Math 2163

Jeff Mermin's section, Quiz 1, August 25

1. (2 points each) Indicate whether the following statements are true or false. ("True" means "Always true", "false" means "sometimes false" or "possibly false".) No justification is necessary. Write out the whole word "true" or "false".
On these problems, a and b are numbers, \mathbf{u}, \mathbf{v}, and \mathbf{w} are vectors in \mathbb{R}^{3}, and x, y, and z are the usual coordinates in \mathbb{R}^{3}.
(a) $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$.
This is true.
(b) $\mathbf{u} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{u}$.

This is true.
(c) $|\mathbf{u} \cdot \mathbf{v}| \leq\|\mathbf{v}\|\|\mathbf{w}\|$

This is meant to be truce (since $|v \cdot v|=\|u\|\|v\||\cos \theta| \leq\|u\|\|v\|(1)$),
but the typo makes it false.
(d) The equations $x=2, y=-1, z=0$ define a line in \mathbb{R}^{3}.

$$
\text { This is false They define the point }(2,-1,0) \text {, }
$$ which is not a line.

(e) $(a+b) \mathbf{u}=a \mathbf{u}+b \mathbf{u}$.

This is true.
2. (4 points) Find a (vector) equation describing the line through $P=$ $(4,5,0)$ and $Q=(-3,4,0)$.
The direction vector is $\overrightarrow{P Q}=(-3,4,0)-(4,5,0)$
$=\langle-7,-1,0\rangle$;
we can factor out $a-1$ and use $\langle 7,1,0\rangle$ instead.

$$
\begin{aligned}
& \text { Our equation is }(x, y, z)=(4,5,0)+\langle 7,1,0\rangle t \\
& (x, 7, z)=(-3,4,0)+\langle 7,1,0\rangle t \\
& \text { or }(x, y, z)=(4,5,0) t+(-3,4,0)(1-t) \text { are also correct land reason }
\end{aligned}
$$

3. (2 points) Find two points on the line with vector equation

$$
(x, y, z)=(2,-1,1)+\langle-2,-2,4\rangle t .
$$

- Plug in $t=0$ Cor read off P from $\left.(x, y, z)=P+t_{r}\right)$:

$$
(2,-1,1)
$$

- plug in $t=1:(2,-1,1)+\langle-2,-2,4\rangle=(0,-3,5)$

Cor plug in any other
Value (s) for t to es., $t=-1$ gives $(4,1,-3)$
get more points. $t=2$ gives $(-2,-5,9)$.
4. (4 points) Let $\mathbf{v}=\langle 1,-1,3\rangle$ and $\mathbf{w}=\langle 1,2,5\rangle$.
(a) Compute $\mathbf{v} \cdot \mathrm{w}$.

$$
\begin{aligned}
V o w & =(1)(1)+(-1)(2)+(3)(5) \\
& =1+2+15 \\
& =1+1
\end{aligned}
$$

(b) Is the angle between \mathbf{v} and \mathbf{w} acute, right, or obtuse?
$V O W=14$ is positive, so the angle is acute.

Extra Credit (3 points): Do the lines

$$
\ell:(x, y, z)=(1,-2,5)+\langle 1,4,1\rangle t
$$

and

$$
m:(x, y, z)=(-3,5,5)+\langle-1,-3,3\rangle t
$$

intersect? If so, what is their point of intersection?
If they intersect, they intersect at some point $P=(x, y, z)$.
Since ℓ passes through P, we know $P=(1,-2,5)+\langle 1,4,1\rangle t$ for some time t.
Since m passes through P, we know $P=(-3,5,5)+(-1,-3,3>s$ for some times (probably not equal to t).
We get sixequations in five variables:

$$
\begin{array}{ll}
x=1+t & x=-3-s \\
y=-2+4 t & y=5-33 \\
z=5+t & \underbrace{z=5+3}_{\text {Since } P \text { is on l } l} \tag{3}
\end{array}
$$

Looking for a simultaneous solution, we substitute out x_{17}, z : $1+t=-3-5$ (A)

$$
\begin{aligned}
& -2+4 t=5-3 s \\
& 5+t=5+3 s
\end{aligned}
$$

out $\times 17, z$:
From (c) $t=3 \mathrm{~s}$.

From (A) $1+3 s=-3-5$
From (B) ${ }_{1}^{s 0 \quad s=-12 s=5-3 s}$ So $s=\frac{7}{15} \neq-1$.
Thus thesis's no solution, so the lines doit intersect.

