and L is a lex ideal with the same Hilbert function, then they

have the same number of minimal monomial generators in each degree.

(2) Among all ideals with the same Hilbert function, the lexlike ideals have the max-

imal number of minimal monomial generators (in each degree).

Proof: (1) follows from Definition 4.1. Now, we prove (2). Macaulay’s Theorem implies

that among all ideals with the same Hilbert function, the lex ideal has the maximal

number of minimal monomial generators (in each degree). Apply(1).

The above theorem can be extended to all graded Betti numbers as follows:

Theorem 4.14.

(1) Let I be a lexlike ideal and L be a lex ideal with the same Hilbert function. The

graded Betti numbers of I are equal to those of L.

(2) Among all ideals with the same Hilbert function, the lexlike ideals have the greatest

graded Betti numbers.

This is an extension of the following well-known result by [Bi,Hu,Pa]:

Theorem 4.15. [Bi,Hu,Pa] Among all ideals with the same Hilbert function, the lex

ideal has the greatest graded Betti numbers.

Proof of Theorem 4.14: (2) follows from (1) and Theorem 4.15. We will prove (1).

Let p be the smallest degree in which L has a minimal monomial generator. For

d ≥ p, denote by I(d) the ideal generated by all monomials in I of degree ≤ d.

Similarly, denote by L(d) the ideal generated by all monomials in L of degree ≤ d. By

Lemma 4.4(2), for each d ≥ p the ideals I(d) and L(d) have the same Hilbert function.

Furthermore, by Theorem 4.15 it follows that the graded Betti numbers of S/L(d) are

greater or equal to those of S/I(d).

The following formula (cf. [Ei]) relates the graded Betti numbers βi,j(S/T ) of a
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homogeneous ideal T and its Hilbert function:

∞
∑

j=0

dimk(S/T )j tj =

∑∞
j=0

∑n
i=0 (−1)iβi,j(S/T ) tj

(1− t)n
.

Therefore, for each d ≥ p we have that

(4.16)
∞
∑

j=0

n
∑

i=0

(−1)i

(

βi,j(S/I(d))− βi,j(S/L(d))

)

tj = 0 .

By induction on d we will show that the graded Betti numbers of S/L(d) are equal

to those of S/I(d).

First, consider the case when d = p. By Eliahou-Kervaire’s resolution [EK], it

follows that L(p) has a linear minimal free resolution, that is, βi,j(S/L(p)) = 0 for

j 6= i + p − 1. Since the graded Betti numbers of S/L(p) are greater or equal to those

of S/I(p), it follows that βi,j(S/I(p)) = 0 for j 6= i + p − 1. By (4.16) it follows that

βi,j(S/I(p)) = βi,j(S/L(p) for all i, j .

Suppose that the claim is proved for d. Consider L(d + 1) and I(d + 1). For

j < i + d, we have that

βi,j(S/L(d + 1)) = βi,j(S/L(d)) = βi,j(S/I(d)) ,

where the first equality follows from the Eliahou-Kervaire’s resolution [EK] and the

second equality holds by induction hypothesis. As I(d + 1)q = I(d)q for q ≤ d and

since βi,j(S/I(d)) = 0 for j ≥ i + d, it follows that βi,j(S/I(d + 1)) = βi,j(S/I(d)) for

j < i + d. Therefore,

βi,j(S/L(d + 1)) = βi,j(S/I(d + 1)) for j < i + d

βi,j(S/L(d + 1)) = 0 for j > i + d, by Eliahou-Kervaire’s resolution [EK].

Since the graded Betti numbers of S/L(d+1) are greater or equal to those of S/I(d+1),

we conclude that

βi,j(S/I(d + 1)) = βi,j(S/L(d + 1)) for j < i + d

βi,j(S/I(d + 1)) = βi,j(S/L(d + 1)) = 0 for j > i + d .
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By (4.16) it follows that

βi,j(S/I(d + 1)) = βi,j(S/L(d + 1)) for all i, j ,

as desired.

Remark 4.17. Let I be a lexlike ideal and L a lex ideal with the same Hilbert

function. Since their graded Betti numbers are equal, one might wonder whether the

minimal free resolution FI of I is provided by the Eliahou-Kervaire’s construction [EK].

The leading terms in the differential of FI are the same as in the Eliahou-Kervaire’s

construction. However, the other terms could be quite different: there are examples

in which the differential of FI has more non-zero terms than the differential in the

Eliahou-Kervaire’s construction.

5. Multigraded Hilbert functions

In this subsection we consider the polynomial ring S with a different grading, called

multigrading. Such gradings are used for toric ideals. In this case, we have a multi-

graded Hilbert function.

Let A = {a1, . . . , an} be a subset of Nc \ {0}, A be the matrix with columns ai,

and suppose that rank(A) = c. Consider the polynomial ring S = k[x1, . . . , xn] over a

field k generated by variables x1, . . . , xn in Nc-degrees a1, . . . , an respectively. We say

that an ideal J is A-multigraded if it is homogeneous with respect to this Nc-grading.

For simplicity, we often say multigraded instead of A-multigraded.

The prime ideal IA, that is the kernel of the homomorphism

ϕ : k[x1, . . . , xn] → k[t1, . . . , tc]

xi 7→ tai = tai1

1 . . . taic

c

is called the toric ideal associated to A. For an integer vector v = (v1, . . . , vn) we set

xv = xv1

1 . . . xvn
n . Then ϕ(xv) = tAv. The toric ring associated to A is

(5.1) S/IA ∼= k[ta1 , . . . , tan ] ∼= NA,

where the former isomorphism is an isomorphism of k-algebras and is given by xv 7→

tAv , and the latter isomorphism is an isomorphism of monoids and is given by ta 7→ a.
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The ideal IA is A-multigraded. By (5.1), it follows that we have the multigraded

Hilbert function

(5.2) dimk((S/IA)α) =
{

1 if α ∈ NA,
0 otherwise.

There exists a minimal free resolution of S/IA over S which is Nc-graded.

For α ∈ Nc, the set of all monomials in S of degree α is called the fiber of α. We

introduce multilex ideals generalizing the notion of lex ideal:

Definition 5.3. Order the monomials in each fiber lexicographically. An A-multilex

segment (or multilex segment) in multidegree α is a vector space spanned by an initial

segment of the monomials in the fiber of α. We say that a monomial ideal L is A-

multilex (or multilex) if for every α ∈ Nc, the vector space Lα is a multilex segment.

Theorem 5.4. There exists an A-multilex ideal LA with the same Hilbert function

as the toric ideal IA. The Betti numbers of LA are greater or equal to those of IA.

Proof: Order the monomials in each fiber lexicographically. For α ∈ Nc, denote by

mα the last monomial in the fiber of α. Let Lα be the vector space spanned by all

monomials in the fiber of α except mα. Set LA = ⊕α Lα, where we consider LA as a

vector space. By (5.2), it follows that LA and IA have the same Hilbert function.

Denote by ≺ the lex order on monomials. We will show that LA is the initial ideal

of IA with respect to ≺; in particular, LA is an ideal. Let m be a monomial in Lα.

Then m−mα ∈ IA and m � mα. Hence m is in the initial ideal of IA. Therefore, LA

is contained in the initial ideal. Since the multigraded Hilbert functions of LA and IA
are the same, it follows that LA is the initial ideal.

Clearly, LA is multilex by construction. Since it is an initial ideal, it follows that

the Betti numbers of LA are greater or equal to those of IA.

Example 5.5. It should be noted that LA depends not only on A, but also on the

choice of lexicographic order (that is, on the order of variables). For example, for the

vanishing ideal IA = (ad− bc, b2 − ac, c2 − bd) of the twisted cubic curve, one can get

LA to be (ac, ad, bd) if a > b > c > d and (b2, bc, bd, c3) if b > c > a > d. These two

multilex ideals have different Betti numbers.

21



References

[AHH] A. Aramova, J. Herzog, and T. Hibi: Squarefree lexsegment ideals, Math. Z. 228

(1998), 353–378.

[Bi] A. Bigatti: Upper bounds for the Betti numbers of a given Hilbert function, Comm.

in Algebra 21 (1993), 2317–2334.

[CL] G. Clements and B. Lindström: A generalization of a combinatorial theorem of

Macaulay, J. Combinatorial Theory 7 (1969), 230–238.

[Ei] D. Eisenbud: Commutative Algebra with a View Towards Algebraic Geometry,

Springer Verlag, New York 1995.

[EGH1] D. Eisenbud, M. Green, and J. Harris: Cayley-Bacharach theorems and conjec-

tures, Bull. Amer. Math. Soc. (N.S.) 33 (1996), 295–324.

[EGH2] D. Eisenbud, M. Green, and J. Harris: Higher Castelnuovo theory, Astérisque 218
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