6 A line and a plane
A line ℓ and a plane L are either parallel or intersecting. If they're parallel, there's a plane M containing ℓ which is parallel to L. We'd also like to know the distance from ℓ to L. If they intersect, we'd like to know the point and angle of intersection.
6.1 The intersecting case

Let ℓ be defined by the parametrization $(x, y, z)=(-1,2,2)+,t(5,4,5)$ and let L be defined by the equation $3 x+5 y-z=3$.

1. Verify that ℓ is not contained in L.

Notice that l contains the point $(-1,2,2) \quad$ when $t=0$), but L does not: $-3(-1)+5(2)-2=11 \neq 3$.
2. Find the point of intersection.

The point of intersection $P=(x, y, z)$ is on l, so there's some t

$$
\text { such that }\left\{\begin{array}{l}
x=-1+5 t \\
y=2+4 t \\
z=2+5 t
\end{array}\right\} \text {. }
$$

But P is also on L, so $3 x+5 y-z=3$.
Substituting, $\quad 3(-1+5 t)+5(2+4 t)-(2+5 t)=3$.
We conclude that $t=\frac{-1}{15}$.
Thus $\begin{aligned} P & =\left(-1+5\left(-\frac{1}{15}\right), 2+4\left(\frac{-1}{15}\right), 2+5\left(-\frac{1}{15}\right)\right) \\ & =\left(\frac{4}{26}, \frac{5}{3}\right)\end{aligned}$

$$
=\left(-\frac{4}{3}, \frac{26}{15}, \frac{5}{3}\right)
$$

3. Find the angle of intersection.

Let θ be the desired angle. Then θ is complementary to ϕ, the angle between l and a normal vector to L.

We have $n=\langle 3,5,-1\rangle$, and ℓ has direction vector $v=\langle 5,4,5\rangle$.
Thus $\cos \phi=\frac{n \cdot v}{\sqrt{(n \cdot n)(v \cdot v)}}=\frac{30}{\sqrt{2310}}\left(=\sqrt{\frac{30}{77}}\right)$.
Since θ and ϕ are complements, we get

$$
\sin \theta=\cos \phi=\sqrt{\frac{30}{77}} \text {, i.e. } \theta=\arcsin \left(\sqrt{\frac{30}{77}}\right) .
$$

6.2 The parallel case

Let ℓ be defined by the parametrization $(x, y, z)=(-2,-3,2)+t(-1,5,2)$ and let L be defined by the equation $x+3 y-7 z=-2$.

1. Verify that ℓ and L are parallel.

Let $v=\langle-1,5,2\rangle$ (a direction vector for l) and $n=\langle 1,3,-7\rangle$ (a normal vector for L).
Notice that $v \bullet n=-1+15-14=0$, so v and n are perpendicular.
Thus either ℓ is inside L or ℓ is parallel to L. But $(-2,-3,2) \in l$ and $(-2,-3,2) \notin L$ (since $-2+3(-3)-7(2)=-25 \neq-2)$ so ℓ is it inside L.
We conclude that l and L are parallel.
2. Find an equation for M.

Since $-2+3(-3)-7(2)=-25, \quad($ and $-t+3(5 t)-7(2 t)=0)$ for all t,
We have that all points on l satisfy

$$
x+3 y-7 z=-25
$$

The plane $M: x+3 y-7 z=-25$ is parallel to L since they have the same normal vector.
3. Find the distance from ℓ to L.

This is the same as the distance from L to M,

$$
\text { whiz h is } \frac{|(-25)-(-2)|}{11<1,3,-7811}=\frac{23}{\sqrt{59}} \text {. }
$$

