Test 3, Page 1

Math 2163

Jeff Mermin's section, Test 3, November 22
On the essay questions (\# 2-6) write legibly in complete sentences, in such a way that I can easily tell what you are doing and why.

You may or may not find the following tables helpful.

Dasic romms

1. $\iint^{c} d u=\frac{w+1}{n+1}+c, n \neq-1$

2. $\int c^{c t a n}=c^{n}+c$
3. $\int a^{n+\alpha a n}=\frac{a^{n}}{\text { nac }}+c$
s. \int sinadut - -cous $+c$
4. \int osendur sinua $+c$
5. $\int \sec ^{2} 2 a u=\operatorname{coman}+c$
6. $\int \cos ^{2}$ detan $=-\operatorname{cosec} 4+c$

i. \int monadut \sin bees $4+c$

7. $\int \frac{d n}{\sqrt{a^{2}-u^{2}}=}=\frac{\sin }{}=-1 \frac{1}{a}+c$
8. $\frac{d a t}{a^{2}+a^{2}}=\frac{1}{d} \frac{10 m^{-1}-1}{d}+c$

Exponential and Logariuhmic Forms

17. $\int e^{a e d} d u=\frac{1}{a^{2}}(a u-1) e^{e a t}+c$

18. $\int \rho^{a t u} \cos b d u=\frac{e^{2 \prime 2}}{a^{2}+b^{2}}($ cacs $b u+b \sin b u)+c$
19. \int In $u d u=u$ in $u-u+c$
20. $\int u^{n} \ln u d u=\frac{u^{(n)}}{(n+1)^{2}}(n+1) \ln n-1 i+c$
21. $\left.\int \frac{1}{\mu \ln u} d u=\ln \| n u \right\rvert\,+c$

Hyperbolic Forms
24. $\int \sinh u d u=\cos h u+c$
25. \int coshu $u x=\sinh u+c$
26. \int tanh $u d u=\ln$ coshu $u+C$
27. \int conh $\alpha d u=\ln$ lsinhul| $+c$
28. \int sechu $u d u=$ an $n^{-1} \mid$ sinh $u \mid+C$
29. $\int \operatorname{sesh} h d x=\sin \left|\operatorname{man} \frac{1}{2} \|\right|+C$
30. $\int \operatorname{sech}^{2} h^{2} d x=\tanh u+c$
31. $\int \cosh ^{2} u d u=-\cosh u+c$
32. $\int \operatorname{sech} u$ unhn $x d x=-\operatorname{sech} u+C$
33. $\int \operatorname{cssh} \alpha \operatorname{coth} u d x=-\operatorname{cssh} u+c$

Trigonometric Forms
34. $\int \sin ^{2} u d u=\frac{1}{2} u-\frac{1}{4} \sin ^{2} 2 u+c$
35. $\int \cos ^{2} u d u=\frac{1}{2} u+\frac{1}{4} \sin 2 u+C$
36. $\int \tan ^{2} 14 d u=\tan u-u+C$
37. $\int \operatorname{cop}^{2} u d u=-\cot u-u+C$
38. $\int \sin ^{3} 4 d u=-\frac{1}{3}\left(2+\sin ^{2} 4\right) \cos u+c$
33. $\int \cos ^{3} u d u=\frac{1}{3}\left(2+\cos ^{2} u\right) \sin ^{2} u+C$
40. $\left.\int \tan ^{3} x d u=\frac{1}{2} \tan ^{2} u+\ln \operatorname{los} \cos \right\rvert\,+C$
4. $\int \cos ^{3} u d u=-\frac{1}{2} \cot ^{2} u-\ln \operatorname{lin} n| |+c$
42. $\left.\int \sec ^{3} u d u=\frac{1}{2} \sec u \tan u+\frac{1}{2} n \ln \sec u+\tan u \right\rvert\,+c$

44. $\int \sin ^{n} u d u=-\frac{1}{n} \sin ^{n-1} u \cos u+\frac{n-1}{n} \int \sin ^{n-2}-2 d u$
45. $\int \cos ^{n} u d x=\frac{1}{n} \cos ^{n-1} u \sin ^{n} u+\frac{n-1}{n} \int \cos ^{n-2}-2 d u$
46. $\int \tan ^{n} \tan ^{n} u x=\frac{1}{n-1} \tan ^{n-1} x^{1} u-\int \tan ^{n-2} x^{2} \alpha d u$
47. $\int \cos ^{n} u d u=\frac{-1}{n-1} \cos ^{n-1} x-\int \cos ^{\left(0^{-2}\right)} u d x$
48. $\int \sec ^{n} u d x=\frac{1}{n-1} \tan u \sec ^{n-2} \alpha+\frac{n-2}{n-1} \int \sec ^{-2} \alpha_{d u}$
49. $\int \csc ^{n} u d u=\frac{-1}{n-1} \operatorname{cosucsec}^{n-2} u+\frac{n-2}{n-1} \int \csc ^{-2} u d u$
50. \int sina $a s i s h b u d u=\frac{\sin (a-b) u}{2(a-b)}-\frac{\sin (a+b) u}{2(a+b)}+c$
51. \int cosacocos bud $x=\frac{\sin (a-b) u}{2(a-b)}+\frac{\sin (a+b) u}{2(a+b)}+c$
52. $\int \sin$ incososudu $=-\frac{\cos (a-b) u}{2(a-b)}-\frac{\cos (a+b) u}{2(a+b)}+c$
53. $\int u \sin u d u=\sin u-u \cos u+C$
54. $\int u \cos d d u=\cos u+u \sin u+C$
55. $\int u^{n} \sin \alpha d x=-u^{n} \cos x+n \int u^{n-1} \cos d x$
56. $\int u^{n}{ }^{n} \cos d u x=u^{n} \sin u-n \int u^{n-1} \sin x d u$
57. $\int \sin ^{n}$ " $\cos ^{\prime \prime}$ " $4 x$

Inverse Trigonometric Forms

58. $\int \sin ^{-1} u d u=u \sin ^{-1} u+\sqrt{1-u^{2}}+c$
s9. $\int \cos ^{-1} u d u=\operatorname{coss}^{-1} u-\sqrt{1-u^{2}}+c$
59. $\int \tan ^{-1} u d u=\tan ^{-1} u-\frac{1}{2} \ln \left(1+u^{2}\right)+c$
60. $\int u \sin ^{-1} u d u=\frac{2 u^{2}-1}{4} \sin ^{-1} u+\frac{u \sqrt{1-u^{2}}}{4}+c$
61. $\int u \cos ^{-1} u d u=\frac{2 n^{2}-1}{4} \cos ^{-1} \mu-\frac{\mu \sqrt{1-u^{2}}}{4}+c$
62. $\int u \tan ^{-1} u d u=\frac{u^{2}+1}{2} \operatorname{an}^{-1} u-\frac{\pi}{2}+c$
63. $\int u^{n} \sin ^{-1} u d u=\frac{1}{n+1}\left[u^{n+1} \sin ^{-1}-1 u-\int \frac{\int^{n+1} d u}{\sqrt{1-u^{2}}}\right],{ }^{n \neq-1}$
64. $\int u^{n \prime 2} \cos ^{-1} u d u=\frac{1}{n+1}\left[u^{n+1} \cos ^{-1} u+\int \frac{u^{n+1} 1 d u}{\sqrt{1-u^{2}}}\right] \cdot n \neq-1$
65. $\int u^{n t a n-1} u d u=\frac{1}{n+1}\left[u^{n+1}{ }^{n+1}{ }^{-1} u-\int \frac{u^{n+1}+1 u}{1+u^{2}}\right] \cdot n \neq-1$

Forms Involving $\sqrt{a^{2}-u^{2}}, a>0$
6. $\int \sqrt{a^{2}-u^{2}} d u=\frac{4}{2} \sqrt{a^{2}-u^{4}}+\frac{a^{2}}{2} \sin ^{-1} \frac{1}{a}+c$
68. $\int u^{2} \sqrt{a^{2}-u^{2}} d u=\frac{u^{4}}{8} \operatorname{cun}^{2}-a^{2} \sqrt{a^{2}-u^{2}}+\frac{a^{4}}{8} \sin ^{-1} \frac{u}{a}+c$
69. $\int \frac{\sqrt{2^{2}-u^{2}}}{u} d u=\sqrt{a^{2}-u^{2}}-a \ln \left|\frac{a+\sqrt{a^{2}-u^{2}}}{u}\right|+c$
7. $\int \frac{\sqrt{a^{2}-u^{2}}}{u^{2}} d u=-\frac{1}{u} \sqrt{a^{2}-u^{2}}-\sin ^{-1} \frac{1}{a}+c$
7. $\int \frac{u^{2} d u}{\sqrt{a^{2}-u^{2}}}=-\frac{4}{2} \sqrt{a^{2}-u^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{\pi}{a}+c$
22. $\int \frac{d u}{w \sqrt{a^{2}-u^{u}}}=-\frac{1}{a} n\left|\frac{a+\sqrt{a^{2}-u^{2}}}{u}\right|+c$
73. $\int \frac{d u}{u^{2} \sqrt{a^{2}-u^{2}}}=-\frac{1}{a^{2} u} \sqrt{a^{2}-u^{2}}+c$
7. $\left.\int\left(a^{2}-u^{2}\right)^{3 / 2)} d u=-\frac{4}{8} 8 u^{2}-5 a^{2}\right) \sqrt{a^{2}-u^{2}}+\frac{3 a^{4}}{8} \sin ^{-1} \frac{u}{a}+$
75. $\int \frac{d u}{\left(a^{2}-u^{2}\right)^{3 / 2}}=\frac{u}{a^{2} \sqrt{a^{2}-u^{2}}}+c$

Forms Involving $\sqrt{u^{2}-a^{2}}, a>0$
76. $\left.\int \sqrt{u^{2}-a^{2}} d u=\frac{4}{2} \sqrt{u^{2}-a^{2}}-\frac{a^{2}}{2}|n| u+\sqrt{u^{2}-a^{2}} \right\rvert\,+c$
77. $\int u^{2} \sqrt{a^{2}-a^{2}} d u$
$=\frac{4}{8}\left(2 u^{2}-a^{2}\right) \sqrt{u^{2}-a^{2}}-\frac{a^{4}}{8}| |\left|4+\sqrt{u^{2}-a^{2}}\right|+c$
78. $\int \frac{\sqrt{u^{2}-a^{2}}}{u} d u=\sqrt{u^{2}-a^{2}}-a \cos ^{-1} \frac{a}{|a|}+c$
29. $\left.\int \frac{\sqrt{u^{2}-a^{2}}}{u} d u=-\frac{\sqrt{u^{2}-a^{2}}}{u}+|n| u+\sqrt{u^{2}-a^{2}} \right\rvert\,+c$
80. $\int \frac{d u}{\sqrt{u^{2}-a^{2}}}=\ln \left|x+\sqrt{u^{2}-a^{2}}\right|+c$
81. $\left.\int \frac{u^{2} d u}{\sqrt{u^{2}-a^{2}}}=\frac{4}{2} \sqrt{u^{2}-a^{2}}+\frac{a^{2}}{2} n| | 4+\sqrt{u^{2}-a^{2}} \right\rvert\,+c$
82. $\int \frac{d u}{u^{2} \sqrt{u^{2}-a^{2}}}=\frac{\sqrt{a^{2}-a^{2}}}{a^{2}}+c$
83. $\int \frac{d u}{\left(u^{2}-a^{2}\right)^{3 / 2}}=-\frac{u}{a^{2} \sqrt{u^{2}-a^{2}}}+c$

Forms Involving $\sqrt{a^{2}+u^{2}}, a>0$
84. $\int \sqrt{a^{2}+u^{2}} d u=\frac{u}{2} \sqrt{a^{2}+u^{2}}+\frac{a^{2}}{2} \ln \left(u+\sqrt{a^{2}+u^{2}}\right)+c$
85. $\int u^{2} \sqrt{a^{2}+u^{2}} d u$
$=\frac{u}{8}\left(a^{2}+2 u^{2}\right) \sqrt{a^{2}+u^{2}}-\frac{a^{4}}{8} n\left(4 x+\sqrt{a^{2}+u^{2}}\right)+c$
86. $\int \frac{\sqrt{a^{2}+u^{2}}}{u} d u=\sqrt{a^{2}+u^{2}}-a \ln \left|\frac{a+\sqrt{a^{2}+u^{2}}}{u}\right|+c$
87. $\int \frac{\sqrt{a^{2}+u^{2}}}{u^{2}} d u=-\frac{\sqrt{a^{2}+u^{2}}}{u}+\ln \left(u+\sqrt{a^{2}+u^{2}}\right)+c$

$$
\begin{aligned}
& \text { 88. } \int \frac{d u}{\sqrt{a^{2}+u^{2}}}=\ln \left(u+\sqrt{a^{2}+u^{2}}\right)+c \\
& \text { 89. } \int \frac{u^{2} d u}{\sqrt{a^{2}+u^{2}}}=\frac{u}{2} \sqrt{a^{2}+u^{2}}-\frac{a^{2}}{2} \ln \left(u+\sqrt{a^{2}+u^{2}}\right)+c \\
& \text { 90. } \int \frac{d u}{u \sqrt{a^{2}+u^{2}}}=-\frac{1}{a} \ln \left|\frac{\sqrt{a^{2}+u^{2}}+a}{u}\right|+c \\
& \text { 9. } \int \frac{d u}{u^{2} \sqrt{a^{2}+u^{2}}}=-\frac{\sqrt{a^{2}+u^{2}}}{a^{2} u}+c \\
& \text { 92. } \int \frac{d u}{\left(a^{2}+u^{2}\right) 3 / 2}=\frac{u}{a^{2} \sqrt{a^{2}+u^{2}}}+c \\
& \text { Forms Involving } a+b u \\
& \text { 93. } \int \frac{u d u}{a+b u}=\frac{1}{b^{2}}(a+b u-a|1| a+b u \mid)+c \\
& \text { 94. } \int \frac{u^{2} d u}{a+b u}=\frac{1}{2 b^{5}}\left[\left(a+b u u^{2}-4 a(a+b u)+2 a^{2}|n| a+b u \mid\right]+c\right. \\
& \text { 95. } \int \frac{d u}{u(a+b u)} \frac{1}{a} \mathrm{n}\left|\left|\frac{u}{a+b u t}\right|+c\right. \\
& \text { 96. } \int \frac{d u}{u^{2}(a+b u u)}=-\frac{1}{a u}+\frac{b}{a^{2}} \ln \left|\frac{a+b u}{u}\right|+c \\
& \text { 97. } \int \frac{u d u}{(a+b u)^{2}}=\frac{a}{b^{2}(a+b u)^{2}}+\frac{1}{b^{2}} \ln |a+b u|+c \\
& \text { 98. } \int \frac{d u}{4(a+b w)^{2}}=\frac{1}{a(a+b u)}-\frac{1}{a^{2}} \frac{\mid n}{}\left|\frac{a+b u}{u}\right|+c \\
& \text { 99. } \int \frac{u^{2} d u}{(a+b u)^{2}}=\frac{1}{b^{5}}\left(\left.a+b u-\frac{a^{2}}{a+b u}-2 u n \right\rvert\, \alpha a+b u u\right)+c \\
& \text { 100. } \int u \sqrt{a+b u} d u=\frac{2}{15 b^{2}}(3 b u-2 a)(a+b u)^{3 / 2}+c \\
& \text { 101. } \int u^{n} \sqrt{a+b u d u} \\
& \left.\begin{array}{l}
u^{n} \sqrt{a+b b a u} \\
=\frac{2}{b(22+3)}\left[u ^ { n } \left(a+b w w^{3 / 2}-n a\right.\right.
\end{array} u^{u^{n-1} \sqrt{a+b u d u}}\right] \\
& \text { 102. } \int \frac{u d u}{\sqrt{a+b u t}}=\frac{2}{3 b^{2}}(t u x-2 a) \sqrt{a+b u}+c \\
& \text { 103. } \int \frac{u^{n} d u}{\sqrt{a+b u}}=\frac{2 u^{n} \sqrt{a t+b u}}{b(2 n+1)}-\frac{2 n a}{b(2 n+1)} \frac{u^{n-1} d u}{\sqrt{a+b u}} \\
& \text { 104. } \int \frac{d u}{1 u \sqrt{a+b u}}=\frac{1}{\sqrt{a}}| | \frac{\sqrt{a}+b u-\sqrt{a}}{\sqrt{a+b u}+\sqrt{a}}+c \text {, if } a>0 \\
& =\frac{2}{\sqrt{-a}-a n^{-1}} \sqrt{\frac{a+b u}{-a u}}+c, \quad \text { if } a<0 \\
& \text { 105. } \int \frac{d u}{u u^{n} \sqrt{a+b u}}=-\frac{\sqrt{a+b u}}{a(n-1) m^{n}-1}-\frac{b(b 2 n-3)}{2 a(n-1)} \int \frac{d u}{m^{n}-1 \sqrt{a x}+b u} \\
& \text { 106. } \int \frac{\sqrt{a+b u}}{u} d u=2 \sqrt{a+b u}+a \int \frac{d u}{u \sqrt{a+b u}} \\
& \text { 107. } \int \frac{\sqrt{a+b u}}{u^{2}} d u=-\frac{\sqrt{a+b u}}{u}+\frac{b}{2} \int \frac{d u}{u \sqrt{a+b u t}} \\
& \text { Forms Involving } \sqrt{2 a u-u^{2}}, a>0 \\
& \text { 108. } \int \sqrt{2 a u-u^{2}} d u=\frac{u-a}{2} \sqrt{2 a u-u^{2}}+\frac{a^{2}}{2} \cos ^{-1}\left(\frac{a-u}{a}\right)+c \\
& \text { 100. } \int u \sqrt{2 a n-u^{1}} d u \\
& =\frac{2 u^{2}-a u-3 a^{2}}{6} \sqrt{2 a u-u^{2}}+\frac{a^{3}}{2} \cos ^{-1}\left(\frac{a-u}{a}\right)+c \\
& \text { 110. } \int \frac{d u}{\sqrt{2 a u t-u^{2}}}=\cos ^{-1}\left(\frac{a-u}{a}\right)+c \\
& \text { i1. } \int \frac{d u}{u \sqrt{2 a u-u^{2}}}=-\frac{\sqrt{2 u-u})^{2}}{a u}+c
\end{aligned}
$$

1. ($\mathbf{3 0}$ points)Indicate whether the following statements are true or false. ("True" means "Always true", "false" means "sometimes false".) No justification is necessary on this problem. Write the entire word "True" or "False". Illegible or abbreviated answers will receive no credit.
In the statements below, a, b, c, d, and d^{\prime} are numbers, $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{v}$, and \mathbf{w} are vectors, t is a variable, x, y, and z are rectangular coordinates for \mathbb{R}^{3}, f is a smooth function defined everywhere, and $\mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle$ is a smooth curve in $\mathbb{R}^{3} . D$ is a region in \mathbb{R}^{2} or \mathbb{R}^{3}. $d V$ means what it does in the book.
(a) The vector $\langle d x, d y, d z\rangle$ is normal to the graph of $z=f(x, y)$.
(b) If $w=h(z)$ is a differentiable function of z, and $z=f(x, y)$, then

$$
\frac{\partial w}{\partial x}=\frac{d w}{d z} \frac{\partial z}{\partial x}
$$

(c) The distance between the planes $F: a x+b y+c z=d$ and $G:$ $a x+b y+c z=d^{\prime}$ is $\left|d-d^{\prime}\right|$.
(d) If D is closed and bounded, then f has a global maximum on D.
(e) \mathbf{v} and $-2 \mathbf{v}$ point in the same direction.
(f) If $D=\left\{(x, y, z): x^{2}+y^{2}+z^{2} \leq 9\right\}$, then $\iiint_{D} d V=36 \pi$.
$(\mathrm{g}) \mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=(\mathbf{a} \cdot \mathbf{b})(\mathbf{a} \cdot \mathbf{c})$.
(h) $(\mathbf{a}+\mathbf{b})+\mathbf{c}=\mathbf{a}+(\mathbf{b}+\mathbf{c})$.
(i) \mathbf{v} and \mathbf{w} are perpendicular if and only if $\mathbf{v} \times \mathbf{w}=\mathbf{0}$.
(j) $\frac{d \mathbf{r}}{d t}=\left\langle\frac{d x}{d t}, \frac{d y}{d t}, \frac{d z}{d t}\right\rangle$.

Test 3, Page $3 \quad$ Name:
2. ($\mathbf{3 0}$ points) Evaluate the integrals.
(a) $\int_{x=-1}^{x=1} \int_{y=0}^{y=2} 4+x^{2}-y^{2} d y d x$
(b) $\int_{y=0}^{y=1} \int_{x=y^{3}}^{x=y^{2}} 2 x+y^{2} d x d y$
3. (15 points) Consider the integral $I=\int_{y=0}^{y=8} \int_{x=\sqrt[3]{y}}^{x=2} e^{x^{4}} d x d y$.
(a) Reverse the order of integration.
(b) Evaluate I, using whichever order seems most appropriate.
4. (15 points) Some values of a continuous function $f(x, y)$ on the rectangle $R=\{0 \leq x \leq 30,0 \leq y \leq 20\}$ are given in the table below. (Apparently f is hard to compute, because some values are unknown). Estimate the value of $\iint_{R} f(x, y) d A$ using a Riemann sum with at least six summands. Leave your answer as a Riemann sum.

x							
y	0	5	10	15	20	25	30
0	2	$?$	4	$?$	$?$	$?$	8
5	2	$?$	4	$?$	8	10	$?$
10	$?$	$?$	$?$	8	$?$	$?$	$?$
15	2	3	$?$	$?$	6	8	7
20	2	$?$	2	2	$?$	$?$	4

5. (60 points) Express each of the following as an iterated integral in an appropriate coordinate system. If you use coordinates other than rectangular, polar, cylindrical, or spherical, you must define them. Do not evaluate.
(a) The volume of the region defined by the inequalities

$$
0 \leq z \leq 18-2 x^{2}-2 y^{2}
$$

(b) $\iiint_{R} x e^{y z} d x d y d z$, where R is the region defined by the inequalities $\left\{x \geq 0, y \geq 0, z \geq 0, x+y \leq 1, x^{2}+z \leq 1\right\}$.
(c) $\iint_{R} x y d y d x$, where R is the region defined by the inequalities

$$
1 \leq x y \leq 3 \quad \text { and } \quad x \leq y \leq 3 x
$$

6. (Extra credit: 20 points) Earth is facing a serious werewolf crisis, and in a last-ditch attempt to save civilization we have decided to blow up the moon. Our plan is to divide the moon into many small chunks, and then, working inward from the surface, accelerate each chunk away from the center of the moon at escape velocity.
(a) Use an integral to determine the energy necessary to blow up the moon in this way. (This quantity is called the gravitational selfbinding energy of the moon.) Assume that the moon is a perfect sphere with radius 2 million meters and constant density 4000 kilograms per cubic meter. (Under this assumption, the energy necessary to accelerate a chunk of moon with mass m to escape velocity, starting ρ meters from the center of the moon, is approximately $\rho^{2} m \times 10^{-6}$ Joules.) We only get one shot at this, and we've made a lot of simplifying assumptions, so round your answer up to one significant figure.
(b) The world's combined nuclear arsenal is estimated as equivalent to about 5000 megatons of TNT. Is this enough to get the job done? (One ton of TNT is about 4×10^{9} Joules.)
(c) The sun outputs energy at a rate of approximately 4×10^{26} Watts. Assume that we can focus all this energy on the moon. (This is called a Nicoll-Dyson laser.) How much time do we need? Answer in human-readable units.
