Math 2163

Jeff Mermin's sections, Test 1, September 18
On the essay questions (\#2-8) write legibly in complete sentences, in such a way that I can easily tell what you are doing and why.

Do not evaluate any integrals on this test. If you would take an integral, instead simplify the integrand and the limits of integration (if any), and leave the integral as your final answer.

1. (30 points)Indicate whether the following statements are true or false. ("True" means "Always true", "false" means "sometimes false".) No justification is necessary on this problem. Write the entire word "True" or "False". Illegible or abbreviated answers will receive no credit.
In the statements below, x, y, z, and t are variables, a, b, c, d, d^{\prime}, and L are numbers, \mathbf{a}, \mathbf{b}, and \mathbf{c} are vectors, $C: \mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle$ is a curve in space with associated $\mathbf{T}, \mathbf{N}, \mathbf{B}$, and κ, and $f(x, y)$ is a function.
(a) $\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=(\mathbf{a} \cdot \mathbf{b})(\mathbf{a} \cdot \mathbf{c})$.

$$
\text { False. } \quad(\text { Try } a=b=c=\langle 1,0,0\rangle .)
$$

(b) $\mathbf{a} \cdot(\mathbf{b}+\mathbf{c})=\mathbf{a} \cdot \mathbf{b}+\mathbf{a} \cdot \mathbf{c}$.

True.
(c) $\frac{d \mathbf{r}}{d t}=\left\langle\frac{d x}{d t}, \frac{d y}{d t}, \frac{d z}{d t}\right\rangle$.

True.
(d) There are functions $g(x)$ and $h(y)$ such that $f(x, y)=g(x)+h(y)$.

False (If this were true thercid be no
(e) $\mathbf{B}=\mathbf{T} \times \mathbf{N}$.

True.
(f) The distance between the planes $F: a x+b y+c z=d$ and $G:$ $a x+b y+c z=d^{\prime}$ is $\left|d-d^{\prime}\right|$.
False.
It's
$\frac{d-d^{\prime}}{\left.\left\langle\langle,\}^{\prime},\right\rangle\right\rangle}$
(g) If C is a circle, then κ is its radius.

$$
\text { False. }\left(\frac{1}{x} \text { is the radius. }\right)
$$

(h) $|\mathbf{a} \cdot \mathbf{b}| \leq|\mathbf{a}||\mathbf{b}|$.

True. $\quad|a \cdot b|=|A| b| | \cos \theta \mid$, and $|\cos \theta| \leq 1$.
(i) $\mathbf{a} \times \mathrm{b}=\mathrm{b} \times \mathrm{a}$.

False. $a \times b=-b \times a$.
(j) If $\lim _{(x, y) \rightarrow(a, b)} f(x, y)=L$, then $\lim _{x \rightarrow a} f(x, b)=L$. True.
2. (30 points) Let $\mathbf{a}=\langle 7,7,7\rangle$ and $\mathbf{b}=\langle 8,9,-10\rangle$. Compute the following:
(a) $10 \mathbf{a}-10 \mathbf{b}$.

$$
\begin{aligned}
& =10\langle 7,7,7\rangle-10\langle 8,9,-10\rangle \\
& =\langle 70,70,70\rangle-\langle 80,90,-100\rangle \\
& =\langle 70-80,70-90,70+100\rangle \\
& =\langle-10,-20,170\rangle
\end{aligned}
$$

(b) $\mathrm{a} \cdot \mathrm{b}$.

$$
\begin{aligned}
& =7 \cdot 8+7 \cdot 9+7 \cdot-10 \\
& =56+63-70 \\
& =49 .
\end{aligned}
$$

(c) $\mathbf{a} \times \mathrm{b}$.

$$
\begin{aligned}
& =\langle 7(-10)-7(9), 7(8)-7(-10), 7(9)-\rangle(8)\rangle \\
& =\langle\langle-133,126,\rangle\rangle
\end{aligned}
$$

(d)

$$
\begin{aligned}
(\mathbf{a}-\mathbf{b}) \times \mathbf{b} & =a \times b-b \times b \\
& =a \times b-0 \\
& =a \times b \\
& =\langle-133,126,7\rangle
\end{aligned}
$$

3. ($\mathbf{1 5}$ points each) Show that the limits do not exist, or give strong avidence that they do.
(a) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-y^{2}}{x^{2}+y^{2}}$. Approaching $(0,0)$ along the x-axis
$(y=0)$
we get $\lim _{x \rightarrow 0} \frac{x^{2}-0}{x^{2}+0}=1$.

Approaching along the y-axis $(x=0)$, we get $\lim _{y \rightarrow 0} \frac{0-y^{2}}{0+y^{2}}=-1$.

Approaching along the lin $y=x$, we get

$$
\lim _{x \rightarrow 0} \frac{x^{2}-x^{2}}{x^{2}+x^{2}}=\lim _{x \rightarrow 0} \frac{0}{2 x^{2}}=0
$$

These don't agree, so the limit doesnt exist.
(b) $\lim _{(x, y) \rightarrow(0,0)} \frac{3 x^{2} y}{x^{2}+2 y^{2}}$.

Approaching along $y=m x$ (for any slope n) we get $\lim _{x \rightarrow 0} \frac{3 m x^{3}}{x^{2}+2 m^{2} x^{2}}=\lim _{x \rightarrow 0} \frac{3 m x^{3}}{\left(2 n^{2}+1\right) x^{2}}=\frac{3 m}{2 m^{2} x 1} \lim _{x \rightarrow 0} x$ $=0$.
There all agree, so it's likely the limit is equal to 0 .

Approaching along $y=x^{t}$ (for any positive exponent t)

$$
\text { we get } \lim _{x \rightarrow 0} \frac{3 x^{2+t}}{x^{2}+2 x^{2 t}}=\left\{\begin{array}{l}
\lim _{x \rightarrow 0} \frac{3 x^{2+t}}{x^{2}}=0 \quad(\text { if } 2 \leq 2 t) \\
\left.\lim _{x \rightarrow 0} \frac{3 x^{2+t}}{2 x^{2 t}}<\frac{3 x^{2 t}}{2 x^{2 t}}=0 \quad \text { (if } 2>2 t\right)
\end{array}\right.
$$

These still agree, which is stronger evidence.

Weill learn how to prove this limit is actually zoo in MATH 4023.
4. ($\mathbf{2 0}$ points) Find the equation of the plane containing the points $(-10,10,-6)$, $(2,0,10)$, and $(-9,-5,-3)$.
Call $P=(-10,10,-6), \quad Q=(2,0,10)$, and $R=(-9,-5,-3)$.
Two vectors in our plane are $\overrightarrow{P Q}=\langle 12,-10,16\rangle$

$$
\text { and } \quad \overrightarrow{Q R}=\langle-11,-5,-13\rangle \text {. }
$$

Thus a normal vector is $n=\overrightarrow{P Q} \times \overrightarrow{Q R}=\langle 130+80,-126+156,-60-110\rangle$

$$
=\langle 210,-20,-170\rangle_{;}
$$

We scale that down to $\langle 21,-2,-1\rangle\rangle$.
The equation h as the form $21 x-2 y-17 z=D$.
To find D, we plug in $P: 21(-10)-2(10)-17(-6)$

$$
=-210-20+102=-128 .
$$

So the equation is $21 x-2 y-17 z=-128$.
5. (15 points) Determine whether the planes $F: 2 x+-6 y-7 z=-6$ and $G: 7 x+5 y=5$ intersect. If they do, find equations for the line of intersection. If they do not, find the distance between F and G.

The normal vectors are $\left.n_{F}=\langle 2,-6,-\rangle\right\rangle$ and $n_{G}=\langle 7,5,0\rangle$. These arent parallel, so the planes intersect.
To find the line of intersection, we reed either two points or a point and a diccction.
To find a point invent an extern equation (e,y. $x=0$) and solve $\left\{\begin{aligned} F: 2 x-6 y-7 z & =-6 \\ 6: 7 x+5 y & =5 \\ x & =0\end{aligned}\right\} ;$ wa gat $(0,1,0)$.
To find a dircctir, observe that $n_{F} \times n_{G}=\langle 35,-49,52\rangle$ is perpendicular to both normals, so parallel fo both planes (ie., is the direction of the line.)
Thus the line of intersection is parametrizal by

$$
\langle x, 1, z\rangle=(0,1,0)+\langle 35,-49,52\rangle t
$$

6. ($\mathbf{1 5}$ points) Find the length of the curve $C: \mathbf{r}(t)=\left\langle t, t^{2}, t^{3}\right\rangle$ on the interval $1 \leq t \leq 4$.

$$
\begin{aligned}
\text { This is } & \left.\int_{\text {Start }}^{e n d}|d s|=\int_{\text {Start }}^{e n d} \left\lvert\, \frac{d s}{d t}\right.\right) d t \\
& =\int_{t=1}^{t=4} \sqrt{\left(\frac{d s}{d t}\right)^{2}} d t=\int_{t=1}^{t=4} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}} d t
\end{aligned}
$$

$$
=\int_{t=1}^{t-4} \sqrt{(1)^{2}+(2 t)^{2}+\left(3 t^{2}\right)^{2}} d t
$$

$$
=\int_{t=1}^{t=4} \sqrt{1+4 t^{2}+9 t^{4}} d t
$$

(Read the directions, so you know when to stop-)
7. (10 points) Find equations for the tangent line to the curve $C: \mathbf{r}(t)=$ $\left\langle t^{2}, \frac{t}{t+1}, e^{2 t}\right\rangle$ at the point $(0,0,1)$.

$$
C \text { passes throng }(0,0,1) \text { when }\left\{\begin{array}{l}
t^{2}=0 \\
t \\
t+1 \\
e^{2+}=1
\end{array}\right\} \text {, i.e., } t=0 \text {. }
$$

The tangat vector is $\left\langle\frac{d x}{d t}, \frac{d y}{d t}, \frac{d z}{d t}\right\rangle$

$$
\left.=\left\langle 2 t, \frac{1}{(t+1)^{2}}\right)^{2 e^{2 t}}\right\rangle
$$

Af $t=0$, thesis $\langle 0,1,2\rangle$.
Thus our lin is parametrized by

$$
(x, y, z)=(0,0,1)+\langle 0,1,2\rangle t .
$$

8. (Extra credit: 20 points) Consider the curve $C: \mathbf{r}(t)=\left\langle e^{t} \sin t, t^{2}, e^{t} \cos t\right\rangle$. Compute \mathbf{T}, \mathbf{N}, and \mathbf{B} at the point ($0,0,1$), and find an equation for the osculating plane of C at this point.

$$
\text { We compute }\left\{\begin{array}{l}
e^{t} \sin t=0 \\
t_{t}^{2}=0 \\
e^{\cos t}=1
\end{array}\right\} \Rightarrow t=0 \text {. }
$$

T is the unit vector of $\frac{d r}{d t}$ at $t=0$;

$$
\begin{aligned}
& \frac{d r}{d t}=\left\langle e^{t} \sin t+e^{t} \cos t, 2 t, e^{t} \cos t-e^{t} \sin t\right\rangle \\
\text { so } \quad & \left.\frac{d r}{d t}\right|_{t=0}=\langle 1,0,1\rangle \text { and }\left.T\right|_{t=0}=\frac{\langle 1,0,1\rangle}{\sqrt{2}}
\end{aligned}
$$

N is the (perpendicular tot put of) $\frac{d^{2} r}{d t^{2}}=\left\langle 2 e^{t} \cos t, 2,-2 e^{t} \sin t\right\rangle$;

$$
\text { at } t=0, \frac{d^{2} r}{d t^{2}}=\langle 2,2,0\rangle
$$

B is the int vector of $T \times \frac{d^{2} r}{d t^{2}}=\langle-2,2,2\rangle$.

$$
\begin{aligned}
& \text { This } B=\frac{1}{\sqrt{3}}\langle-1,1,1\rangle . \\
& \text { Now } N=B \times T=\frac{1}{\sqrt{6}}\langle 1,-2,-1\rangle
\end{aligned}
$$

Meanwhile, B is normal to the osculating plane,
So its equation is $x-2 y-z=[0-2(0)-(1)]$

$$
\text { i.e. } \sqrt{x-2 y-z=-1}
$$

