
Math 2163
Jeff Mermin’s section, Extra credit Written project 4, due Monday,

December 11 (at the final exam)

Preamble:
In semesters where we don’t study Lagrange multipliers, I use this written

project to supplement chapters 15.4 and 15.6 on changes of variable in double
and triple integrals. You may (and should) work in groups of up to five, and
turn in jointly written solutions. It will be worth roughly half as much as a
regular written assignment.

The handout is in two parts. The first part (sections §1 through §5) is
some exposition on so-called “exterior differential algebras”, with some exercises
mixed in. These exercises are purely for practice: You should make sure you
can do them so you’re comfortable with the material, but you shouldn’t plan to
write them up carefully or turn them in. I will post solutions (in the sense of
odd-numbered problems at the back of the book) over the first weekend.

The second part (on the last page) consists of problems to solve and write
up carefully. You should write up each problem in a way that makes it as easy
to read as possible (probably using a separate page for each problem).

I recommend that you approach the material as follows: First, read Chapter
15.4 in the text and become comfortable with polar and spherical coordinates.
Second, read sections §1 through §3 of this handout, and work at least some of
the exercises contained in it. Finally, read Chapter 15.6 in conjunction with §4
and §5, carefully working the examples. (Once you’ve done all of that, solve the
problems on page 9, and turn in your solutions.)



1 Motivating Examples

Let’s start with a couple of motivating examples, involving double integrals and
the area of parallelograms.

Example 1. Let W be the square with vertices (±1, 0) and (0,±1). Find
its area using high-school geometry, then using integrals.

(a) Verify that W is in fact a square, and compute the lengths and equations
of its sides. Use these to determine its area.

(b) Explain why the area of the square is

∫∫
W

1dydx. Then express that area

using iterated integrals in the variables x and y, with the x on the outside
integral.

This should be annoying because the upper and lower boundaries change
on you halfway through. You can dodge the annoyance using symmetry
here, but in general that’s a bad strategy (what if we were taking the
integral of some complicated and non-symmetric function like (x+y)dydx
instead of just 1dydx?). Still, compute the integrals and verify that you
get the right answer.

(c) Compute the area of the square using iterated integrals in x and y, with
the y on the outside integral. This should be annoying in the same way
as before. Still, compute the integrals and verify that you’re getting the
right answer.

(d) Let’s try to be clever in a different way. Let u = x + y and v = x − y.
Verify that the sides of the square have equations u = ±1 and v = ±1. So
maybe we can do a u, v-substitution?

The area is

∫∫
1dydx. In translating to u and v, that “

∫∫
” becomes

“

∫ u=1

u=−1

∫ v=1

v=−1

”, and the “1” becomes “1”, but what are we to do with the

“dydx”? After all,

∫ u=1

u=−1

∫ v=1

v=−1

1dydx doesn’t make sense because the

boundaries don’t match the variables. We might naively hope that we can
just swith dydx to dvdu.

Evaluate

∫ u=1

u=−1

∫ v=1

v=−1

1dvdu, and verify that we get the wrong answer.

(e) One way to have seen in advance that the computation above was wrong
is to notice (using the techniques of chapter 12) that the lines u = 1 and

u = −1 aren’t 2 units apart; they’re
1− (−1)√
12 + 12

units apart. So we might

guess that du and dv are each “too big” by a factor of
√
2. Indeed, dividing

out by two copies of
√
2 gives us the right answer. So that looks like it



might be a working fix. Unfortunately, it requires that du and dv are
perpendicular, as the next example will show.

Example 2: Let W be the parallelogram with vertices P = (1,−9), Q =
(9,−15), R = (−1, 9), and S = (−9, 15). Compute the area of W using classical
geometry, then using integrals.

(a) Verify that W is a parallelogram, and find the equations for its sides.
Compute the area of W using either cross products or techniques from
high school geometry.

(b) Express the area of W using iterated integrals in x and y, with x on the
outside integral. (This should be even more annoying than in the first
example. You don’t have any obvious symmetry to exploit, and the top
and bottom boundaries break at different x-values, so you just can’t get
away from having three integrals.

(c) Express the area of W using iterated integrals in x and y, with y on the
outside integral.

(d) Evaluate one of your two expressions above, and make sure you get the
right answer.

(e) Look at the equations you found for the sides of W , and find suitable

coordinates u and v so that “

∫∫
W

” can be rewritten as a single iterated

integral using u and v. Then rewrite

∫∫
W

1dxdy in this form.

(f) Verify that, as in the previous example, just replacing dxdy with dudv
gives us the wrong answer.

(g) Last time, we naively just divided by the lengths of two vectors associated
with u and v. Compute the corresponding lengths this time, and verify
that dividing out still gives the wrong answer.

(h) The wrong answer from (f) above is off by a factor. Can you see how to
get the missing factor out of the two vectors in (g)?

The fix, which turns out to work in general, is that we want to essentially
take a cross product of du and dv. (This will give us an additional multiplicative
factor of the sine of the angle between the directions described by du and dv.)
The problem is that du and dv aren’t vectors (and certainly aren’t vectors in
R3) in any meaningful sense, so how can we take their cross product?

When mathematicians encounter a problem like this, our response is gener-
ally to invent an entirely new branch of mathematics in which the things can
be made to behave like we want. In this case, the new field is called “exterior



algebra”, and it turns differentials into vector-like objects, with a multiplica-
tion that’s sort of like the cross product. It turns out that the key property of
the cross product is its anticommutativity: v × w = −w × v. We can derive
everything else from there.

2 Exterior differential algebras

An exterior differential algebra is an abstraction which simultaneously general-
izes several multidimensional concepts: cross products, determinants, tangent
vectors, and double and triple integrals, to name a few.

Elements of an exterior differential algebra are functions f , “differential sym-
bols” [dg] for differentiable functions g, and anything that we can get by adding
and multiplying these things. Two typical elements of the exterior differential
algebra in the single variable x are

A = sin(x)[d(ex)]− x3[d(x2)]

B = 4x[d(x5 − 1)].

Their sum and product are

A+B = sin(x)[d(ex)]− x3[d(x2)] + 4x[d(x5 − 1)]

AB = 4x sin(x)[d(ex)][d(x5 − 1)]− 4x4[d(x2)][d(x5 − 1)].

Note that subtraction makes sense but division does not, since for example
we can’t multiply A by anything to get 1.

The differential symbols interact with functions via the chain rule

[df ] = df
dx [dx].

Thus, for example, we have

A = sin(x)[d(ex)]− x3[d(x2)]

= sin(x)(ex[dx])− x3(2x[dx])

= (ex sin(x)− 2x4)[dx].

Example 3. Let f(x) = ex sinx and g(x) = x lnx. Simplify the following
as much as possible:

(a) [df ]

(b) [dg]

(c) f [dg] + g[df ]

(d) [d(fg)] (Why is this not surprising?)



(e) [df ][dg]

In more variables, we use the multivariate chain rule, so, for example,

[d(
√
x+ y2)] =

1

2
√

x+ y2
[dx] +

y√
x+ y2

[dy].

Example 4. Let F (x, y) = x2+y2−xy and G(x, y, z) = xyez. Simplify the
following as much as possible.

(a) [dF]

(b) [dG]

(c) F [dG] +G[dF]

(d) [d(FG)]

(e) [dF][dG]

The differential symbols are anticommutative; that is,

[df ][dg] = −[dg][df ].

These rules allow us to simplify any element of an exterior differential algebra
to a standard form in which the only differential symbols are differentials of the
underlying variables ([dx], [dy], etc.), and these symbols are always multiplied
in the same order.

One key consequence of the anticommutativity relation is that [df ]
2
= 0, for

all functions f . This is proved in exactly the same way we proved v×v = 0 for
all vectors v: You can do it!

Example 5.

(a) Prove the formula [df ]
2
= 0.

(b) Let f and g be as in Example 3. Simplify [df ][dg] as much as possible.
(We can simplify more, now that we know how to multiply.)

(c) Let F and G be as in Example 4. Simplify [dF][dG] as much as possible.

(d) Let u and v be as in Example 1. Simplify [du][dv] as much as possible.

(e) Let u and v be as in Example 2. Simplify [du][dv] as much as possible.



3 Cheating our way to formulas from the book

Let r and θ be the polar coordinates, and ρ, θ, and ϕ be the spherical coor-
dinates. The text instructs you to memorize the formulas dydx = rdrdθ and
dzdydx = ρ2 sinϕdρdθdϕ. These are good formulas, and you’ll memorize them
by accident if you do a lot of work in those coordinates, but the derivations in
the text are difficult at best, so they feel like magic. Let’s prove them.

Example 6. Let’s derive the formula for polar conversion.

(a) Let x = r cos θ and y = r sin θ. Rewrite [dx] and [dy] using only r and θ.

(b) Simplify [dx][dy] as much as possible. (You will need the Pythagorean
trig identity.)

(c) Simplify [dy][dx] as much as possible. (You can repeat the same work, or
use anticommutativity.)

(d) The answers to the previous two problems are not the same. Explain the
difference in terms of the orientations of x and y, and of r and θ. (In two
dimensions, “orientation” means “clockwise or counterclockwise”.)

(e) Let’s derive the formula in a more complicated way. Since r2 = x2+y2, we
know [d(r2)] = [d(x2 + y2)]. Simplify this to get a relationship between
[dr], [dx], and [dy]. Then do the same thing with tan θ = y

x , and bang
the results together.

Example 7. I like to use the phrase “double polar coordinates” when talking
about spherical coordinates. Here’s why.

(a) Observe that z = ρ cosϕ and r = r sinϕ. Use this and your work in
Example 6 to show that [dz][dr] = ρ[dρ][dϕ].

(b) Use your work above to show that [dx][dy][dz] = rρ[dρ][dϕ][dθ].

(c) Substitute for r in the above to get the formula in the book.

(d) We can also derive the formula more gloriously without using the double
polar insight. Use the formulas x = ρ sinϕ cos θ, y = ρ sinϕ sin θ, and
z = ρ cosϕ to express [dx], [dy], and [dz] in terms of only ρ, θ, and ϕ.

(e) Multiply out the three expressions in the previous problem, and simplify.
(Actually, no, don’t. It will take you forever. But think through what’s
likely to happen, and convince yourself that you could do it if it were
important.)

4 The Jacobian alternative

We can use the techniques in this handout instead of the content of Chapter
15.6. In general I won’t care which you use — you should prefer whatever you’re



more comfortable with. But I ask that you use no Jacobians on this handout,
and that you use Jacobians on at least a few of the WebAssign problems from
15.6.

5 Using differential forms for integration

The examples here are translations of the examples in section 15.6. I find
that chapter very difficult to understand as written, so reading these examples
together may help make sense of that chapter.

Example 8. (Rogawski, Example 15.6.6.) Calculate

∫∫
P

e4x−ydxdy, where

P is the parallelogram with one vertex at the origin, and spanned by vectors
⟨4, 1⟩ and ⟨3, 3⟩.

(a) Find equations for the sides of P.

(b) Let u = x− y and v = 4y − x. Find formulas for the sides of P involving
u and v.

(c) Find the relationship between [du][dv] and [dx][dy]. (There are two ways
to attack this. You can differentiate to express [du] and [dv] in terms of
x, y, [dx], and [dy], or you can solve for x and y in terms of u and v, then
get [dx] and [dy] in terms of u, v, [du], and [dv]. In general I find that
the first approach is a little easier, but either can work better depending
on the problem.)

(d) Rewrite “

∫∫
P

” as an iterated integral using u and v.

(e) Rewrite “e4x−ydxdy” using only u and v. (Unfortunately you have to
solve for x and y in terms of u and v. If that had been a 4y− x you’d get
out of it.)

(f) Evaluate the rewritten integral.



Example 9. (Rogawski, Example 15.6.7) Compute

∫∫
D

(x2+y2)dxdy, where

D is the domain 1 ≤ xy ≤ 4, 1 ≤ y
x ≤ 4 in the first quadrant.

(a) Let u = xy and v = y
x . Express the boundaries of D in terms of u and v.

(b) Find the relationship between [du][dv] and [dx][dy].

(c) Rewrite “

∫∫
D

” as an iterated integral using only u and v.

(d) Rewrite “(x2 + y2)dxdy” using only u and v. (I think you’ll have to solve
for x and y this time too.)

(e) Evaluate the rewritten integral.

Example 10. (Rogawski, Example 15.6.8) Integrate f(x, y) = xy(x2 + y2)
over D, where D is the region in the first quadrant defined by the inequalities
−3 ≤ x2 − y2 ≤ 3 and 1 ≤ xy ≤ 4.

(a) Let u = x2 − y2 and v = xy. Express the boundaries of D in terms of u
and v.

(b) Find the relationship between [du][dv] and [dx][dy].

(c) Rewrite “

∫∫
D

” as an iterated integral using only u and v.

(d) Rewrite “xy(x2 + y2)dxdy” using only u and v. (This time it looks like
you’ll need to solve for x and y, but a miracle occurs and you get to avoid
it.)

(e) Evaluate the rewritten integral.



6 Problems to turn in

Write up these problems carefully as a group, and don’t put your names on the
solutions until you’re satisfied that you all understand and agree with them.
You should focus on explaining your work as clearly as possible. When I grade,
I will focus on clarity at least as much as on numerical correctness.

The only rules are that you must acknowledge anyone (or any source)
outside your group that helps you, and you may not use the Jacobians
from Chapter 15.6 on these problems.

1. Simplify (x2 − y)[d(16− x2 − 16y2)] to an expression in which the only
differential symbols are [dx] and [dy].

2. Fix Example 1. That is, express the area of the square (correctly) as a
single iterated integral in variables u and v, and evaluate the integral.

3. Fix Example 2. That is, express the area of the parallelogram (correctly)
as a single iterated integral in variables u and v, and evaluate the integral.

4. Let D be the region defined by the inequalities 10 ≤ xy ≤ 20 and 20 ≤
x2y ≤ 40. Rewrite

∫∫
D

exydxdy in terms of suitable coordinates u and

v, then compute the integral. [The choice of u and v is not meant to be
difficult. Draw a picture of the region D (don’t draw it to scale) and label
its boundary curves. There should be an obvious choice for u and v; don’t
be afraid to try it.]

5. (Extra Credit) Considering anticommutativity, why does Fubini’s the-
orem say ∫ x=b

x=a

∫ y=d

y=c

f(x, y)dydx =

∫ y=d

y=c

∫ x=b

x=a

f(x, y)dxdy

instead of∫ x=b

x=a

∫ y=d

y=c

f(x, y)dydx = −
∫ y=d

y=c

∫ x=b

x=a

f(x, y)dxdy?

Think about orientation, signed area, and handedness. [Hint?: What is∫ x=0

x=1

dx? Now, let C1 be the curve y = x2 and C2 be the curve x = y2.

Translate the double integrals

∫ (1,1)

(0,0)

∫ C2

C1

dydx and

∫ (1,1)

(0,0)

∫ C2

C1

dxdy into

more normal notation as slowly and pedantically as possible.]


