Math 2163

Jeff Mermin's section, Quiz 6, November 10

1. (2 points each) Indicate whether the following statements are true or false. ("True" means "Always true", "false" means "sometimes false" or "possibly false".) No justification is necessary. Write out the whole word "true" or "false".
On these problems, x and y are the usual rectangular coordinates for \mathbb{R}^{2}, f and g are continuous functions, R is a closed and bounded region, and $d A$ stands for $d x d y$, as it does in the text.
(a) If $\iint_{R} f d A \geq \iint_{R} g d A$, then $f(x, y) \geq g(x, y)$ for all (x, y) in R.

This is $\begin{aligned} & \text { false. Suppose } R \text { is }[-1,2] \times[0,1], f=x \text {, and } g=0 \text {. } \\ & \text { Then } \iint f d A=1, \iint g d A=0 \text {. But } f(-1,0)=-1 \text { and } g(-1,0)=0 \text {. }\end{aligned}$
Then $\iint_{R} f d A=1, \iint_{k} g A=0$. But $f(-1,0)=-1$ and $g(-1,0)=0$.
(b) If $f(x, y) \geq 0$ for all $(x, y) \in R$, then $\iint_{R} f d A \geq 0$.

This is true. We have

$$
\iint_{R} f d A=\lim \sum_{s} f(x, y) \Delta x \Delta y, \text { and } f(x, y) \geqslant 0, \Delta x>0, \Delta y>0 . \text { (limit of a) sum of }
$$

so $f\left(x_{1},\right) \Delta x \Delta y \geqslant 0$. Thus the integral is a (limittof positive terms.
(c) $\iint_{R} f(x, y) g(x, y) d A=\left(\iint_{R} f(x, y) d A\right)\left(\iint_{R} g(x, y) d A\right)$.

This is false. Almost any R, f, g will illustrate it. For example if R is $[-1,1] \times[-1,1]$
and $f=g=1$, the the LHS is 4 but the RHS is 16 .
(d) If $f(x, y) \geq g(x, y)$ for all (x, y) in R, then $\iint_{R} f d A \geq \iint_{R} g d A$.

This is true. From (b) $\iint_{R}(f-y) d A \geqslant 0$.
(e) If $F_{1}(x, y)$ and $F_{2}(x, y)$ are both antiderivatives of $f(x, y)$ with respect to x (that is, $\frac{\partial}{\partial x}\left(F_{1}\right)=\frac{\partial}{\partial x}\left(F_{2}\right)=f$), then $F_{1}(x, y)-F_{2}(x, y)$ is a constant function.
This is $f_{a} l_{s e}$. $F_{1}-F_{2}$ is a function that x thinks is constant, but it could behave interestingly with y. For example, maybe $f(x, y)=0, F_{1}(x, y)=y, f_{2}(x, y)=0$.
2. (5 points) Compute $\int_{x=-2}^{x=2} \int_{y=x^{2}}^{y=8-x^{2}}(16-2 y) d y d x$.

$$
\begin{aligned}
& =\int_{x=-2}^{x=2}\left[16 y-y^{2}\right]_{y=x^{2}}^{y=8-x^{2}} d x \\
& =\int_{x=2}^{x=2}\left[128-16 x^{2}-\left(64-16 x^{2}+x^{4}\right)\right]-\left[16 x^{2}-x^{4}\right] d x \\
& =\int_{x=2}^{x=2} 64-16 x^{2} d x \\
& =\left[64 x-\frac{16}{3} x^{3}\right]_{x=-2}^{x=2} \\
& =\left(128-\frac{128}{3}\right)-\left(-128-\frac{-128}{3}\right) \\
& =\frac{512}{3} .
\end{aligned}
$$

3. (5 points) Let D be the region bounded by the curves $x=y^{2}$ and $y=$ $x-6$. Express the double integral $\iint_{D} x+y d y d x$ as an iterated integral. Do not evaluate.

After sketching the curves, we do some algebra
to find the varices: If $x=r^{2}$ and $y=n=-6$, then $x=y+6$,

$$
\text { so } y^{2}=y^{+6} \text {, ie. } y^{2}-y-6=0, \text { so } y=3(x=9) \text { or } y=2(x=4) \text {. }
$$

The y-boundaries are this -2 and 3. For any given y, x ranges from y^{2} to $y+6$. So our integral is

$$
\int_{y=-2}^{y=3} \int_{x=y}^{x=7+6} x+y d y d x .
$$

Extra Credit (4 points): Some values of a continuous function $f(x, y)$ on the rectangle $R=\{0 \leq x \leq 12,10 \leq y \leq 30\}$ are given in the table below. (Apparently f is hard to compute, because some values are unknown). Estimate the value of $\iint_{R} f(x, y) d A$ using a Riemann sum with at least six summand.
Warning: The $x=8$ column is missing.

(There are lobe of ways to chop, bet this
Then mark the points with known data

And choose one from each region.
And choose ore from each region.
(Again there are many choices, bat the centers
sem good.)

	0	2	4	6	10	12
10	$?$	-10	-10	-9	-6	0
15	-7	-4	$?$	2	4	8
20	-1	3	$?$	8	$?$	11
25	-3	-1	-1	-1	0	$?$
30	7	$?$	10	$?$	11	13

Now, build a t, blue ;

So our approximation is $-4(4)(10)+2(4)(10)+4(4)(10)+-1(4)(10)+(-1)(4)(10)+0(4)(10)$

$$
=0
$$

