Math 2163
Jeff Mermin's section, Quiz 5, October 20

1. (2 points each) Indicate whether the following statements are true or false. ("True" means "Always true", "false" means "sometimes false" or "possibly false".) No justification is necessary. Write out the whole word "true" or "false".
On these problems, a, b, and c are numbers, x, y, and z are the usual rectangular coordinates, $f=f(x, y)$ and $F=F(x, y, z)$ are smoothly differentiable multivariable functions, and P is a point.
(a) $\nabla f(a, b)$ is normal to the level curve of $f(x, y)$ passing through (a, b). This is true.
(b) If D is neither closed nor bounded, then f fails to have a global maximum on D.
This is false. perhaps, $D=\mathbb{R}$ and $f(x, y)=-x^{2}-y^{2}$.
(c) If \mathbf{u} is the unit vector in the direction of ∇F at P, then $D_{\mathbf{u}}(F)(P)=$ $\|\nabla F\|$.
This is true. We have $u=\frac{\nabla F}{\|\nabla\|}$, and $D_{u}(F)=u \cdot \nabla F$
(d) $\nabla F(a, b, c)$ is tangent to the surface $F(x, y, z)=0$ at the point $=\frac{\nabla F \cdot \nabla F}{\|\nabla F\|}=\frac{\|\nabla F\|^{2}}{\|\nabla F\|}$. (a, b, c). This is false. FF is normal to the

$$
\text { level surface of } F
$$

(e) If f has local maxima, then it must have a local minimum.

This is false For example, if $f(x, y)=1$ is $x-y^{2}$, there are iffint many maxima (and saddle points)
2. (4 points) Find the equation for the tangent plane to the level surface of but no minima. $F(x, y, z)=x^{2}+y^{2}+z^{2}-3 x y z$ at the point $P=(2,5,7)$.

$$
\text { We have } d F=F_{x} d x+F_{y} d y+F_{z} d z \text {. }
$$

$$
\begin{array}{rlrl}
\text { We compute } & F_{x} & =2 x-3 y z & \text { and so, a }(2,5,7) \text { we have } \\
F_{y} & =2 y-3 x z & F_{x}=-101, d x & =x-2 \\
F_{z} & =2 z-3 x y & F_{y} & =-36, \\
F_{y} & =-16 & d y-5 \\
& d z & =z-7
\end{array}
$$

Finally, $d F=0$ sine F is cantata along the level surfer Thus
becomes

$$
\frac{d F=F_{x} d x+F_{y} d y+F_{z} d z}{0=-101(x-2)-36(y-5)-16(z-7)}
$$

3. (4 points) Consider the function $f(x, y)=x^{3}+9 x y-9 y^{2}-21 x$. You may assume that

$$
\begin{array}{cc}
f_{x}=3 x^{2}+9 y-21 & f_{y}=9 x-18 y \\
f_{x x}=6 x \quad f_{x y}=9 & f_{y y}=-18
\end{array}
$$

Decide whether the points below are critical points of f. Then, if they are, classify them as local maxima, local minima, or saddle points.
(a) $P=(0,0)$.

$$
\text { We get } f_{x}=-2\left(\in 0 \text {, so it } \text { 's (not critical point.) }^{P}=(0,0)\right. \text {. }
$$

(b) $Q=(1,2)$.

$$
\begin{aligned}
& \text { b) } Q=(1,2) . \\
& f_{y}=-27 \neq 0 \text {, so it's not a critical point. }
\end{aligned}
$$

(c) $S=(2,1) . f_{x}=0$ and $f_{7}=0$, so it's a critical point.

$$
\text { We compute } \begin{aligned}
D & =f_{x x} f_{y y}-\left(f_{-y}\right)^{2} \\
& =(12)(-18)-81<0, \text { so it's a saddle point. }
\end{aligned}
$$

4. (2 points) Does the function f above have any other critical points? Find them, or verify that they are all listed above.

$$
\text { We solve } \quad f_{x}-f_{y}=0, \quad 3 x^{2}+a_{y}-21=0
$$

$$
9 x-18 y=0 \text { (B) }
$$

From (B) we get (C) $x=2 y$, substituting (C) in (A) we get $12 y^{2}+9 y-21=0$, which has two solutions: $y=1$ and $y=-\frac{7}{4}$. $S_{0}\left(\frac{-7}{2},-\frac{7}{4}\right)$
Extra Credit (2 points): Sketch the contour map of the function f above. (This will probably require checking the types) of any critical points you found in is critical. problem 4.)

