6 A line and a plane

A line ℓ and a plane L are either parallel or intersecting. If they're parallel, there's a plane M containing ℓ which is parallel to L. We'd also like to know the distance from ℓ to L. If they intersect, we'd like to know the point and angle of intersection.

6.1 The intersecting case

Let ℓ be defined by the parametrization (x, y, z) = (-1, 2, 2,) + t(5, 4, 5) and let L be defined by the equation 3x + 5y - z = 3.

- 1. Verify that l is not contained in L. Notice that l contains the point (-1, 2, 2) (when t=0) but L does not: $-3(-1) + 5(2) - 2 = 11 \neq 3$.
- 2. Find the point of intersection.

The point of intersection P=(15/2) is on l, so there's some t
such that
$$2 = -1+5t = 2$$

 $2 = 2+4t = 2$
 $2 = 2+5t = 5$.

But P is also on L, so
$$3x+5y-2=3$$
.
Substituting, $3(-1+5t)+5(2+4t)-(2+5t)=3$.
We enclode that $t=\frac{-1}{15}$.
Thus $P=(-1+5(\frac{-1}{15}), 2+4(\frac{-1}{15}), 2+5(\frac{-1}{15}))$
 $=[(-\frac{4}{3}, \frac{26}{15}, \frac{5}{3})]$

3. Find the angle of intersection.

Let Θ be the desired angle. Then Θ is complementary to ϕ , the angle between l and a normal vector to L. We have $n = \langle 3, 5, -17 \rangle$, and l has direction vector $v = \langle 5, 4, 57 \rangle$. Thus $\cos \phi = \frac{n \cdot v}{\sqrt{(n \cdot n)(v \cdot v)}} = \frac{3v}{\sqrt{2310}} \left(= \left(\frac{30}{77} \right) \right)$. Since Θ and ϕ are complements, we get $\sin \Theta = \cos \phi = \sqrt{\frac{30}{77}}$, i.e. $\Theta = \arcsin\left(\sqrt{\frac{30}{77}}\right)$.

6.2 The parallel case

Let ℓ be defined by the parametrization (x, y, z) = (-2, -3, 2) + t(-1, 5, 2) and let L be defined by the equation x + 3y - 7z = -2.

- 1. Verify that l and L are parallel. Let $\gamma = \langle -1, 5, 2 \rangle$ (a direction vector for l) and $n = \langle 1, 3, -7 \rangle$ (a normal vector for L).
 - and n= < 1,3,-7> (a normal vector for L). Notice that von = -1+15-14 = 0, so v and n are perpendicular. Thus either L is inside L or L is parallel to L. But (-2,-3,2) & L and (-2,-3,2) & L (since -2+3(-3)-7(2)=-25+2) so L isn't inside L. We conclude that L and L are parallel.
- 2. Find an equation for M.

Since
$$-2+3(-3)-7(2)=-25$$
, (and $-2+3(5t)-7(2t)=0$),
We have that all points on l satisfy
 $\boxed{X+3y-72=-25}$.
The plane $M: x+3y-7z = -25$ is parallel to L since they
have the same normal vector.

3. Find the distance from ℓ to L.

This is the same as the distance from
$$2$$
 to M,
which is $\frac{|(25) - (-2)|}{||\langle 1, 3, -7\rangle||} = \frac{23}{\sqrt{59}}$.