Math 2163

Jeff Mermin's sections, Test 2, October 23
On the essay questions (\# 2-7) write legibly in complete sentences, in such a way that I can easily tell what you are doing and why.

1. (30 points)Indicate whether the following statements are true or false. ("True" means "Always true", "false" means "sometimes false".) No justification is necessary on this problem. Write the entire word "True" or "False". Illegible or abbreviated answers will receive no credit.
In the statements below, a, b, c, d, d^{\prime}, and L are numbers, \mathbf{a}, \mathbf{b}, and \mathbf{c} are vectors, $f(x, y)$ and $F(x, y, z)$ are smooth functions in the sense that all their partial derivatives are defined and continuous on their domains, and $C: \mathbf{r}(t)$ is a curve with associated vectors \mathbf{T}, \mathbf{N}, and \mathbf{B}.
(a) If (a, b) is a critical point of $f, f_{x x}(a, b)=1$, and $f_{y y}(a, b)=-1$, then (a, b) is a saddle point of f.
True. $D=(1)\left(-n-\left(f_{x y}\right)^{2} \leqslant-1<0\right.$.
(b) If $\lim _{(x, y) \rightarrow(a, b)} f(x, y)=L$, then $\lim _{(x, y) \rightarrow(a, b)}(\cos f(x, y))=\cos L$.
True.
(c) If $\lim _{(x, y) \rightarrow(a, b)} f(x, y)=L$, then $\lim _{x \rightarrow a} f(x, b)=L$.

True.
(d) The distance between the planes $F: a x+b y+c z=d$ and $G:$ $a x+b y+c z=d^{\prime}$ is $\left|d-d^{\prime}\right|$.
False. \quad it's $\frac{\left|d-d^{\prime}\right|}{|\langle a, b, c\rangle|}$.
(e) $\mathbf{a} \cdot(\mathbf{b}+\mathbf{c})=\mathbf{a} \cdot \mathbf{b}+\mathbf{a} \cdot \mathbf{c}$.

True.
(f) $\mathbf{B}=\mathbf{T} \times \mathbf{N}$.

True.
(g) If z is defined implicitly as a function of x and y by $F(x, y, z)=0$, then

$$
\frac{\partial z}{\partial x}=\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial z}}
$$

False. $O=d F=\frac{\partial F}{\partial x} d x+\frac{\partial F}{\partial y} d y+\frac{\partial F}{\partial z} d z$. $\begin{aligned} & \text { Assuming } d y=0, \\ & \text { we get } \frac{d z}{d x}=-\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial z}} .\end{aligned}$
(h) There are functions $h_{1}(x)$ and $h_{2}(y)$ such that $f(x, y)=h_{1}(x)+h_{2}(y)$. False. Everything wold be much easier if this were trove.
(i) $\mathbf{a} \times \mathbf{b}=\mathbf{b} \times \mathbf{a}$.

False. $a \times b=-b \times$.
(j) There is a function $g(x, y)$ such that $g_{x}(x, y)=x^{2}+y^{2}$ and $g_{y}(x, y)=$ $x^{2}-y^{2}$.
False. If true, wed have $g_{x_{7}}=2 y$ and $g_{7 x}=2 x$.
2. (30 points) Compute all the second partial derivatives of $f(x, y)=\frac{x^{2}-y^{2}}{x y}$.

$$
\text { First, notice } f=\frac{x}{y}-\frac{y}{x} \text {. }
$$

Now $f_{x}=\frac{1}{y}+\frac{y}{x^{2}}$ and $f_{y}=\frac{-x}{y^{2}}-\frac{1}{x}$

$$
\text { Thus: } f_{x x}=-\frac{2 y}{x^{3}}, f_{x y}=-\frac{1}{y^{2}}+\frac{1}{x^{2}}, f_{y x}=-\frac{1}{y^{2}}+\frac{1}{x^{2}} \text {, and } f_{y y}=\frac{2 x}{y^{3}} \text {. }
$$

3. (20 points) Suppose that y is defined as a function of x by the relationship $x \sin y+y \cos x=0$. Find $\frac{d y}{d x}$.
Let $F=x \sin y+y \cos \pi$ 10 $F=0$.
Then $O=d F=F_{x} d_{x}+F_{y} d y$

$$
=(\sin y-y \sin x) d x+(x \cos y+\cos x) d y .
$$

Thu e $(x \cos y+\cos x) d y=(\sin y-y \sin x) d x$
So $\quad \frac{d y}{d x}=\frac{\sin y-y \sin x}{x \cos y+\cos x}$.
4. (20 points) Find an equation for the tangent plane to the hyperboloid $x^{2}+y^{2}-z^{2}=4$ at the point $(2,1,1)$.
Let $F=x^{2}+y^{2}-z^{2}$, so we went the tangent plane to $F=4$.
Now, along the surfer $F=4$, we have

$$
\begin{gathered}
d F=0 \\
F_{x} d x+F_{7} d y+F_{z} d z=0 \\
2 x d x+2 y d y-2 z d z=0 . \\
\text { Af }(2,1,1) \text { this is } 4 d x+2 d y-2 d z=0, \\
\text { i.e. } 4(x-2)+2(y-1)-2(z-1)=0 \\
\text { or } 4 x+2 y-2 z=8
\end{gathered}
$$

5. (30 points) Consider the function $f(x, y)=x^{4}-2 x^{2}+3 y^{2}$. You do not need to compute the partial derivatives:

$$
\begin{aligned}
f_{x} & =4 x^{3}-4 x \\
f_{y} & =6 y \\
f_{x x} & =12 x^{2}-4 \\
f_{x y} & =0 \\
f_{y y} & =6 .
\end{aligned}
$$

Determine whether or not the points below are critical points. If they are critical points, determine whether they are saddle points, local maxima, or local minima.
(a) $P=(0,0)$. $f_{x}=0$ and $f_{y}=0$, it's critical.

$$
D=(-4)(6)-0^{2}=-24<0 \text {, so this is a saddle point. }
$$

(b) $Q=(0,1)$.

$$
f_{7}=6 \text {, so this is nt critical. }
$$

$$
\begin{aligned}
& \text { (c) } R=(1,0) . \\
& f_{x}=f_{y}=0 \text {, so this is critical. } \\
& D=(8)(6)-0^{2}=48>0 . \\
& \quad \text { Since } f_{x x}>0 \text {, this is a local minimum. }
\end{aligned}
$$

6. (20 points) Using any appropriate method, find the absolute minimum value of the function $f(x, y)=x^{2}+y^{2}$ subject to the constraint $x y=3$. (You may assume such a minimum exists.)

We use Lagrange multipliers.

$$
\text { setting } g=x y \text { for the constraint, we know }
$$

the minimum will satisfy $\nabla f=\lambda \nabla g$ for some λ.

$$
\nabla f=\left\langle 2 x, 2, y \text { and } \nabla_{g}=\langle y, x\rangle\right. \text {. }
$$

Thus we want a simultaneous solution to

$$
\begin{aligned}
& \text { at a simultaneous solution to } \\
& \left.\left.\begin{array}{l}
\text { Lx }=\lambda y \\
2 y=\lambda x
\end{array}\right\} \begin{array}{l}
\text { soy }=\frac{3}{x} \text { and the first two equine } \\
\text { are }
\end{array} 2 x=\frac{3 \lambda}{x}\right\} \Rightarrow 2 x^{2}=3 \lambda 2 \lambda x^{2}=
\end{aligned}
$$

$$
\left\{\begin{array}{l}
2 x=\lambda y \\
2 y=\lambda x \\
x y=3
\end{array}\right\} \text { are }\left\{\begin{array}{l}
2 x=\frac{3 \lambda}{x} \\
\frac{6}{x}=\lambda x
\end{array}\right\} \Rightarrow \begin{aligned}
& 2 x^{2}=3 \lambda \\
& 6=\lambda x^{2}
\end{aligned} \Rightarrow \begin{aligned}
& x^{2}= \pm 3, \\
& \lambda= \pm 2
\end{aligned}
$$

$$
\text { Cut } x^{2} \geq 0 \text {, so } x^{2}=3 \text {, so } x= \pm \sqrt{3} \text { and the confides }
$$

$$
\text { are } P_{1}=(\sqrt{3}, \sqrt{3}), P_{2}=(-\sqrt{3},-\sqrt{3})
$$

We have $f\left(P_{1}\right)=6$ and $f\left(P_{2}\right)=6$. Thus the minimum- is 6 .
(Because the contrast $x y=3$ does it describe a closet and binned region, We cant know whether these critical points ace actually minima withat Some other technique. Thankfully the problem told a that - minimum docs exist. (But it it had asked instead for a maximum, theroid be no undo.),
7. (Extra credit: 20 points) Name, and write down possible equations for, each of the surfaces pictured below.
(a)
(b)
(c)
(d)
(e)

