A HOMOLOGICAL CHARACTERIZATION FOR FREENESS OF MULTI-ARRANGEMENTS

ABSTRACT. We introduce a co-chain complex associated to a multi-arrangement and prove that its cohomologies determine freeness of the associated module of multi-derivations. The co-chain complex is constructed from modules introduced by Brandt and Terao to study k-formality. As a consequence, we prove that if $(\mathcal{A}, \mathbf{m})$ is a free multi-arrangement then \mathcal{A} is k-formal for all $k \geq 2$. We use this homological method to study freeness of multi-arrangements in moduli and certain classes of free arrangements whose restrictions are not free.

CONTENTS

1.	Introduction	1
2.	Preliminaries	5
3.	The homological criterion	7
4.	Multi-arrangements and k -formality	12
5.	Computing the chain complex	14
6.	TF_2 arrangements	19
7.	The case of line arrangements	31
8.	Concluding remarks	33
References		34
Ap	pendix A. The moduli space of an arrangement	35
Ap	ppendix B. Two lemmas for multi-arrangements of points in \mathbb{P}^1	37

1. INTRODUCTION

A central hyperplane arrangement, which we will denote by \mathcal{A} , is a union of hyperplanes passing through the origin in a vector space $V \cong \mathbb{K}^{\ell}$, where \mathbb{K} is a field. Write S for the symmetric algebra of V^* , which is isomorphic to a polynomial ring in ℓ variables. Then \mathcal{A} is the union of the zero-locus of linear forms α_H , one for each hyperplane H in \mathcal{A} . The module of logarithmic \mathcal{A} -derivations, denoted $D(\mathcal{A})$, consists of derivations $\theta \in \text{Der}_{\mathbb{K}}(S)$ satisfying $\theta(\alpha_H) \in \alpha_H S$ for every $H \in \mathcal{A}$. Study of this module was initiated by Saito [24]; it is of particular interest to know when $D(\mathcal{A})$ is a free S-module. In this case \mathcal{A} is called a free arrangement.

Let $\mathbf{m} : \mathcal{A} \to \mathbb{Z}_{>0}$ be a function, called a multiplicity, associating to each hyperplane H a positive integer $\mathbf{m}(H)$; the pair $(\mathcal{A}, \mathbf{m})$ is called a multi-arrangement. The module of derivations of $(\mathcal{A}, \mathbf{m})$, denoted $D(\mathcal{A}, \mathbf{m})$, consists of those derivations $\theta \in \text{Der}_{\mathbb{K}}(S)$ satisfying $\theta(\alpha_H) \in \alpha_H^{\mathbf{m}(H)}S$ for every $H \in \mathcal{A}$. If $D(\mathcal{A}, \mathbf{m})$ is a free S-module we say $(\mathcal{A}, \mathbf{m})$ free and \mathbf{m} is a free multiplicity of \mathcal{A} . Due to a criterion stated by Ziegler [40] and later improved by Yoshinaga [35], freeness of multi-arrangements is closely linked to freeness of arrangements.

2 A HOMOLOGICAL CHARACTERIZATION FOR FREENESS OF MULTI-ARRANGEMENTS

There have been major advances in the understanding of multi-arrangements during the last decade. In particular, the characteristic polynomial has been defined for multi-arrangements by Abe, Terao, and Wakefield [6] and they show that Terao's factorization theorem holds for this characteristic polynomial. Moreover, the addition-deletion theorem has also been extended by Abe, Terao, and Wakefield to multi-arrangements [7]. This improved theory of multi-arrangements has recently led to remarkable progress in understanding freeness of arrangements [4, 1].

In this paper we add to the list of available tools for studying multi-arrangements by introducing a homological characterization for freeness. The characterization involves building a co-chain complex which we denote $\mathcal{D}^{\bullet}(\mathcal{A}, \mathbf{m})$ from modules constructed by Brandt and Terao [12] to study k-formality (see Definition 3.5 for details). Chain complexes having very similar properties to $\mathcal{D}^{\bullet}(\mathcal{A}, \mathbf{m})$ appear in the theory of algebraic splines [10, 27]; applying techniques of Schenck and Stiller [25, 28] yields our main result, stated below.

Theorem 1.1 (Homological characterization of freeness). The multi-arrangement $(\mathcal{A}, \mathbf{m})$ is free if and only if $H^k(\mathcal{D}^{\bullet}(\mathcal{A}, \mathbf{m})) = 0$ for k > 0. Moreover, $D(\mathcal{A}, \mathbf{m})$ is locally free if and only if $H^k(\mathcal{D}^{\bullet}(\mathcal{A}, \mathbf{m}))$ has finite length for all k > 0.

Weaker versions of this statement have been proved recently and used to classify free multiplicities on several rank three arrangements [15, 13, 14]. For simple arrangements, the forward direction of the first statement in Theorem 1.1 follows from work of Brandt and Terao [12]. Homological methods are not new in the study of freeness of arrangements; besides the aforementioned work of Brandt and Terao, Yuzvinsky developed and studied the theory of cohomology of sheaves of differentials on arrangement lattices to great effect in [37, 38, 39]. While we will not attempt to generalize this framework to multi-arrangements, Yuzvinsky's work, along with Brandt and Terao's, is an important motivation for this paper.

The remainder of the paper is devoted to applications of this homological criterion. In § 3 we extend a combinatorial bound on projective dimension of $D(\mathcal{A}, \mathbf{m})$ due to Kung and Schenck in the case of simple arrangements. In § 4 we elucidate the connection to k-formality and use the homological characterization of Theorem 1.1 to extend a result of Brandt and Terao [12] to multi-arrangements in Corollary 4.10.

Following the initial applications of this homological characterization of freeness, we describe in § 5 how the chain complex $\mathcal{D}^{\bullet}(\mathcal{A}, \mathbf{m})$ can be concretely computed. We have implemented this construction in the computer algebra system Macaulay2 [19]. The code for constructing the chain complex, as well as a file working through many of the examples in this paper, may be found on the author's website: math.okstate.edu/~mdipasq. In § 5 we also explicitly work out the structure of $\mathcal{D}^{\bullet}(\mathcal{A}, \mathbf{m})$ for graphic arrangements and show that Theorem 1.1 recovers the main result of [15].

In § 6, we study a class of arrangements which we call TF_2 arrangements; these are formal arrangements whose relations of length three are linearly independent. We believe this study is well-motivated by the interesting behavior of multi- TF_2 arrangements in moduli as well as additional counter-examples to Orlik's conjecture which arise in the process. We illustrate this in § 1.1 before proceeding to the body of the paper. If \mathcal{A} is a TF_2 arrangement, freeness of $(\mathcal{A}, \mathbf{m})$ is determined by the vanishing of the single cohomology module $H^1(\mathcal{D}^{\bullet}(\mathcal{A}, \mathbf{m}))$, making these arrangements well-suited to the homological methods afforded by Theorem 1.1. We show that a TF_2 arrangement is free if and only if it is supersolvable. We completely classify free multiplicities on non-free TF_2 arrangements in Proposition 6.2 and Theorem 6.10. Moreover, we show that free multiplicities of free TF_2 arrangements can be determined in a combinatorial fashion from the exponents of its rank two sub-arrangements in Theorem 6.6.

We also give in § 7 a syzygetic criterion for freeness of a multi-arrangement of lines, generalizing a criterion for freeness of A_3 multi-arrangements from [13]. Specializing to simple line arrangements gives an equivalent formulation of Terao's question for line arrangements, phrased in terms of syzygies of a certain module presented by a matrix of linear forms (Question 7.4).

Acknowledgements: I am indebted to Stefan Tohaneanu for pointing out his paper [32], which provided the inspiration to generalize the homological arguments in [15]. The current work would not be possible without the collaboration of Chris Francisco, Jeff Mermin, Jay Schweig, and Max Wakefield on previous papers [13, 14]. Takuro Abe has been a consistent source of inspiring discussions and many patient explanations via e-mail. Computations in the computer algebra system Macaulay2 [19] were very useful at all stages of research.

1.1. **Examples.** In this section we illustrate results which can be obtained by applying the homological criterion for freeness (Theorem 1.1). The three examples in this section are TF_2 arrangements, the definition and analysis of which appears in § 6.

Example 1.2. Consider the line arrangement $\mathcal{A}(\alpha, \beta)$ defined by $xyz(x - \alpha z)(x - \beta z)(y-z)$ where $\alpha, \beta \in \mathbb{K}$. See Figure 1 for a projective picture of this arrangement over \mathbb{R} . Clearly if $\alpha \neq \beta, \alpha \neq 0$, and $\beta \neq 0$, then the intersection lattice $L(\mathcal{A}(\alpha, \beta))$ does not change. In fact, the arrangements $\mathcal{A}(\alpha, \beta)$ with $\alpha \neq \beta, \alpha \neq 0$, and $\beta \neq 0$ comprise the moduli space of this lattice (see Appendix A for a brief summary of the moduli space of a lattice). It is easily checked that $\mathcal{A}(\alpha, \beta)$ is supersolvable.

We will see in Theorem 6.6 that the freeness of the multi-arrangement $(\mathcal{A}(\alpha, \beta), \mathbf{m})$ can be determined if the exponents of the rank two sub multi-arrangements are known. Write $\mathbf{m}(x), \mathbf{m}(y), \ldots$ for the multiplicity assigned to, respectively, $x = 0, y = 0, \ldots$ There are two rank-two sub multi-arrangements of $(\mathcal{A}(\alpha, \beta), \mathbf{m})$ defined by

$$\tilde{X}_1 = y^{\mathbf{m}(y)} z^{\mathbf{m}(z)} (y-z)^{\mathbf{m}(y-z)} \text{ and } \tilde{X}_2 = x^{\mathbf{m}(x)} z^{\mathbf{m}(z)} (x-\alpha z)^{\mathbf{m}(x-\alpha z)} (x-\beta z)^{\mathbf{m}(x-\beta z)}.$$

In Example 6.8, we deduce from Theorem 6.6 that $(\mathcal{A}(\alpha, \beta), \mathbf{m})$ is free if and only if either \tilde{X}_1 or \tilde{X}_2 has $\mathbf{m}(z)$ as an exponent. This property is sensitive to the characteristic of \mathbb{K} ; we will assume in the remainder of this example that \mathbb{K} has characteristic zero.

Write $M_1 = \mathbf{m}(y) + \mathbf{m}(z) + \mathbf{m}(y-z)$ and $M_2 = \mathbf{m}(x) + \mathbf{m}(z) + \mathbf{m}(x-\alpha z) + \mathbf{m}(x-\beta z)$. If \mathbb{K} has characteristic zero, the exponents of the multi-arrangement \tilde{X}_1 are known [33]; $\mathbf{m}(z)$ is an exponent if and only if $M_1 \leq 2\mathbf{m}(z) + 1$. So we assume $M_1 > 2\mathbf{m}(z) + 1$ and determine when \tilde{X}_2 has an exponent of $\mathbf{m}(z)$.

It is not difficult to show that if $\mathbf{m}(z)$ is an exponent of \tilde{X}_2 , then $\mathbf{m}(z) = \max{\{\mathbf{m}(x), \mathbf{m}(z), \mathbf{m}(x - \alpha z), \mathbf{m}(x - \beta z)\}}$ (see Lemma B.2). From [34] it is known that $\mathbf{m}(z)$ is an exponent of \tilde{X}_2 if $M_2 \leq 2\mathbf{m}(z) + 1$. Moreover it follows from [3, Theorem 1.6] that $\mathbf{m}(z)$ is not an exponent of \tilde{X}_2 if $M_2 > 2 + 2\mathbf{m}(z)$ (this also requires that \mathbb{K} has characteristic zero). However if $M_2 = 2 + 2\mathbf{m}(z)$ then it is only

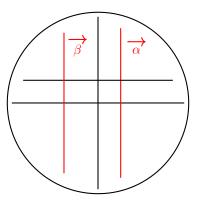


FIGURE 1. A projective picture emphasizing the moduli in Example 1.2

known that $\mathbf{m}(z)$ is not an exponent of \tilde{X}_2 for generic choices of α and β (at least if $\mathbb{K} = \mathbb{C}$ [34]).

To see what can happen if $M_2 = 2 + 2\mathbf{m}(z)$, consider the multi-arrangement $(\mathcal{A}(\alpha, \beta), \mathbf{m})$ defined by

$$x^{3}y^{3}z^{3}(x-\alpha z)(x-\beta z)(y-z)^{3}.$$

Then $\tilde{X}_1 = x^3 y^3 (y-z)^3$ and $\tilde{X}_2 = x^3 z^3 (x-\alpha z)(x-\beta z)$. The exponents of \tilde{X}_1 are (4,5), while the exponents of \tilde{X}_2 are (4,4) if $\alpha \neq -\beta$ and (3,5) if $\alpha = -\beta$ (see [40] or Lemma B.1). By Theorem 6.6, $(\mathcal{A}(\alpha,\beta),\mathbf{m})$ is free if and only if $\alpha = -\beta$.

As a consequence, we see that for a fixed multiplicity \mathbf{m} the free multi-arrangements $(\mathcal{A}, \mathbf{m})$ in the moduli space of $L(\mathcal{A})$ can form a non-empty proper Zariski closed subset, even when \mathcal{A} is supersolvable over a field of characteristic zero. In contrast, Yuzvinsky has shown that free arrangements form a Zariski open subset of the moduli space of $L(\mathcal{A})$ [39].

Example 1.3. Let $\mathcal{A}(\alpha, \beta)$ be the arrangement with defining polynomial $\mathcal{Q}(\mathcal{A}(\alpha, \beta)) = xyz(x-\alpha y)(x-\beta y)(y-z)(x-z)$, where $\alpha, \beta \in \mathbb{K}$. See Figure 2 for a projective drawing of this arrangement over \mathbb{R} . It is straightforward to show that if $\alpha \neq 1, \beta \neq 1$, and $\alpha \neq \beta$, then the lattice $L(\mathcal{A}(\alpha, \beta))$ does not change. Just as in Example 1.2, these arrangements comprise the moduli space of this lattice. It is easily checked that $\mathcal{A}(\alpha, \beta)$ is not free for any choice of α, β since its characteristic polynomial does not factor.

We will see in Theorem 6.10 that if K has characteristic 0, the multi-arrangement $(\mathcal{A}(\alpha,\beta),\mathbf{m})$ is free if and only if its defining equation has the form

$$\mathcal{Q}(\mathcal{A}, \mathbf{m}) = x^n y^n z^n (x - \alpha y) (x - \beta y) (y - z) (x - z),$$

where n > 1 is an integer and $\alpha^{n-1} = \beta^{n-1} \neq 1$. In particular, if α/β is not a root of unity in \mathbb{K} , then \mathcal{A} is totally non-free, meaning it does not admit any free multiplicities. For instance, if $\mathbb{K} = \mathbb{R}$, then \mathcal{A} admits a free multiplicity if and only if $\alpha = -\beta$ (precisely when n > 1 is odd). Since the arrangements $\mathcal{A}(\alpha, \beta)$ with $\alpha \neq 1, \beta \neq 1$, and $\alpha \neq \beta$ all have the same intersection lattice, this shows that the property of being totally non-free is not combinatorial. In contrast, Abe, Terao, and Yoshinaga have shown that the property of being totally free is combinatorial [8].

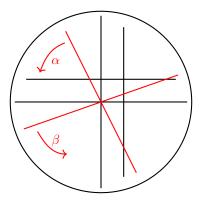


FIGURE 2. A projective picture emphasizing the moduli in Example 1.3

Example 1.4. Let $S = \mathbb{K}[x_0, \ldots, x_r]$ and let $\mathcal{A} \subset \mathbb{K}^{r+1}$ be the arrangement defined by

$$\mathcal{Q}(\mathcal{A}) = x_0 \left(\prod_{i=1}^r (x_i^2 - x_0^2) \right) (x_1 - x_2) \cdots (x_{r-1} - x_r) (x_r + x_1)$$

Let H be the hyperplane defined by x_0 . In Proposition 6.12, we will show that \mathcal{A} is free using Yoshinaga's theorem [35] and Theorem 6.10. Moreover, we will prove that $p\dim(D(\mathcal{A}^H)) = r - 3$, the largest possible. In fact, we will show more: the minimal free resolution of $D(\mathcal{A}^H)$ is a truncated and shifted Koszul complex, so it is linear. As with the previous two examples, the key to our analysis is that the restriction \mathcal{A}^H is a TF_2 arrangement, which is particularly well suited to the homological methods we introduce in this paper.

This family of examples is interesting because it adds to a short list of arrangements known to fail Orlik's conjecture. This conjecture states that \mathcal{A}^H is free whenever \mathcal{A} is free [22]. The only counterexamples to this conjecture of which we are aware appear in work of Edelman and Reiner [16, 17]. For the small ranks that we have been able to compute, our examples differ from theirs in that $D(\mathcal{A}^H)$ for the examples of Edelman and Reiner seems to be always 'almost free' - that is $D(\mathcal{A}^H)$ has only one more generator than the rank of \mathcal{A}^H and there is only a single relation among these generators. This latter behavior has been studied in a recent article of Abe [1].

2. Preliminaries

Fix a field K, let V be a K-vector space of dimension ℓ , and V^* the dual vector space. Set $S = \text{Sym}(V^*)$, the symmetric algebra on V^* . A hyperplane arrangement $\mathcal{A} \subset V$ is a union of hyperplanes H defined by the vanishing of the affine linear form $\alpha_H \in V^*$; the defining polynomial of \mathcal{A} is $\mathcal{Q}(\mathcal{A}) = \prod_{H \in \mathcal{A}} \alpha_H$. We will consistently abuse notation and write $H \in \mathcal{A}$ if H is one of the hyperplanes whose union forms \mathcal{A} . Moreover, we will write $|\mathcal{A}|$ for the number of hyperplanes in \mathcal{A} .

The rank of a hyperplane arrangement $\mathcal{A} \subset V$ is $r = r(\mathcal{A}) := \dim V - \dim(\cap_{H \in \mathcal{A}} H)$. The arrangement $\mathcal{A} \subset V$ is called *essential* if $r(\mathcal{A}) = \dim V$ and *central* if $\cap_i H_i \neq \emptyset$. We will always assume \mathcal{A} is a central hyperplane arrangement. We refer the reader to the landmark book of Orlik and Terao [23] for further details on arrangements.

6 A HOMOLOGICAL CHARACTERIZATION FOR FREENESS OF MULTI-ARRANGEMENTS

The intersection lattice $L = L(\mathcal{A})$ of \mathcal{A} is the lattice whose elements (flats) are all possible intersections of the hyperplanes of \mathcal{A} , ordered with respect to reverse inclusion. We will use < to denote the ordering on the lattice, so if $X, Y \in L(\mathcal{A})$ and $X \subseteq Y$ as intersections, then $Y \leq X$ in $L(\mathcal{A})$. This is a ranked lattice with rank function the codimension of the flat; we denote by $L_i = L_i(\mathcal{A})$ the flats $X \in L(\mathcal{A})$ with rank *i*. Given a flat $X \in L(\mathcal{A})$, the (closed) subarrangement \mathcal{A}_X is the hyperplane arrangement of those hyperplanes of \mathcal{A} which contain X, and the *restriction* of \mathcal{A} to X, denoted \mathcal{A}^X , is the hyperplane arrangement (in linear space corresponding to X) with hyperplanes $\{H \cap X : H \not\leq X \text{ in } L(\mathcal{A})\}$. If X < Y, the interval $[X, Y] \subset L(\mathcal{A})$ is the sub-lattice of all flats $Z \in L$ so that $X \leq Z \leq Y$. This is the intersection lattice of the arrangement \mathcal{A}_X^Y .

If $\mathcal{A} \subset V_1$ and $\mathcal{B} \subset V_2$ are two arrangements, then the product of \mathcal{A} and \mathcal{B} is the arrangement

$$\mathcal{A} \times \mathcal{B} = \{ H \oplus V_2 : H \in \mathcal{A} \} \cup \{ V_1 \oplus H' : H' \in \mathcal{B} \},\$$

and the arrangements \mathcal{A}, \mathcal{B} are *factors* of $\mathcal{A} \times \mathcal{B}$. If an arrangement can be written as a product of two arrangements we say it is *reducible*, otherwise we call it *irreducible*. (Notice that an arrangement is not essential if and only if it has the empty arrangement as a factor).

If $\mathcal{A} \subset V$ is an arrangement the module of derivations of \mathcal{A} , denoted $D(\mathcal{A})$, is defined by

$$D(\mathcal{A}) = \{ \theta \in \operatorname{Der}_{\mathbb{K}}(S) | \theta(\alpha_H) \in \langle \alpha_H \rangle \text{ for all } H \in \mathcal{A} \}.$$

If $D(\mathcal{A})$ is free as an S-module, we say \mathcal{A} is free.

Definition 2.1. A multi-arrangement $(\mathcal{A}, \mathbf{m})$ is an arrangement $\mathcal{A} \subset V$, along with a function $\mathbf{m} : \mathcal{A} \to \mathbb{Z}_{>0}$ assigning a positive integer to every hyperplane. The *defining polynomial* of a multi-arrangement $(\mathcal{A}, \mathbf{m})$ is $\mathcal{Q}(\mathcal{A}, \mathbf{m}) := \prod_{H \in \mathcal{A}} \alpha_H^{\mathbf{m}(H)}$. The module of multi-derivations $D(\mathcal{A}, \mathbf{m})$ is

$$D(\mathcal{A}, \mathbf{m}) = \{ \theta \in \operatorname{Der}_{\mathbb{K}}(S) | \theta(\alpha_H) \in \langle \alpha_H^{\mathbf{m}(H)} \rangle \text{ for all } H \in \mathcal{A} \}$$

Lemma 2.2. Let $(\mathcal{A}, \mathbf{m})$ be a multi-arrangement in $V \cong \mathbb{K}^{\ell}$. Let α_i be the form defining the hyperplane H_i , and set $m_i = \mathbf{m}(H_i)$. The module $D(\mathcal{A}, \mathbf{m})$ of multi-derivations on \mathcal{A} is isomorphic to the kernel of the map

$$\psi: S^{\ell+d} \to S^d,$$

where ψ is the matrix

$$\begin{pmatrix} & \alpha_1^{m_1} & & \\ & & \ddots & \\ & & & \alpha_k^{m_k} \end{pmatrix}$$

and B is the matrix with entry $B_{ij} = a_{ij}$, where $\alpha_j = \sum_{i,j} a_{ij} x_i$.

Proof. See the comments preceding [11, Theorem 4.6].

If $D(\mathcal{A}, \mathbf{m})$ is free as an S-module then we say that the multi-arrangement $(\mathcal{A}, \mathbf{m})$ is free and \mathbf{m} is a *free multiplicity* of \mathcal{A} . If $D(\mathcal{A}, \mathbf{m})$ is free there is (by definition) a *basis* of derivations $\theta_1, \ldots, \theta_\ell \in D(\mathcal{A}, \mathbf{m})$ so that every other $\theta \in D(\mathcal{A}, \mathbf{m})$ can be written uniquely as a polynomial combination of $\theta_1, \ldots, \theta_\ell$. If \mathcal{A} is central (which we will assume throughout), we may assume these derivations are homogeneous with degrees $d_i = \deg(\theta_i)$. The set (d_1, \ldots, d_ℓ) are called the *exponents* of $D(\mathcal{A}, \mathbf{m})$. We

will always assume $d_1 \ge d_2 \ge \cdots \ge d_\ell$. Write $|\mathbf{m}|$ for $\sum_{H \in \mathcal{A}} \mathbf{m}(H)$. It follows from Saito's criterion (below) that if $D(\mathcal{A}, \mathbf{m})$ is free with exponents (d_1, \ldots, d_ℓ) then $\sum_{i=1}^{\ell} d_i = |\mathbf{m}|$.

Proposition 2.3 (Saito's criterion). Let $(\mathcal{A}, \mathbf{m})$ be a central arrangement in a vector space V of dimension ℓ , and write $\mathbb{K}[x_1, \ldots, x_\ell]$ for $Sym(V^*)$. Suppose $\theta_1, \ldots, \theta_\ell$ are derivations with $\theta_i = \sum_{j=1}^{\ell} \theta_{ij} \frac{\partial}{\partial x_i}$. Write $M = M(\theta_1, \ldots, \theta_\ell)$ for the $\ell \times \ell$ matrix of coefficients $M_{ij} = \theta_{ij}$. Then $D(\mathcal{A}, \mathbf{m})$ is free with basis $\theta_1, \ldots, \theta_\ell$ if and only if det(M) is a scalar multiple of the defining polynomial $\mathcal{Q}(\mathcal{A}, \mathbf{m})$.

If $X \in L(\mathcal{A})$, we write $(\mathcal{A}_X, \mathbf{m}_X)$ for the multi-arrangement \mathcal{A}_X with multiplicity function $\mathbf{m}_X = \mathbf{m}|_{\mathcal{A}_X}$. If $(\mathcal{A}_X, \mathbf{m}_X)$ is free for every $X \neq \bigcap_{H \in \mathcal{A}} H \in L$, then we say $(\mathcal{A}, \mathbf{m})$ is *locally free*; equivalently the associated sheaf $D(\mathcal{A}, \mathbf{m})$ is a vector bundle on $\mathbb{P}^{\ell-1}$.

Proposition 2.4. [5, Proposition 1.7] Let $(\mathcal{A}, \mathbf{m})$ be a multi-arrangement, $X \in L(\mathcal{A})$, and $(\mathcal{A}_X, \mathbf{m}_X)$ the corresponding closed subarrangement with restricted multiplicities. Then $pdim(D(\mathcal{A}, \mathbf{m})) \geq pdim(D(\mathcal{A}_X, \mathbf{m}_X))$.

Lemma 2.5 (Ziegler [40]). For any arrangement $\mathcal{A} \subset V$, $pdim(D(\mathcal{A}, \mathbf{m})) \leq r(\mathcal{A}) - 2$. In particular, if $r(\mathcal{A}) \leq 2$ then $(\mathcal{A}, \mathbf{m})$ is free.

If \mathcal{A} is an arrangement and $H \in \mathcal{A}$, we denote by $(\mathcal{A}^H, \mathbf{m})$ the Ziegler restriction of \mathcal{A} to \mathcal{A}^H ; this is the arrangement \mathcal{A}^H with the multiplicity function \mathbf{m}^H defined by

$$\mathbf{m}^{H}(X) = \#\{H' \in \mathcal{A} : H' \cap H = X\}$$

for every $X \in \mathcal{A}^H$. We include the following criterion for freeness which is due to Yoshinaga [35]; the observation that we can restrict to codimension three was made in [9, Theorem 4.1].

Theorem 2.6. [35, Theorem 2.2] An arrangement \mathcal{A} over a field of characteristic zero is free if and only if, for some $H \in \mathcal{A}$:

- (1) $(\mathcal{A}^H, \mathbf{m}^H)$ is free and
- (2) \mathcal{A}_X is free for every $X \neq 0 \in L_3(\mathcal{A})$ so that H < X.

The second condition is sometimes stated as ' \mathcal{A} is locally free along H in codimension three.'

3. The homological criterion

Let $(\mathcal{A}, \mathbf{m})$ be a multi-arrangement. In this section we prove Theorem 1.1; we describe the chain complex $\mathcal{D}^{\bullet}(\mathcal{A}, \mathbf{m})$ and prove that $(\mathcal{A}, \mathbf{m})$ is free if and only if $H^i(\mathcal{D}^{\bullet}(\mathcal{A}, \mathbf{m})) = 0$ for all i > 0. The construction of the modules which comprise $\mathcal{D}^{\bullet}(\mathcal{A}, \mathbf{m})$ is due to Brandt and Terao if $\mathbf{m} \equiv 1$ [31, 12]; we make the straightforward observation that the same definitions work also for multi-arrangements. We follow the presentation given in [12].

Definition 3.1. Set $D_0(\mathcal{A}, \mathbf{m}) = D(\mathcal{A}, \mathbf{m})$ and for $1 \le k \le r = r(\mathcal{A})$ inductively define $D_k(\mathcal{A}, \mathbf{m})$ and $K_k(\mathcal{A}, \mathbf{m})$ as the cokernel and kernel, respectively of the map

$$\tau_{k-1} = \tau_{k-1}(\mathcal{A}) : D_{k-1}(\mathcal{A}, \mathbf{m}) \to \bigoplus_{X \in L_{k-1}} D_{k-1}(\mathcal{A}_X, \mathbf{m}_X),$$

where τ_k is a sum of maps $\phi_k(Y) : D_k(\mathcal{A}, \mathbf{m}) \to D_k(\mathcal{A}_Y, \mathbf{m}_Y)$. For $Y \in L$ with $r(Y) \ge k$, $\phi_k(Y)$ is defined inductively (the map for k = 0 is the usual inclusion of derivations) via the diagram in Figure 3: The center vertical map is projection, the

$$D_{k-1}(\mathcal{A}, \mathbf{m}) \xrightarrow{\tau_{k-1}(\mathcal{A})} \bigoplus_{X \in L_{k-1}} D_{k-1}(\mathcal{A}_X, \mathbf{m}_X) \longrightarrow D_k(\mathcal{A}, \mathbf{m}) \longrightarrow 0$$

$$\downarrow^{\phi_{k-1}(Y)} \qquad \qquad \downarrow^{p_{k-1}(Y)} \qquad \qquad \downarrow^{\phi_k(Y)}$$

$$D_{k-1}(\mathcal{A}_Y, \mathbf{m}_Y) \xrightarrow{\tau_{k-1}(\mathcal{A}_Y)} \bigoplus_{\substack{X \leq Y \\ r(X) = k-1}} D_{k-1}((\mathcal{A}_Y)_X, (\mathbf{m}_Y)_X) \longrightarrow D_k(\mathcal{A}_Y, \mathbf{m}_Y) \longrightarrow 0$$

FIGURE 3. Diagram for Definition 3.1

left-hand square commutes, so $\phi_k(Y)$ may be defined so that the right-hand square commutes.

Remark 3.2. Given an arrangement \mathcal{A} , the only flat of L with rank 0 is V, the ambient space of \mathcal{A} . The module $D_1(\mathcal{A}, \mathbf{m})$ is the cokernel of the map

$$D_0(\mathcal{A},\mathbf{m}) \xrightarrow{\tau_0} \bigoplus_{X \in L_0} D_0(\mathcal{A}_X,\mathbf{m}),$$

in other words the cokernel of the inclusion

$$D(\mathcal{A}, \mathbf{m}) \to D(V) = \operatorname{Der}_{\mathbb{K}}(S) \cong S^{\ell},$$

where $\ell = \dim(V)$.

Remark 3.3. Fix a basis x_1, \ldots, x_ℓ for $S_1 = \text{Sym}(V^*)_1$ and denote the corresponding basis of $\text{Der}_{\mathbb{K}}(S)$ by $\partial_i = \partial/\partial x_i$. Number the hyperplanes of \mathcal{A} by H_1, \ldots, H_k . Assume $H_j = V(\alpha_j)$, where $\alpha_j = \alpha_{H_j} = \sum_i a_{ij} x_i$. For some $H = H_j \in \mathcal{A}$ let $\partial_H = \sum_i a_{ij} \partial_i$.

For $H \in \mathcal{A}$, let $J(H) = \langle \alpha_H^{\mathbf{m}(H)} \rangle$, the ideal generated by $\alpha_H^{\mathbf{m}(H)}$ in S. Then $D(\mathcal{A}_H, \mathbf{m}_H) \subset \operatorname{Der}_{\mathbb{K}}(S)$ is isomorphic to $J(H)\partial_H \oplus S^{\ell-1}$, where $\ell = \dim(V)$ and $J(H)\partial_H$ denotes that J(H) is living inside of the copy of S corresponding to the basis element ∂_H . So $D_1(\mathcal{A}_H, \mathbf{m}_H)$ is the cokernel of the inclusion $D(\mathcal{A}_H, \mathbf{m}_H) \to \operatorname{Der}_{\mathbb{K}}(S) \cong S^{\ell}$, which may be identified as $S\partial_H/J(H)$. There is then a natural map

$$\operatorname{Der}_{\mathbb{K}}(S) \cong S^{\ell} \xrightarrow{B} \bigoplus_{H \in \mathcal{A}} \frac{S}{J(H)} = \bigoplus_{X \in L_1} D_1(\mathcal{A}_X, \mathbf{m}_X),$$

where B is the matrix with entries $B_{ij} = a_{ij}$. The kernel of this map is $D(\mathcal{A}, \mathbf{m})$, its image is $D_1(\mathcal{A}, \mathbf{m})$, and its cokernel is $D_2(\mathcal{A}, \mathbf{m})$.

Remark 3.4. We will discuss computations of $D_k(\mathcal{A}, \mathbf{m})$ further in § 5.

Extending Remark 3.3, we assemble the modules $\bigoplus_{X \in L_k} D_k(\mathcal{A}_X, \mathbf{m}_X)$ into a chain complex.

Definition 3.5. Set $\mathcal{D}^k = \bigoplus_{X \in L_k} D_k(\mathcal{A}_X, \mathbf{m}_X)$. Define $\delta^k : \mathcal{D}^k \to \mathcal{D}^{k+1}$ by the composition $\mathcal{D}^k \to D_{k+1}(\mathcal{A}, \mathbf{m}) \xrightarrow{\tau_{k+1}} \mathcal{D}^{k+1}$, where the first map is the natural surjection from Definition 3.1. The derivation complex $\mathcal{D}^{\bullet} = \mathcal{D}^{\bullet}(\mathcal{A}, \mathbf{m})$ is the chain

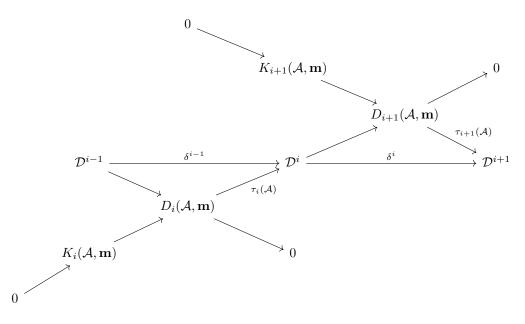


FIGURE 4. Components of Definition 3.5

complex with modules \mathcal{D}^k for $k = 0, \ldots, r(\mathcal{A})$ and maps $\delta^k : \mathcal{D}^k \to \mathcal{D}^{k+1}$ for $k = 0, \ldots, r(\mathcal{A}) - 1$.

Remark 3.6. The derivation complex \mathcal{D}^{\bullet} is tautologically a complex from the definitions of $D_k(\mathcal{A}, \mathbf{m})$ and δ^k . The commutative diagram in Figure 4 shows how all the definitions so far fit together. Note that $K_i(\mathcal{A}, \mathbf{m})$ from Definition 3.1 may be identified with $H^i(\mathcal{D}^{\bullet})$.

Remark 3.7. The chain complex \mathcal{D}^{\bullet} in Definition 3.5 is essentially dual to a chain complex described in [32]; we will describe the precise connection in § 4.

Lemma 3.8. For a multi-arrangement $(\mathcal{A}, \mathbf{m}), H^0(\mathcal{D}^{\bullet}(\mathcal{A}, \mathbf{m})) \cong D(\mathcal{A}, \mathbf{m}).$

Proof. This is immediate from Remark 3.3.

Now we proceed to the proof of Theorem 1.1. We use a few preliminary results.

Lemma 3.9. [12, Lemma 4.12] For any k, the functors $X \to D_k(\mathcal{A}_X, \mathbf{m}_X)$ for $X \in L$ are local in the sense of [29, Definition 6.4]. Namely let $P \in Spec(S)$, $X \in L$, and set $X(P) = \bigcap_{H \in \mathcal{A}_{\underline{X}}} H$. Then

•
$$D_k(\mathcal{A}_X, \mathbf{m}_X)_P = D_k(\mathcal{A}_{X(P)}, \mathbf{m}_{X(P)})_P$$
 and

• $\mathcal{D}^{\bullet}(\mathcal{A},\mathbf{m})_{P} = \mathcal{D}^{\bullet}(\mathcal{A}_{X(P)},\mathbf{m}_{X(P)})_{P}$.

Proof. For the first bullet, use the fact that $X \to D(\mathcal{A}_X, \mathbf{m})$ is local, the short exact sequences in Definition 3.1, and the fact that localization is an exact functor. The second bullet follows from the first.

Proposition 3.10. Let $X \in L_k$ and $I(X) \subset S$ denote the ideal generated by the linear forms α_H for all $H \leq X$. Then $D_k(\mathcal{A}_X, \mathbf{m}_X)$ is Cohen-Macaulay of codimension k and I(X) is its only associated prime.

Remark 3.11. Proposition 3.10 is implicit in the proof of [12, Proposition 4.13]; we provide a proof for completeness.

Proof. As usual, set $\ell = \dim(V)$. By changing coordinates, we may assume $X = V(x_1, \ldots, x_k)$. The result is clear if k = 0 or k = 1, so we assume $k \ge 2$. Let $\pi_X : V \to X^{\perp} = W$ be the projection with center X and set $R = \operatorname{Sym}(W^*) \cong \mathbb{K}[x_{k+1}, \ldots, x_\ell]$. Then we observe that

- $\mathcal{A}^{\pi} = \pi_X(\mathcal{A}_X)$ is an essential arrangement in W of rank $\ell k = \dim W$,
- $D_k(\mathcal{A}^{\pi}, \mathbf{m}_X) \otimes_R S = D_k(\mathcal{A}_X, \mathbf{m}_X),$
- $x_{k+1}, \ldots, x_{\ell}$ is a regular sequence on $D_k(\mathcal{A}_X, \mathbf{m}_X)$,
- $D_k(\mathcal{A}_X, \mathbf{m}_X)/\langle x_{k+1}, \dots, x_\ell \rangle D_k(\mathcal{A}_X, \mathbf{m}_X) \cong D_k(\mathcal{A}^{\pi}, \mathbf{m}_X),$
- and $\operatorname{Ass}(D_k(\mathcal{A}_X, \mathbf{m}_X)) = \{PS | P \in \operatorname{Ass}(D_k(\mathcal{A}^{\pi}, \mathbf{m}_X))\},\$

where the final bullet point follows from [21, Theorem 23.2], which describes behavior of associated primes under flat extensions. Hence it suffices to show that the only associated prime of $D_k(\mathcal{A}, \mathbf{m})$ when $k = r(\mathcal{A}) = \dim V$ is the maximal ideal of S. Consider the short exact sequence

$$0 \to D_{k-1}(\mathcal{A}, \mathbf{m}) \to \mathcal{D}^{k-1} = \bigoplus_{X \in L_{k-1}} D_{k-1}(\mathcal{A}_X, \mathbf{m}_X) \to D_k(\mathcal{A}, \mathbf{m}) \to 0$$

from Definition 3.1, and localize at a prime $P \in \text{Spec}(S)$. If $\operatorname{codim}(P) \leq k-1$, then by induction either \mathcal{D}_P^{k-1} vanishes (in which case $D_k(\mathcal{A}, \mathbf{m})_P = 0$) or P = I(X)for some $X \in L$ of codimension k-1 and $\mathcal{D}_P^{k-1} = D_{k-1}(\mathcal{A}_X, \mathbf{m}_X)_P$. In the latter case, localizing the exact sequence above at P = I(X) and using Lemma 3.9 yields the exact sequence

$$0 \to D_{k-1}(\mathcal{A}_X, \mathbf{m}_X)_{I(X)} \to D_{k-1}(\mathcal{A}_X, \mathbf{m}_X)_{I(X)} \to D_k(\mathcal{A}, \mathbf{m})_{I(X)} \to 0,$$

so clearly $D_k(\mathcal{A}, \mathbf{m})_{I(X)} = 0$. Hence the only prime in the support of $D_k(\mathcal{A}, \mathbf{m})$ is the homogeneous maximal ideal.

Proof of Theorem 1.1. By Lemma 3.8, $D(\mathcal{A}, \mathbf{m}) \cong H^0(\mathcal{D}^{\bullet}(\mathcal{A}, \mathbf{m}))$. Now we use the following result of Schenck and Stiller (see also [25]).

Theorem 3.12. [28, Theorem 3.4] Suppose $C^{\bullet} = 0 \rightarrow C^0 \rightarrow C^1 \rightarrow C^2 \rightarrow \cdots \rightarrow C^t \rightarrow 0$ is a complex of $S = \mathbb{K}[x_1, \dots, x_\ell]$ -modules so that, for $k = 0, \dots, t$,

- C^k is Cohen-Macaulay of codimension k
- $H^k(\mathcal{C}^{\bullet})$ is supported in codimension $\geq k+2$.

Then $H^0(C^{\bullet})$ is free if and only if $H^k(C^{\bullet}) = 0$ for k > 0 and locally free if and only if $H^k(C^{\bullet})$ has finite length for k > 0.

By Proposition 3.10, $\mathcal{D}^k = \mathcal{D}^k(\mathcal{A}, \mathbf{m})$ is Cohen-Macaulay of codimension k. So we need to show that $H^k(\mathcal{D}^{\bullet})$ is supported in codimension at least k + 2. We use the fact that taking homology commutes with localization. So let P be a prime and consider the localized complex

$$\mathcal{D}^{\bullet}(\mathcal{A},\mathbf{m})_{P} = \cdots \to \mathcal{D}_{P}^{k-1} \xrightarrow{\delta_{P}^{k-1}} \mathcal{D}_{P}^{k} \xrightarrow{\delta_{P}^{k}} \mathcal{D}_{P}^{k+1} \to \cdots$$

If $\operatorname{codim}(P) \leq k$, then we have seen in the proof of Proposition 3.10 that the localized map δ_P^{k-1} becomes an isomorphism, hence $H^k(\mathcal{D}^{\bullet})_P = H^k(\mathcal{D}_P^{\bullet}) = 0$. Now suppose $\operatorname{codim}(P) = k + 1$. If $P \neq I(X)$ for some $X \in L$ of codimension k + 1, then let $X \in L_i$ $(i \leq k)$ be the flat of maximal rank so that $I(X) \subset P$. If $r(X) \leq k-1$ then $H^k(\mathcal{D}_P^{\bullet}) = 0$ by Proposition 3.10. So suppose X has codimension k. Then the localized map δ_P^{k-1} becomes an isomorphism again as in the proof of Proposition 3.10.

Finally suppose P = I(X) for some $X \in L_{k+1}$. Localizing yields

1. 1

$$\bigoplus_{\substack{Y \ge X \\ \cdot (Y) = k-1}} D_{k-1}(\mathcal{A}_Y, \mathbf{m}_Y)_P \xrightarrow{\delta_P^{k-1}} \bigoplus_{\substack{Z \ge X \\ r(Z) = k}} D_k(\mathcal{A}_Z, \mathbf{m}_Z)_P \xrightarrow{\delta_P^k} D_{k+1}(\mathcal{A}_X, \mathbf{m}_X)_P.$$

By definition δ^{k-1} factors through $D_k(\mathcal{A}, \mathbf{m})$. Hence $H^k(\mathcal{D}^{\bullet})_P$ is the middle homology of the three term complex

$$0 \to D_k(\mathcal{A}_X, \mathbf{m}_X)_P \xrightarrow{(\tau_k)_P} \bigoplus_{\substack{Z \ge X \\ r(Z) = k}} D_k(\mathcal{A}_Z, \mathbf{m}_Z)_P \xrightarrow{\delta_P^k} D_{k+1}(\mathcal{A}_X, \mathbf{m}_X)_P \to 0,$$

which is exact by Definition 3.1. It follows that $H^k(\mathcal{D}^{\bullet})$ is supported in codimension $\geq k+2$.

Remark 3.13. In the case of a simple arrangement, the forward implication of Theorem 1.1 follows from [12, Proposition 4.13].

Theorem 3.12 arises from a studying the hyperExt modules of $\mathcal{D}^{\bullet}(\mathcal{A}, \mathbf{m})$. Without the vanishing assumptions we may obtain the following.

Proposition 3.14. Set $p_i = pdim(H^i(\mathcal{D}^{\bullet}(\mathcal{A}, \mathbf{m})))$ for i > 0. Then $pdim(D(\mathcal{A}, \mathbf{m})) \leq \max_{i>0} \{p_i - i - 1\},$

with equality if there is a single i > 0 for which $H^i(\mathcal{D}^{\bullet}(\mathcal{A}, \mathbf{m})) \neq 0$.

Proof. See [25, Lemma 4.11] or [15, § 3].

3.1. A combinatorial bound on projective dimension. We close this section by extending a combinatorial bound on projective dimension due to Kung and Schenck for simple arrangements [20, Corollary 2.3]. Recall that a generic arrangement of rank ℓ is one in which the intersection of every subset of $k \leq \ell$ hyperplanes has codimension k.

Corollary 3.15. Let $(\mathcal{A}, \mathbf{m})$ be a multi-arrangement. If \mathcal{A}_X is generic with $|\mathcal{A}_X| > r(X)$, then $pdim(D(\mathcal{A}, \mathbf{m})) \ge r(X) - 2$. In particular, if the matroid of \mathcal{A} has a closed circuit of length m, then $pdim(D(\mathcal{A}, \mathbf{m})) \ge m - 3$.

Proof. If $r(\mathcal{A}) = 2$ the statement is trivial so we will assume $r(\mathcal{A}) > 2$. Suppose \mathcal{A}_X is generic with $|\mathcal{A}_X| > r(X)$. By Proposition 2.4, it suffices to show that $pdim(D(\mathcal{A}_X, \mathbf{m}_X)) \ge r(X) - 2$. So we assume $\mathcal{A} = \mathcal{A}_X$ is essential and generic of rank r with $|\mathcal{A}| > r$ and prove $pdim(D(\mathcal{A}, \mathbf{m})) = r - 2$.

In this case we claim the chain complex $\mathcal{D}^{\bullet}(\mathcal{A}, \mathbf{m})$ has the form $S^r \xrightarrow{\delta^0} \bigoplus_{H \in \mathcal{A}} \frac{S}{J(H)}$, where $J(H) = \langle \alpha_H^{\mathbf{m}(H)} \rangle$. That $\mathcal{D}^0 = S^r$ and $\mathcal{D}^1 = \bigoplus_{H \in \mathcal{A}} S/J(H)$ follows from the definition of \mathcal{D}^{\bullet} and Remark 3.3. To prove that $\mathcal{D}^k = 0$ for k > 1, it suffices to show that $D_2(\mathcal{A}_Y, \mathbf{m}_Y) = 0$ for all $Y \in L_2$. We have

$$D_2(\mathcal{A}_Y, \mathbf{m}_Y) = \operatorname{coker}\left(S^r \xrightarrow{\delta^0_Y} \bigoplus_{H \in \mathcal{A}_Y} \frac{S}{J(H)}\right).$$

Since \mathcal{A} is generic, the set $\{\alpha_H : H \in \mathcal{A}_Y\}$ consists of r(Y) linearly independent forms and the coefficient matrix δ_Y^1 has full rank. So $D_2(\mathcal{A}_Y, \mathbf{m}_Y) = 0$.

It follows that $H^1(\mathcal{D}^{\bullet}(\mathcal{A}, \mathbf{m})) = \operatorname{coker}(\delta^0)$. Since $|\mathcal{A}| > r$, we see that δ^0 cannot be surjective, so $H^1(\mathcal{D}^{\bullet}(\mathcal{A}, \mathbf{m})) \neq 0$. We show that $H^1(\mathcal{D}^{\bullet})$ is only supported at the maximal ideal. To this end, let $P \in \operatorname{spec}(S)$ be a prime of codimension $k \leq r - 1$. Write $X(P) = \bigcap_{\substack{H \in \mathcal{A}_X \\ \alpha_H \in P}} H$. Since \mathcal{A} is generic, $\{\alpha_H : \alpha_H \in P\}$ consists of at most

k linearly independent forms, so up to a change of coordinates $\mathcal{A}_{X(P)}$ is union of coordinate hyperplanes. By Lemma 3.9, $\mathcal{D}^{\bullet}(\mathcal{A}, \mathbf{m})_{P} \cong \mathcal{D}^{\bullet}(\mathcal{A}_{X(P)}, \mathbf{m}_{X(P)})_{P}$. The

chain complex $\mathcal{D}^{\bullet}(\mathcal{A}_{X(P)}, \mathbf{m}_{X(P)})$ has the form $S^r \xrightarrow{\delta^0_{X(P)}} \bigoplus_{H \in \mathcal{A}_{X(P)}} \frac{S}{J(H)}$, and $\delta^0_{X(P)}$

is clearly surjective, so

$$H^1(\mathcal{D}^{\bullet}(\mathcal{A},\mathbf{m}))_P \cong H^1(\mathcal{D}^{\bullet}(\mathcal{A},\mathbf{m})_P) \cong H^1(\mathcal{D}^{\bullet}(\mathcal{A}_{X(P)},\mathbf{m}_{X(P)})_P) = 0$$

It follows that $H^1(\mathcal{D}^{\bullet}(\mathcal{A}, \mathbf{m}))$ is only supported at the maximal ideal. Since $H^1(\mathcal{D}^{\bullet}(\mathcal{A}, \mathbf{m})) \neq 0$, pdim $(H^1(\mathcal{D}^{\bullet})) = r$ and by Proposition 3.14, pdim $(D(\mathcal{A}, \mathbf{m})) = r - 2$, the maximal projective dimension.

Remark 3.16. Corollary 3.15 implies that generic arrangements are totally non-free; this was first proved by Yoshinaga [36].

Remark 3.17. Even for simple arrangements, the lower bound given by Corollary 3.15 may be arbitrarily far off from the actual projective dimension. See Remark 6.13.

4. Multi-arrangements and k-formality

In this section we will show that if $(\mathcal{A}, \mathbf{m})$ is a free multi-arrangement then \mathcal{A} is k-formal (in the sense of [12]) for $2 \leq k \leq r-1$, where $r = r(\mathcal{A})$ is the rank of \mathcal{A} (thus generalizing the result of Brandt and Terao [12] to multi-arrangements). Once we have set up the notation, this is an immediate corollary of Theorem 1.1.

We again follow the presentation in [12]. Fix an arrangement $\mathcal{A} = \bigcup_{H \in \mathcal{A}} V(\alpha_H) \subset V$. Set $E(\mathcal{A}) := \bigoplus_{H \in \mathcal{A}} e_H \mathbb{K}$ and define $\phi : E(\mathcal{A}) \to V^*$ by $\phi(e_H) = \alpha_H$. Put $F(\mathcal{A}) = \ker(\phi)$; this is called the *relation space* of \mathcal{A} .

The arrangement \mathcal{A} is 2-formal (or just formal) if the relation space is generated by relations among three linear forms. Since three linear forms are dependent if and only if they define a codimension two flat, 2-formality is equivalent to surjectivity of the map

$$\pi_2: \bigoplus_{X \in L_2} F(\mathcal{A}_X) \to F(\mathcal{A}),$$

where π_2 is the sum of natural inclusions $F(\mathcal{A}_X) \hookrightarrow F(\mathcal{A})$ for each $X \in L_2$.

Definition 4.1. Set $R_0 := T(\mathcal{A})^* \subset V^*$, where $T(\mathcal{A}) = \bigcap_{H \in \mathcal{A}} H$. For $1 \leq k \leq r$, recursively define $R_k(\mathcal{A})$ as the kernel of the map

$$\pi_{k-1} = \pi_{k-1}(\mathcal{A}) := \bigoplus_{X \in L_{k-1}} R_{k-1}(\mathcal{A}_X) \to R_{k-1}(\mathcal{A}),$$

where π_k is the sum of natural inclusions for $0 \le k \le r-1$. To simplify notation, set $\mathcal{R}_k = \mathcal{R}_k(\mathcal{A}) = \bigoplus_{X \in L_k} \mathcal{R}_k(\mathcal{A}_X)$.

Remark 4.2. After chasing through the definitions one can see that $R_1(\mathcal{A})$ is the kernel of the restriction map $V^* \to T(\mathcal{A})^*$ and $R_2(\mathcal{A}) = F(\mathcal{A})$. See [12] for details.

Definition 4.3. The arrangement \mathcal{A} is

- 2-formal if \mathcal{A} is formal
- k-formal, for $3 \le k \le r-1$, if \mathcal{A} is (k-1)-formal and the map $\pi_k : \mathcal{R}_k = \bigoplus_{X \in L_k} R_k(\mathcal{A}_X) \to R_k(\mathcal{A})$ is surjective.

In [32], Tohaneanu gives a homological formulation of k-formality as follows. First, notice that there is a natural differential $\delta_k : \mathcal{R}_k \to \mathcal{R}_{k-1}$ (similar to the differential for \mathcal{D}^{\bullet}) defined as the composition $\mathcal{R}_k \to \mathcal{R}_k(\mathcal{A}) \xrightarrow{\pi_{k-1}} \mathcal{R}_{k-1}$.

Lemma 4.4. [32, Lemma 2.5] With the differentials δ_k , $1 \leq k \leq r$, the vector spaces \mathcal{R}_i $(0 \leq k \leq r)$ form a chain complex $\mathcal{R}_{\bullet} = \mathcal{R}_{\bullet}(\mathcal{A})$. The arrangement \mathcal{A} is k-formal if and only if $H_i(\mathcal{R}_{\bullet}) = 0$ for $i = 1, \ldots, k - 1$.

Remark 4.5. If $\mathbf{m} \equiv 1$ (so $(\mathcal{A}, \mathbf{m})$ is a simple arrangement) we will denote $D_k(\mathcal{A}, \mathbf{m})$ (recall Definition 3.1) and $\mathcal{D}^{\bullet}(\mathcal{A}, \mathbf{m})$ (recall Definition 3.5) by $D_k(\mathcal{A})$ and $\mathcal{D}^{\bullet}(\mathcal{A})$, respectively.

Brandt and Terao show that the vector spaces $R_k(\mathcal{A})$ are dual to the degree zero part of $D_k(\mathcal{A})$.

Proposition 4.6. [12, Proposition 4.10] For $0 \le k \le r$, $D_k(\mathcal{A})_0 \cong R_k(\mathcal{A})^*$, where $R_k(\mathcal{A})^*$ is the K-vector space dual of $R_k(\mathcal{A})$.

Lemma 4.7. The modules $D_k(\mathcal{A}, \mathbf{m})$ for $1 \leq k \leq r$ are generated in degree zero. More precisely, we have an isomorphism (as \mathbb{K} -vector spaces) $D_k(\mathcal{A}, \mathbf{m})_0 \cong D_k(\mathcal{A})_0$.

Proof. Both claims are clear for $D_1(\mathcal{A}, \mathbf{m})$ by Remark 3.2. By Definition 3.1, $D_k(\mathcal{A}, \mathbf{m})$ is a quotient of $\bigoplus_{X \in L_k} D_{k-1}(\mathcal{A}_X, \mathbf{m}_X)$. Hence by induction, $D_k(\mathcal{A}, \mathbf{m})$ is also generated in degree zero. Now we have the following commutative diagram:

where the first two vertical maps are isomorphisms by induction. Hence there is also an isomorphism $D_k(\mathcal{A}, \mathbf{m})_0 \cong D_k(\mathcal{A})$.

Corollary 4.8. An arrangement \mathcal{A} is k-formal if and only if $H^i(\mathcal{D}^{\bullet}(\mathcal{A}, \mathbf{m})_0) = 0$ for i = 1, ..., k - 1.

Proof. Immediate from Lemma 4.7, Lemma 4.4, and Proposition 4.6. \Box

Definition 4.9. An arrangement \mathcal{A} is *totally formal* if \mathcal{A}_X is k-formal for $2 \leq k \leq r(X)$ for all $X \in L(\mathcal{A})$.

For example, a rank three arrangement is totally formal if and only if it is formal. See Remark 5.10 for further examples of totally formal arrangements.

Corollary 4.10. If $(\mathcal{A}, \mathbf{m})$ is free then \mathcal{A} is totally formal.

Proof. Suppose to the contrary that \mathcal{A}_X is not k-formal for some $X \in L$ and $2 \leq k \leq r(X) - 1$. Then, by Corollary 4.8, $H^i(\mathcal{D}_0^{\bullet}(\mathcal{A}_X, \mathbf{m}_X)) \neq 0$ for some $1 \leq i \leq k - 1$. Hence by Theorem 1.1, $D(\mathcal{A}_X, \mathbf{m}_X)$ is not free, whence $D(\mathcal{A}, \mathbf{m})$ is not free by Proposition 2.4.

Remark 4.11. We will see in Proposition 6.2 that there are totally formal arrangements which nevertheless are totally non-free. See also Example 6.5.

Remark 4.12. The ranks of the vector spaces appearing in \mathcal{R}_{\bullet} are not combinatorial in general (see Example 6.5), however if \mathcal{A} is totally formal then these ranks are determined by $L(\mathcal{A})$. We can see this by inductively reading off the rank of $R_k(\mathcal{A}_X)$ ($X \in L_k$) from the Euler characteristic of $\mathcal{R}_{\bullet}(\mathcal{A}_X)$; since \mathcal{A} is totally formal the Euler characteristic of $\mathcal{R}_{\bullet}(\mathcal{A}_X)$; since \mathcal{A} is totally formal the Euler characteristic of $\mathcal{R}_{\bullet}(\mathcal{A}_X)$; since \mathcal{A} is totally formal the Euler characteristic of $\mathcal{R}_{\bullet}(\mathcal{A}_X)$ is zero by Lemma 4.4. This yields a number of combinatorial obstructions to freeness which can be read off $L(\mathcal{A})$ (see for instance [12, Corollary 4.16]). By Corollary 4.10, if any of these combinatorial obstructions are satisfied, the arrangement is totally non-free.

In the following corollary, we call a hyperplane $H \in \mathcal{A}$ generic if, for all $X \in L_2$ so that H < X in L, there is a unique hyperplane $H' \neq H$ so that H' < X. Moreover, we say H is a separator of \mathcal{A} if $r(\mathcal{A} - H) < r(\mathcal{A})$. Part of the following result may be found in [12, Proposition 3.9]; we provide a proof for completeness.

Corollary 4.13. Suppose \mathcal{A} is an arrangement of rank ≥ 2 . If \mathcal{A} has a generic hyperplane which is not a separator, then \mathcal{A} is not formal. In particular, \mathcal{A} is totally non-free.

Proof. Let $H \in \mathcal{A}$ be the generic hyperplane which is not a separator, and write v_H for the corresponding row of δ_S^0 . The condition that H is not a separator means that we can find $r = r(\mathcal{A})$ linearly independent rows v_1, \ldots, v_r of δ_S^0 where $v_i \neq v_H$ for $i = 1, \ldots, r$. Hence there is a relation $\sum_{i=1}^r c_i v_i + c_H v_H = 0$ (for constants c_1, \ldots, c_H). Since $r \geq 2$ and H is generic, there is no way to write this relation as a linear combination of relations among three hyperplanes (since v_H is not in the support of any such relation). So \mathcal{A} is not formal. The final conclusion follows from Corollary 4.10.

5. Computing the chain complex

In this section we work out concrete presentations for the modules appearing in $\mathcal{D}^{\bullet}(\mathcal{A}, \mathbf{m})$ and illustrate the constructions via examples, with the goal of studying freeness and projective dimension of $D(\mathcal{A}, \mathbf{m})$. The following definition, which constructs \mathcal{D}^{\bullet} as the cokernel of a map of chain complexes, is analogous to the setup of the Billera-Schenck-Stillman chain complex used in algebraic spline theory [10, 27]. Since there are many details, the reader may find it easiest to read the following constructions while following along with Examples 5.7 and 5.8.

Definition 5.1. For a multi-arrangement $(\mathcal{A}, \mathbf{m})$, set $S_k(\mathcal{A}_X) = D_k(\mathcal{A}_X, \mathbf{m}_X)_0 \otimes_{\mathbb{K}}$ S, the degree zero part of $D_k(\mathcal{A}_X, \mathbf{m}_X)$ tensored with S, and set $\mathcal{S}^{\bullet}(\mathcal{A}) := \mathcal{D}^{\bullet}(\mathcal{A}, \mathbf{m})_0 \otimes_{\mathbb{K}}$ S, so $\mathcal{S}^k = \bigoplus_{X \in L_k} S_k(\mathcal{A}_X)$. These are independent of the choice of multiplicities by Lemma 4.7.

For $Y \in L$, write $\phi_k^S(Y), \tau_k^S$ for the maps $\phi_k^S(Y) : S_k(\mathcal{A}) \to S_k(\mathcal{A}_Y), \tau_k^S : S_k(\mathcal{A}) \to \bigoplus_{X \in L_k} S_k(\mathcal{A}_X)$ which are obtained from the maps $\phi_k(Y) : D_k(\mathcal{A}, \mathbf{m}) \to \mathcal{A}$

A HOMOLOGICAL CHARACTERIZATION FOR FREENESS OF MULTI-ARRANGEMENTS15

FIGURE 5. Short exact sequence of complexes from Definition 5.1

 $D_k(\mathcal{A}_Y, \mathbf{m}), \tau_k : D_k(\mathcal{A}, \mathbf{m}) \to \bigoplus_{X \in L_k} D(\mathcal{A}_X, \mathbf{m}_X)$ (see Definition 3.1) by restricting to degree zero and then tensoring with S. Likewise write δ_S^i for the differential of \mathcal{S}^{\bullet} .

Since each of the modules $D_k(\mathcal{A}, \mathbf{m})$ is generated in degree zero by Lemma 4.7, there is a natural surjective map $S_k(\mathcal{A}_X) \to D_k(\mathcal{A}_X, \mathbf{m}_X)$ for every \mathbf{m} and $X \in L_k$. Hence there is a surjective map of complexes $\mathcal{S}^{\bullet}(\mathcal{A}) \to \mathcal{D}^{\bullet}(\mathcal{A}, \mathbf{m})$ for any multiplicity \mathbf{m} .

For each surjection $S_k(\mathcal{A}_X) \to D_k(\mathcal{A}_X, \mathbf{m}_X)$, write $J_k(\mathcal{A}_X, \mathbf{m}_X)$ for the kernel of this surjection, and write $\mathcal{J}^{\bullet}(\mathcal{A}, \mathbf{m})$ for the kernel of the surjection $\mathcal{S}^{\bullet}(\mathcal{A}) \to \mathcal{D}^{\bullet}(\mathcal{A}, \mathbf{m})$, so $\mathcal{J}^k(\mathcal{A}, \mathbf{m}) = \bigoplus_{X \in L_k} J_k(\mathcal{A}_X, \mathbf{m}_X)$. Denote by $\phi_i^J(Y), \tau_i^J$, and δ_j^i the maps obtained from restricting $\phi_i^S(Y), \tau_i^S$, and δ_S^i . See figure 5 which shows the short exact sequence of complexes $0 \to \mathcal{J}^{\bullet} \to \mathcal{S}^{\bullet} \to \mathcal{D}^{\bullet} \to 0$.

Remark 5.2. By Corollary 4.8, \mathcal{A} is k-formal if and only if $H^i(\mathcal{S}^{\bullet}(\mathcal{A})) = 0$ for $1 \leq i \leq k - 1$. Furthermore \mathcal{A} is essential if and only if $H^0(\mathcal{S}^{\bullet}(\mathcal{A})) = 0$.

Remark 5.3. The short exact sequence $0 \to \mathcal{J}^{\bullet} \to \mathcal{S}^{\bullet} \to \mathcal{D}^{\bullet} \to 0$ gives rise to a long exact sequence starting as

$$0 \to H^0(\mathcal{S}^{\bullet}) \to H^0(\mathcal{D}^{\bullet}) \cong D(\mathcal{A}, \mathbf{m}) \xrightarrow{\psi} H^1(\mathcal{J}^{\bullet}) \to H^1(\mathcal{S}^{\bullet}) \to \cdots$$

where ψ is defined on $\theta \in D(\mathcal{A}, \mathbf{m})$ as $\psi(\theta) = \sum_{H \in L_1} \theta(\alpha_H) \in \bigoplus_{H \in L_1} J(H)$. The map ψ is an isomorphism if (and only if) \mathcal{A} is essential and formal.

Remark 5.4. If \mathcal{A} is essential and k-formal for all $k \geq 2$, then the long exact sequence from Remark 5.3 breaks into isomorphisms $H^i(\mathcal{D}^{\bullet}(\mathcal{A}, \mathbf{m})) \cong H^i(\mathcal{J}^{\bullet}(\mathcal{A}, \mathbf{m}))$ for $i \geq 0$ (by Remark 5.2). In particular, if we wish to determine free multiplicities on an arrangement, we may assume by Corollary 4.10 that \mathcal{A} is k-formal for all $k \geq 2$, hence the isomorphism $H^i(\mathcal{D}^{\bullet}(\mathcal{A}, \mathbf{m})) \cong H^i(\mathcal{J}^{\bullet}(\mathcal{A}, \mathbf{m}))$ holds for $i \geq 0$.

Lemma 5.5. Let $(\mathcal{A}, \mathbf{m})$ be a multi-arrangement. If $H \in L_1$, then set $J(H) = J_1(\mathcal{A}_H, \mathbf{m}(H)) = \langle \alpha_H^{\mathbf{m}(H)} \rangle$. If $X \in L_k$ where k > 1, then the module $J_k(\mathcal{A}_X, \mathbf{m}_X)$

satisfies

$$J_k(\mathcal{A}_X, \mathbf{m}_X) = \delta_S^{k-1} \left(\bigoplus_{\substack{Y \in L_{k-1} \\ X < Y}} J_{k-1}(\mathcal{A}_Y, \mathbf{m}_Y) \right)$$
$$= \sum_{\substack{Y \in L_{k-1} \\ X < Y}} \phi_{k-1}^S(X) (J_{k-1}(\mathcal{A}_Y, \mathbf{m}_Y))$$

with $\delta_S^{k-1} : S^{k-1} \to S^k$ and $\phi_S^k(X) : S_k(\mathcal{A}_Y) \to S_k(\mathcal{A}_X)$ the maps from Definition 5.1.

Proof. For simplicity we take $\mathcal{A}_X = \mathcal{A}$, so \mathcal{A} has rank k and $X = \bigcap_{H \in \mathcal{A}} H$. The tail end of the short exact sequence of complexes $0 \to \mathcal{J}^{\bullet} \to \mathcal{S}^{\bullet} \to \mathcal{D}^{\bullet} \to 0$ is shown below.

The differentials δ_S^{k-2} and δ^{k-2} factor through $S_{k-1}(\mathcal{A})$ and $D_{k-1}(\mathcal{A}, \mathbf{m})$, respectively, by Definition 3.5. It follows that $H^{k-1}(\mathcal{S}^{\bullet}) = H^{k-1}(\mathcal{D}^{\bullet}) = H^k(\mathcal{S}^{\bullet}) = H^k(\mathcal{D}^{\bullet}) = 0$ by Definition 3.1. Hence the long exact sequence in cohomology yields that $H^k(\mathcal{J}^{\bullet}) = 0$, in other words δ_J^{k-1} is surjective. The first equality follows from commutativity of the diagram. By definition, $\delta_J^k = \tau_k^J = \sum_{Y \in L_{k-1}} \phi_{k-1}^J(X)$. Since $\phi_{k-1}^J(X)$ is the restriction of $\phi_{k-1}^S(X)$, this proves the second equality.

From Lemma 5.5, we see that in order to explicitly determine the complexes \mathcal{J}^{\bullet} and \mathcal{D}^{\bullet} , it suffices to determining the maps $\phi_k^S(Y)$ for $Y \in L_k$, or equivalently to determine the differential δ_S^k of the complex \mathcal{S}^{\bullet} . In § 4, we saw that $\mathcal{S}^{\bullet} \cong (\mathcal{R}^*_{\bullet}) \otimes_{\mathbb{K}} S$, so the differential δ_S^k is just the transpose of the differential δ_k in the complex \mathcal{R}_{\bullet} . By examining these matrices as they appear in [12] and [32], we obtain the following recipe for constructing δ_S^k .

Lemma 5.6. A matrix for δ_S^k may be inductively defined as follows. The matrix for δ_S^0 is the coefficient matrix for \mathcal{A} , whose rows give coefficients of the linear forms defining \mathcal{A} . Inductively, δ_S^k may be represented by a matrix whose rows are naturally grouped according to flats $X \in L_k$. A row corresponding to $X \in L_k$ encodes a relation among rows of δ_S^{k-1} which correspond to flats $Y \in L_{k-1}$ so that Y < X; the set of all rows corresponding to $X \in L_k$ is a choice of basis for all relations among the rows of δ_S^{k-1} corresponding to flats $Y \in L_k$ so that Y < X. **Example 5.7** (Points in \mathbb{P}^1). Consider the arrangement \mathcal{A} of k+2 points in \mathbb{P}^1 , corresponding to the product $xy(x-a_1y) \dots (x-a_ky)$. Let $H_x = V(x), H_y = V(y)$, and $H_i = V(x - a_iy)$ for $i = 1, \dots, k$. By Lemma 5.6, the complex \mathcal{S}^{\bullet} is

$$0 \to S^2 \xrightarrow{\delta_S^0} S^{k+2} \xrightarrow{\delta_S^1} S^k \to 0,$$

where

$$\delta^{0} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & -a_{1} \\ \vdots & \vdots \\ 1 & -a_{k} \end{bmatrix} \quad \text{and} \quad \delta^{1} = \begin{bmatrix} -1 & a_{1} & 1 & 0 & \cdots & 0 \\ -1 & a_{2} & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ -1 & a_{k} & 0 & 0 & \cdots & 1 \end{bmatrix}$$

Notice that $S_2(\mathcal{A}) \cong S^k$. Write m_x, m_y for $\mathbf{m}(H_x), \mathbf{m}(H_y)$, respectively, and m_i for $\mathbf{m}(H_i), i = 1, \ldots, k$. By Lemma 5.5, $J_2(\mathcal{A}, \mathbf{m}) = \mathcal{J}^2(\mathcal{A}, \mathbf{m})$ is generated by the columns of the matrix

$$M = \begin{bmatrix} -x^{m_x} & a_1 y^{m_y} & (x - a_1 y)^{m_1} & 0 & \cdots & 0 \\ -x^{m_x} & a_2 y^{m_y} & 0 & (x - a_2 y)^{m_2} & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ -x^{m_x} & a_k y^{m_y} & 0 & 0 & \cdots & (x - a_k y)^{m_k} \end{bmatrix},$$

so $D^2(\mathcal{A}, \mathbf{m}) \cong \operatorname{coker}(M)$. Notice that M is a matrix for δ_J^1 with the natural choice of basis for $\bigoplus_{H \in L_1} J(H) \cong \bigoplus_{H \in L_1} S(-\mathbf{m}(H))$. Hence, by Remark 5.4, we may identify $D(\mathcal{A}, \mathbf{m})$ with $H^1(\mathcal{J}^{\bullet}, \mathbf{m})$, which is exactly the syzygies on the columns of M (it is also straightforward to see this from the definition of $D(\mathcal{A}, \mathbf{m})$). In particular, if k = 1 so \mathcal{A} is the A_2 braid arrangement, then $D(A_2, \mathbf{m})$ may be identified with the syzygies on the forms x^{m_x}, y^{m_y} , and $(x - a_1 y)^{m_1}$. This provides an alternative way to identify the generators and exponents of (A_2, \mathbf{m}) , which were originally found in [33] (see [18],[13, Example 3.6,Lemma 4.5] for more details).

For an arrangement defined by the vanishing of forms $\alpha_1, \ldots, \alpha_n$, we will write H_i for $V(\alpha_i)$ and denote the flat $H_{i_1} \cap \cdots \cap H_{i_k}$ by the list of indices $i_1 \cdots i_k$. Furthermore, we will denote by L_2^{trip} the set of rank two flats which are the intersection of at least three hyperplanes.

Example 5.8 (X_3 arrangement). Consider the arrangement \mathcal{A}_t defined by the vanishing of the six linear forms

$$\begin{array}{ll} \alpha_1 = x & \alpha_4 = x - ty \\ \alpha_2 = y & \alpha_5 = x + z \\ \alpha_3 = z & \alpha_6 = y + z. \end{array}$$

The intersection lattice of \mathcal{A}_t is constant as long as $t \neq 0, 1$, with six double points and three triple points $L_2^{\text{trip}} = \{124, 135, 236\}$. Lemma 5.6 yields

$$\mathcal{S}^{\bullet} = 0 \to S^3 \xrightarrow{\delta_S^0} S^6 \xrightarrow{\delta_S^1} S^3 \to 0,$$

where

This complex is always exact, hence \mathcal{A}_t is always formal for $t \neq 0, 1$ by Corollary 4.8. By Remark 5.4, $H^i(\mathcal{D}^{\bullet}) \cong H^i(\mathcal{J}^{\bullet})$. By Theorem 1.1, we may check freeness of $D(\mathcal{A}_t, \mathbf{m})$ by determining vanishing of $H^1(\mathcal{J}^{\bullet})$.

Now we consider the complex \mathcal{J}^{\bullet} . Write J(i) for $J_1((\mathcal{A}_t)_{H_i}, m_i) = \langle \alpha_i^{m_i} \rangle$. If $ijk \in L_2^{\text{trip}}$, we write J(ijk) for the ideal J(i) + J(j) + J(k), where $ijk \in L_2^{\text{trip}}$. Then, by Lemma 5.5, $J_2(124, \mathbf{m}) = J(1) - tJ(3) - J(4) = J(1) + J(3) + J(4) = J(134)$. The same holds for any triple point, so $J_2(ijk, \mathbf{m}) = J(ijk)$ for every $ijk \in L_2^{\text{trip}}$. So $\mathcal{J}^2 = \bigoplus_{ijk \in L_2^{\text{trip}}} J(ijk)$ and

$$\mathcal{J}^{\bullet} = 0 \to \bigoplus_{i=1}^{6} J(i) \xrightarrow{\delta_J^1} \bigoplus_{ijk \in L_2^{\mathrm{trip}}} J(ijk),$$

where δ_J^1 is the restriction of δ_S^1 . A presentation for $H^2(\mathcal{J}^{\bullet})$ is worked out in [14] and is used to prove that $(\mathcal{A}_t, \mathbf{m})$ is free if and only if the defining equation has the form $\mathcal{Q}(\mathcal{A}, \mathbf{m}) = x^n y^n z^n (x - ty)(x + z)(y + z)$, where $t^n = 1$. We generalize this result in Theorem 6.10.

5.1. **Graphic arrangements.** Let G be a simple graph (no loops or multiple edges) on ℓ vertices $\{v_1, \ldots, v_\ell\}$ with edge set E(G), $S = \mathbb{K}[x_1, \ldots, x_\ell]$ (with x_i corresponding to v_i), and set $H_{ij} = V(x_i - x_j)$. The graphic arrangement associated to G is the arrangement $\mathcal{A}_G = \bigcup_{\{v_i, v_j\} \in E(G)} H_{ij}$; \mathcal{A}_G is a sub-arrangement of the $A_{\ell-1}$. A multiplicity **m** on \mathcal{A}_G is determined by the values $m_{ij} = \mathbf{m}(H_{ij})$ corresponding to edges $\{v_i, v_j\} \in E(G)$.

Recall that the *clique complex* (or *flag complex*) of a graph G is the simplicial complex $\Delta = \Delta(G)$ with an *i*-simplex for every complete graph on (i - 1) vertices.

Lemma 5.9. The chain complex $S^{\bullet}(\mathcal{A}_G)$ may be identified with the simplicial cochain complex of $\Delta(G)$ with coefficients in S. Hence \mathcal{A}_G is k-formal if and only if $H^i(\Delta(G); S) = 0$ for $1 \le i \le k - 1$.

Proof. By [32, Lemma 3.1], $\mathcal{R}_{\bullet}(\mathcal{A}_G)$ may be identified with the simplicial chain complex of $\Delta(G)$ with coefficients in \mathbb{K} . Now use the isomorphism $\mathcal{S}^{\bullet} \cong (\mathcal{R}_{\bullet})^* \otimes_{\mathbb{K}} S$.

Remark 5.10. Using Lemma 5.9 we may easily see how the notions of k-formal for various k are distinct; this was part of the intent of [32]. This lemma also makes it clear that the condition that \mathcal{A}_G is k-formal for $2 \leq k \leq r-1$ is distinct from the condition of being totally formal. A graphic arrangement \mathcal{A}_G is k-formal for $2 \leq k \leq r-1$ if and only if its clique complex $\Delta(G)$ is contractible. On the other hand, \mathcal{A}_G is totally formal if and only if G is chordal; a much stronger condition which coincides with both freeness and supersolvability of \mathcal{A}_G [30].

If $\sigma \in \Delta(G)_k$ is a complete graph on the (k+1) vertices $\{v_{i_0}, \ldots, v_{i_k}\}$ (where $k \geq 1$), then write $J(\sigma)$ for the ideal generated by the forms $\{(x_{i_s} - x_{i_t})^{m_{i_s i_t}} : 0 \leq 1\}$ $s < t \le k$. If $\sigma = \{v_i\}$ is a single vertex, then we take $J(\sigma) = 0$.

Proposition 5.11. If G is a simple graph, then $\mathcal{D}^{\bullet}(\mathcal{A}_G, \mathbf{m})$ has modules

$$\mathcal{D}^i \cong \bigoplus_{\sigma \in \Delta(G)_i} S/J(\sigma)$$

and differentials δ^i induced from the simplicial co-chain complex with coefficients in S, which may be identified with $\mathcal{S}^{\bullet}(\mathcal{A}_G)$.

Proof. Use the identification of the differentials δ^i in Lemma 5.9 as the simplicial co-chain differential for $\Delta(G)$ and the construction of $J_k((\mathcal{A}_G)_X, \mathbf{m}_X)$ from Lemma 5.5. \square

Remark 5.12. The chain complex in Proposition 5.11 was introduced in [15] by analogy with a natural class of chain complexes in the context of multivariate spline theory [10, 27]. Applying Theorem 1.1 yields the homological characterization of freeness obtained in [15, Corollary 5.6].

Remark 5.13. The first non-trivial classification of free multiplicities on a graphic arrangement admitting both free and non-free multiplicities was completed in [2]. Building on work of Abe, Nuida, and Numata [5], the classification of free multiplicities on the A_3 braid arrangement has been completed in [13]. The key is a detailed analysis of $H^2(\mathcal{D}^{\bullet}(A_3,\mathbf{m}))$, where \mathcal{D}^{\bullet} is the complex described in Corollary 5.11.

6. TF_2 ARRANGEMENTS

In this section we introduce a subset of the totally formal arrangements which we shall call TF_k arrangements. These are totally formal arrangements which additionally satisfy that $\mathcal{S}^{i}(\mathcal{A}) = 0$ for i > k. For instance, every totally formal arrangement is TF_k for $k \geq r(\mathcal{A})$. A graphic arrangement \mathcal{A}_G is TF_k if and only if G is chordal (see Remark 5.10) and $\dim(\Delta(G)) \leq k$. By Theorem 1.1 and Remark 5.4, freeness of TF_k arrangements is determined by the vanishing of $H^i(\mathcal{J}^{\bullet})$ for $2 \leq i \leq k$. In the rest of this section we will assume that \mathcal{A} is a TF_2 arrangement of rank at least three.

6.1. Free TF_2 arrangements. Recall that an arrangement \mathcal{A} is supersolvable if there is a filtration $\mathcal{A}_1 \subset \cdots \subset \mathcal{A}_r = \mathcal{A}$ satisfying the following rank property (RP) and intersection property (IP):

- (RP) $r(\mathcal{A}_i) = i$ for $i = 1, \ldots, r(\mathcal{A})$.
- (IP) For any $H, H' \in \mathcal{A}_i$ there exists some $H'' \in \mathcal{A}_{i-1}$ so that $H \cap H' \subset H''$.

Proposition 6.1. Let \mathcal{A} be an irreducible TF_2 arrangement of rank $r = r(\mathcal{A})$. Then

- $|\mathcal{A}| = r \# L_2^{trip} + \sum_{X \in L_2^{trip}} (|\mathcal{A}_X| 1)$ $|\mathcal{A}| \le 1 + \sum_{X \in L_2^{trip}} (|\mathcal{A}_X| 1)$
- $#L_2^{trip} \ge r-1$

Furthermore, the following are equivalent.

- (1) \mathcal{A} is free
- (2) $|\mathcal{A}| = 1 + \sum_{X \in L_2^{trip}} (|\mathcal{A}_X| 1)$

20A HOMOLOGICAL CHARACTERIZATION FOR FREENESS OF MULTI-ARRANGEMENTS

(3) $\#L_2^{trip} = r - 1$

(4) \mathcal{A} is supersolvable

In particular, if \mathcal{A} is TF_2 , its freeness may be determined from $L(\mathcal{A})$.

Proof. The first three bullet points are computed from the Euler characteristic of $\mathcal{S}^{\bullet}(\mathcal{A})$ and $\mathcal{J}^{\bullet}(\mathcal{A})_1$ as follows. Since \mathcal{A} is TF_2 , $\mathcal{S}^{\bullet}(\mathcal{A})$ is a short exact sequence of the form:

$$0 \to S^{\ell} = S^r \to S^{|\mathcal{A}|} \to \bigoplus_{X \in L_2^{\mathrm{trip}}} S^{|\mathcal{A}_X|-2} \to 0,$$

so the alternating sum of the ranks yields $|\mathcal{A}| = r + \sum_{X \in L_{\alpha}^{\mathrm{trip}}} (|\mathcal{A}_X| - 2) = r - 1$ $#L_2^{\text{trip}} + \sum_{X \in L_2^{\text{trip}}} (|\mathcal{A}_X| - 1).$ For the second bullet point, $\mathcal{J}^{\bullet}(\mathcal{A})$ has the form

$$0 \to \bigoplus_{H \in \mathcal{A}} J(H) \xrightarrow{\delta_J^*} \bigoplus_{X \in L_2^{\operatorname{trip}}} J_2(\mathcal{A}_X) \to 0.$$

Since $\ker(\delta_J^1) = D(\mathcal{A})$ and we assumed \mathcal{A} is irreducible, $\ker(\delta_J^1)_1$ is one dimensional, spanned by the Euler derivation. We may easily compute dim $J_2(\mathcal{A}_X)_1 = |\mathcal{A}_X| - 1$ for $X \in L_2^{\text{trip}}$, hence

$$\dim H^2(\mathcal{J}^{\bullet})_1 = \sum_{X \in L_2^{\operatorname{trip}}} (|\mathcal{A}_X| - 1) - |\mathcal{A}| + 1$$

by computing the Euler characteristic of \mathcal{J}_1^{\bullet} . This must be non-negative, yielding $\sum_{X \in L_2^{\text{trip}}} (|\mathcal{A}_X| - 1).$ The third bullet point follows from putting the first $|\mathcal{A}| \le 1 +$

two bullet points together.

Now we prove the equivalent conditions for freeness. The implication (4) \implies (1) is a well known fact. Since supersolvability is determined from $L(\mathcal{A})$, the final statement is immediate from (4). We first prove (1) \iff (2). From Theorem 1.1 and Remark 5.4, \mathcal{A} is free if and only if $H^2(\mathcal{J}^{\bullet}) = 0$. From the explicit description in Example 5.7, we see that $J_2(\mathcal{A}_X)$ is generated in degree one for every $X \in L_2^{\text{trip}}$, as is $J(H) \cong \langle \alpha_H \rangle$ for every $H \in \mathcal{A}$. So $H^2(\mathcal{J}^{\bullet})$ must also be generated in degree one since it is a quotient of $\sum_{X \in L_2^{\text{trip}}} J_2(\mathcal{A}_X)$. From our above computation,

$$\dim H^2(\mathcal{J}^{\bullet})_1 = \sum_{X \in L_2^{\text{trip}}} (|\mathcal{A}_X| - 1) - |\mathcal{A}| + 1,$$

hence \mathcal{A} is free if and only if this expression vanishes, i.e. $|\mathcal{A}| = 1 + \sum_{X \in L_2^{\text{trip}}} (|\mathcal{A}_X| - |\mathcal{A}|)$

1). (3) follows immediately from (2) using the expression $|\mathcal{A}| = r - \# L_2^{\text{trip}} +$ $\sum_{X \in L_2^{\text{trip}}} (|\mathcal{A}_X| - 1)$ already proved. Finally, we show (3) \implies (4). First, for any $X, X' \in L_2^{\text{trip}}$, we prove there is a sequence $X = X_1, H_1, X_2, \ldots, H_{k-1}, X_k = X'$ satisfying

- (1) $H_i \in \mathcal{A}$ for $i = 1, \ldots, k-1$
- (2) $X_i \in L_2^{\text{trip}}$ for i = 1, ..., k. (3) $H_i < X_i$ and $H_{i+1} < X_{i+1}$ in $L(\mathcal{A})$ for i = 1, ..., k 1.

To show this, let $H_1, H_2 \in \mathcal{A}_X$ and $H'_1, H'_2 \in \mathcal{A}_{X'}$ with corresponding linear forms $\alpha_1, \alpha_2, \alpha'_1, \alpha'_2$. Complete $\alpha_1, \alpha_2, \alpha'_1$ to a basis B of V^{*} using defining forms of A (this is possible because \mathcal{A} is essential). Adding α'_2 to B, we see there is a relation

FIGURE 6. Diagram for Proposition 6.2

of length r+1 among the forms $B \cup \{\alpha'_2\}$. Since \mathcal{A} is formal, this relation can be expressed as a linear combination of relations of length three. We then read off the sequence $X = X_1, H_1, \ldots, X_k = X'$ from this linear combination of relations of length three.

Now we construct a filtration $\mathcal{F} = \mathcal{F}(\mathcal{A}) = \mathcal{A}_1 \subseteq \mathcal{A}_2 \subseteq \cdots \subseteq \mathcal{A}_r = \mathcal{A}$ of \mathcal{A} . Let $\mathcal{A}_1 = H$ for any $H \in \mathcal{A}$, and $\mathcal{A}_2 = \mathcal{A}_{X_1}$ for some $X_1 \in L_2^{\text{trip}}$ so that $H \in \mathcal{A}_{X_1}$ (by Corollary 4.13, every $H \in \mathcal{A}$ passes through some $X \in L_2^{\text{trip}}$). Build \mathcal{A}_{i+1} from \mathcal{A}_i for $2 \leq i \leq r$ inductively as follows. By our above claim, there exists $X_i \in L_2^{\text{trip}}$ so that $\mathcal{A}_i \cap \mathcal{A}_{X_i} \neq \emptyset$. Then set $\mathcal{A}_{i+1} = \mathcal{A}_i \cup \mathcal{A}_{X_i}$. This process finishes with $\mathcal{A}_{(r-1)+1} = \mathcal{A}_r$, when we have exhausted L_2^{trip} . Notice that \mathcal{F} satisfies the intersection property (IP) by construction. Moreover, $r(\mathcal{A}_i) \leq r(\mathcal{A}_{i-1}) + 1$, hence since the filtration has length r with $\mathcal{A}_r = \mathcal{A}$, we must have $r(\mathcal{A}_i) = i$. Hence $\mathcal{F}(\mathcal{A})$ is a supersolvable filtration. \square

6.2. Presentation for $H^2(\mathcal{J}^{\bullet})$. Assuming \mathcal{A} is a TF_2 arrangement, we now obtain an explicit presentation for $H^2(\mathcal{J}^{\bullet}(\mathcal{A},\mathbf{m}))$. Consider the diagram in Figure 6, where the chain complex \mathcal{J}^{\bullet} appears on the right hand side (\mathcal{J}^{\bullet} has only two terms since \mathcal{A} is TF_2). For book-keeping purposes we use the formal symbols [H] and [X, H] (or $[\alpha_H], [X, \alpha_H]), \text{ of degree } \mathbf{m}(H), \text{ to denote the generators } \alpha_H^{\mathbf{m}(H)} \text{ of the summands}$ $J(H) = \langle \alpha_H^{\mathbf{m}(H)} \rangle$ which appear in $\bigoplus_{H \in \mathcal{A}} J(H)$ and $\bigoplus_{X \in L_2^{\text{trip}}} \bigoplus_{H < X} J(H), \text{ respec$ tively. With this notation, the map $\psi_X : D(\mathcal{A}_X, \mathbf{m}_X) \to \bigoplus_{H < X} J(X)$ in Figure 6 is the map $\psi_X(\theta) = \sum_H \frac{\theta(\alpha_H)}{\alpha_H^{\mathbf{m}(H)}} [X, H]$ and $\iota : \bigoplus J(H_i) \to \bigoplus_{X \in L_2^{\mathrm{trip}}} \bigoplus_{X < H_i} J(H_i)$ is the natural inclusion defined by $\iota([H]) = \sum_{X \in L_2^{\mathrm{trip}}} \sum_{X < H} [X, H]$ and extended linearly. The main thing to check for commutativity is that $(\sum (\delta_I^1)_X) \circ \iota = \delta_I^1$, which follows from the definition.

Proposition 6.2. Suppose \mathcal{A} is an irreducible TF_2 arrangement of rank at least three. Then

$$H^{2}(\mathcal{J}^{\bullet}) \cong coker\left(\bigoplus_{X \in L_{2}^{trip}} D(\mathcal{A}_{X}, \mathbf{m}_{X}) \xrightarrow{\Sigma \overline{\psi_{X}}} coker(\iota) \cong S^{\kappa}\right)$$

where $\kappa = (\sum_{X \in L_{-}^{trip}} |\mathcal{A}_X|) - |\mathcal{A}|$. Moreover,

- (1) $(\mathcal{A}, \mathbf{m})$ is free if and only if $\sum \overline{\psi_X}$ is surjective. (2) $\kappa > 0$, i.e. $|\mathcal{A}| < \sum_{X \in L_2^{trip}} |\mathcal{A}_X|$.

(3) If $|\mathcal{A}| < \sum_{X \in L_2^{trip}} (|\mathcal{A}_X| - 1)$ or equivalently $r < \#L_2^{trip}$ then \mathcal{A} is totally non-free. Furthermore in this case every $\mathcal{A}' \in \mathcal{M}(L(\mathcal{A}))$ is totally non-free.

Remark 6.3. The presentation in Proposition 6.2 is similar in spirit to a presentation derived in [27, Lemma 3.8] for a homology module which governs freeness of bivariate splines on triangulations.

Proof. Since the commutative diagram in Figure 6 has exact rows, the isomorphism

$$H^{2}(\mathcal{J}^{\bullet}) \cong \operatorname{coker}\left(\bigoplus_{X \in L_{2}^{\operatorname{trip}}} D(\mathcal{A}_{X}, \mathbf{m}_{X}) \xrightarrow{\Sigma \overline{\psi_{X}}} \operatorname{coker}(\iota)\right)$$

follows from the tail end of the snake lemma. The statement (1) now follows from the isomorphism $H^1(\mathcal{D}^{\bullet}) \cong H^2(\mathcal{J}^{\bullet})$ and Theorem 1.1.

The ideals $J(H) \cong \langle \alpha_H^{\mathbf{m}(H)} \rangle$ are principal, so are isomorphic to the polynomial ring S (up to a graded shift). The rank of $\bigoplus J(H)$ is $|\mathcal{A}|$ and by the definition of the map ι , we see that the kernel is spanned by the basis elements [H] so that Hdoes not pass through any $X \in L_2^{\text{trip}}$. However, any such hyperplane is a *generic* hyperplane; by Corollary 4.13 the existence of such a hyperplane forces \mathcal{A} to be

non-formal. Hence if \mathcal{A} is TF_2 , ι is injective. Since $\bigoplus_{X \in L_2^{\operatorname{trip}}} \left[\bigoplus_{H_i < X} J(H_i) \right]$ is a free module of rank $\sum_{X \in L_2^{\operatorname{trip}}} |\mathcal{A}_X|$, we have proved that $\operatorname{coker}(\iota) \cong S^{\kappa}$. The map ι

module of rank $\sum_{X \in L_2^{\text{trip}}} |\mathcal{A}_X|$, we have proved that $\operatorname{coker}(\iota) \cong S^{\kappa}$. The map ι is surjective if and only if $\kappa = 0$, in which case $H^2(\mathcal{J}^{\bullet}) = 0$ regardless of the multiplicity **m**. In this case \mathcal{A} is totally free; by [8] \mathcal{A} is a product of one and two dimensional arrangements, violating the assumption that \mathcal{A} is irreducible. This proves (2).

For (3), notice that, in order for $D(\mathcal{A}, \mathbf{m})$ to be free, the image of $\sum \psi_X$ and the image of ι must span the entire free module $\bigoplus_{X \in L_2^{\text{trip}}} \left[\bigoplus_{H < X} J(H) \right]$. Given (1),

the image of ι does not span this entire free module. This means that there are some basis elements [X, H] of degree $\mathbf{m}(H)$ (for some hyperplane H) that remain in coker(ι). In order to kill such basis elements, there must be a basis element $\theta_X \in D(\mathcal{A}_X, \mathbf{m}_X)$ of degree $\mathbf{m}(H)$ which does not vanish on α_H . Notice that for a fixed $X \in L_2^{\text{trip}}$, there cannot be two distinct $H, H' \in \mathcal{A}_X$ so that $\deg(\theta_X) =$ $\mathbf{m}(H), \deg(\psi_X) = \mathbf{m}(H')$, with $\theta_X(\alpha_H) \neq 0$ and $\psi_X(\alpha_{H'}) \neq 0$ (see Lemma B.2). Hence there are at most $\#L_2^{\text{trip}}$ derivations (one per $X \in L_2^{\text{trip}}$) that can have the right form to cancel remaining basis elements of $\operatorname{coker}(\iota)$; it follows that if $|\mathcal{A}| +$ $\#L_2^{\text{trip}} < \sum_{X \in L_2^{\text{trip}}} (|\mathcal{A}_X|)$ then \mathcal{A} is totally non-free, proving the first inequality of (3). The equivalent formulation for the inequality follows from the equation $|\mathcal{A}| = r - \#L_2^{\text{trip}} + \sum_{X \in L_2^{\text{trip}}} (|\mathcal{A}_X| - 1)$ from Proposition 6.1. For the final statement of (3), it follows from Lemma A.1 that $\mathcal{A}' \in \mathcal{M}(\mathcal{A})$ is TF_2 on a Zariski open subset of $\mathcal{M}(L(\mathcal{A}))$. Hence on this open set, total non-freeness of \mathcal{A}' follows from the same computation. Moreover, if \mathcal{A}' is in the complement of this open set, \mathcal{A}' is totally non-free by Corollary 4.10.

Corollary 6.4. Suppose \mathcal{A} is a TF_2 arrangement with $r(\mathcal{A}) > \#L_2^{trip}$, and suppose \mathcal{B} is an arrangement of rank four. If $L(\mathcal{B})$ has two flats $X, Y \in L(\mathcal{B})$ so that $L(\mathcal{A}) \cong [X, Y]$, then \mathcal{B} is not free.

Proof. If $L(\mathcal{A})$ is isomorphic to an interval in $L(\mathcal{B})$, then \mathcal{B} has either a closed sub-arrangement or a restriction which is in $\mathcal{M}(L(\mathcal{A}))$. In either case, the sub-arrangement or restriction is totally non-free by Proposition 6.2. If \mathcal{B} is free, any closed sub-arrangement is also free. Moreover, the restriction of a free arrangement admits a free multiplicity by Theorem 2.6. Hence \mathcal{B} cannot be free.

Example 6.5 (Ziegler's Pair). Consider a central arrangement \mathcal{A} of rank three with nine hyperplanes $\alpha_1, \ldots, \alpha_9$ whose lattice has 18 double points and six triple points, explicitly we assume $L_2^{\text{trip}} = \{145, 138, 256, 289, 367, 479\}$. This arrangement can be realized as a line arrangement in \mathbb{PK}^2 as the lines extending the edges of a hexagon, along with three lines joining opposite vertices (thus the set L_2^{trip} forms the vertices of the hexagon). Since there is a non-empty Zariski open space of $\mathcal{M}(L)$ on which \mathcal{A} is TF_2 an $\#L_2^{\text{trip}} = 6 > 3 = r(\mathcal{A})$, Proposition 6.2 implies that any $\mathcal{A} \in \mathcal{M}(L)$ is totally non-free. By Corollary 6.4, no $\mathcal{A} \in \mathcal{M}(L)$ can be the restriction of a free arrangement.

This arrangement appears in [40] and [38] as an example of the non-combinatorial behavior of the minimal free resolution of $D(\mathcal{A})$ and the formality of \mathcal{A} , respectively. More precisely, it is known (due to Yuzvinsky [38], see also [26, Example 13]) that \mathcal{A} is formal if and only if the points of L_2^{trip} do not lie on a conic in \mathbb{P}^2 . We may compute that \mathcal{S}^{\bullet} has the form $0 \to S^3 \xrightarrow{\delta_S^0} S^9 \xrightarrow{\delta_S^1} S^6 \to 0$ if the six points do not lie on a conic and $0 \to S^3 \xrightarrow{\delta_S^0} S^9 \xrightarrow{\delta_S^2} S \to 0$ if the six points of L_2^{trip} do lie on a conic $(\delta_S^1 \text{ drops rank})$.

6.3. A codimension two incidence graph. The data in the presentation of $H^2(\mathcal{J}^{\bullet})$ in Proposition 6.2 can be combinatorially encoded using the *codimension* two incidence graph of \mathcal{A} , which we denote by $G(\mathcal{A})$. The graph $G(\mathcal{A}) = (V, E)$ is a bipartite graph whose vertex set is partitioned as $V = L_2^{\text{trip}} \cup \mathcal{A}$. There is an edge [X, H] between $X \in L_2^{\text{trip}}$ and $H \in \mathcal{A}$ if and only if H < X in $L(\mathcal{A})$ (notice that we do not include codimension two flats which are intersections of just two hyperplanes). Moreover, we define the *reduced* codimension two incidence graph $\overline{G}(\mathcal{A})$ by removing the vertices $H \in V(G(\mathcal{A}))$ of valence one (i.e. removing vertices corresponding to hyperplanes which only pass through a single flat $X \in L_2^{\text{trip}}$).

Now we describe how $G(\mathcal{A})$ and $\overline{G}(\mathcal{A})$ are useful in the context of Proposition 6.2. Referring to the diagram in Figure 6, consider the sub-module N of $\bigoplus_{X \in L_2^{\mathrm{trip}} H < X} J(H)$ generated by the image of ι and the image of $\sum \psi_X$. Since

 $D(\mathcal{A}_X, \mathbf{m}_X)$ is a free rank two module for every $X \in L_2^{\text{trip}}$, it is generated by two derivations; call these θ_X and ψ_X . Then N is generated by the columns of a matrix we denote $M = M(\theta_X, \psi_X \mid X \in L_2^{\text{trip}})$. The rows of M are naturally indexed by the formal symbols [X, H] corresponding to basis elements of $\bigoplus_{X \in L_2^{\text{trip}}} \bigoplus_{H < X} J(H)$ - equivalently we may assume the rows are indexed by edges of $G(\mathcal{A})$. The columns of M are indexed either by hyperplanes $H' \in \mathcal{A}$ (these represent the image of ι , one for each generator of $\bigoplus_{H \in \mathcal{A}} J(H)$) or pairs $(X', \theta_{X'})$ or $(X', \psi_{X'})$ where $X' \in L_2^{\text{trip}}$ and $\theta_{X'}, \psi_{X'}$ are generators of $D(\mathcal{A}_{X'}, \mathbf{m}_{X'})$ (each pair represents the inclusion of a generator of $D(\mathcal{A}_{X'}, \mathbf{m}_{X'})$). The entries of M are

$$M_{[X,H],[H']} = \begin{cases} 1 & H' = H \\ 0 & H' \neq H \end{cases},$$

$$M_{[X,H],[X',\theta_{X'}]} = \begin{cases} 0 & X' = X \\ 0 & X' \neq X \end{cases},$$
and
$$M_{[X,H],[X',\psi_{X'}]} = \begin{cases} \frac{\theta_{X'}(\alpha_H)}{\psi_{X'}(\alpha_H)} & X' = X \\ 0 & X' \neq X \end{cases},$$

$$m_{H}) = \frac{\theta_{X'}(\alpha_H)}{\mathbf{m}^{(H)}}.$$

where $\overline{\theta}_{X'}(\alpha_H) = \frac{\theta_{X'}(\alpha_H)}{\alpha_H^{\mathbf{m}(H)}}$

Moreover we can associate the non-zero entries of M to oriented and labeled edges of $G(\mathcal{A})$; the entry $M_{[X,H],[H]}$ corresponds to the orientation $X \to H$ of [X,H]and the entry $M_{[X,H],[X,\theta_X]}$ corresponds to the orientation $H \to X$ of [X,H], along with the label θ_X on the edge [X,H]. If a vertex $H \in G(\mathcal{A})$ has valence one, then the corresponding column of M is a generator of $\bigoplus_{X \in L_2^{\mathrm{trip}}} \bigoplus_{H < X} J(H)$; since we are interested in the cokernel of M we may reduce the matrix M to the matrix \overline{M} whose rows are indexed by pairs [X,H] so that H has valence at least two in $G(\mathcal{A})$. Clearly the rows of \overline{M} are in bijection with edges of the reduced incidence graph $\overline{G}(\mathcal{A})$. Likewise the non-zero entries of \overline{M} correspond to oriented and labeled edges of $\overline{G}(\mathcal{A})$.

By Proposition 6.2, $D(\mathcal{A}, \mathbf{m})$ is free if and only if the columns of $M(\theta_X, \psi_X \mid X \in L_2^{\text{trip}})$ generate the free module $\bigoplus_{X \in L_2^{\text{trip}}} \bigoplus_{H < X} J(H)$. As in the proof of Proposition 6.2, only one generator for each $D(\mathcal{A}_X, \mathbf{m}_X)$, $X \in L_2^{\text{trip}}$, can map to a generator of $\bigoplus_{X \in L_2^{\text{trip}}} \bigoplus_{H < X} J(H)$. So we will consider sub-matrices of \overline{M} obtained by choosing only a single generator for each $D(\mathcal{A}_X, \mathbf{m}_X)$. We write $M' = M'(\theta_X \mid X \in L_2^{\text{trip}})$ for the sub-matrix of M formed by choosing a single generator θ_X of each $D(\mathcal{A}_X, \mathbf{m}_X)$, $X \in L_2^{\text{trip}}$. Notice that the columns of M' are now in bijection with the vertices of \overline{G} . In the two cases we consider, maximal minors of M' will be obtained by deleting at most one column. Thus the terms of a maximal minor of M' are in bijection with orientations of \overline{G} so that every vertex corresponding to a non-deleted column has exactly one incoming edge. We will use this observation in the next section.

6.4. Characterization of free multiplicities on TF_2 arrangements. Using Proposition 6.2 we now characterize free multiplicities on TF_2 arrangements. By Proposition 6.2 and Proposition 6.1 we are restricted to the two cases

• $|\mathcal{A}| = 1 + \sum_{X \in L_2^{\text{trip}}} (|\mathcal{A}_X| - 1)$ (equivalently \mathcal{A} is a supersolvable TF_2 arrangement)

•
$$|\mathcal{A}| = \sum_{X \in L_2^{\mathrm{trip}}} (|\mathcal{A}_X| - 1)$$

Theorem 6.6 (Free multiplicities on free TF_2 arrangements). Suppose \mathcal{A} is a free, hence supersolvable TF_2 arrangement. By Proposition 6.1, $\overline{G} = \overline{G}(\mathcal{A})$ is a tree. Then **m** is a free multiplicity on \mathcal{A} if and only if there is an orientation of \overline{G} satisfying

- (1) Every vertex of \overline{G} has at most one incoming edge.
- (2) The root vertex (no incoming edges) is some $X \in L_2^{trip}$.
- (3) Given a directed edge $H \to X$, $\mathbf{m}(H)$ is an exponent of $D(\mathcal{A}_X, \mathbf{m}_X)$

Equivalently, **m** is a free multiplicity if and only if there is an ordering X_1, \ldots, X_{r-1} of L_2^{trip} and a supersolvable filtration $\mathcal{A}_1 \subset \cdots \subset \mathcal{A}_r$ satisfying A HOMOLOGICAL CHARACTERIZATION FOR FREENESS OF MULTI-ARRANGEMENTS 25

- (1) $\mathcal{A}_2 = \mathcal{A}_{X_1}$ and $\mathcal{A}_i = \mathcal{A}_{i-1} \cup \mathcal{A}_{X_{i-1}}$ (2) $\mathcal{A}_{X_i} \cap \mathcal{A}_i = \{H_i\}$ for some $H_i \in \mathcal{A}$ $(H_1, \ldots, H_{r-1}$ not necessarily distinct)
- (3) $\mathbf{m}(H_i)$ is an exponent of $D(X_i, \mathbf{m}_{X_i})$

Proof. By Proposition 6.2 and the preceding discussion, $D(\mathcal{A}, \mathbf{m})$ is free if and only if there are derivations $\theta_X \in D(\mathcal{A}_X, \mathbf{m}_X)$ so that the columns of $\overline{M'} = \overline{M'}(\theta_X)$ $X \in L_2^{\text{trip}}$) generate $\bigoplus_{X \in L_2^{\text{trip}}} \bigoplus_{H < X} J(H)$; in other words there should be a maximal

minor with determinant equal to a non-zero constant. By Proposition 6.1, we have $|\mathcal{A}| = 1 + \sum_{X \in L_2^{\text{trip}}} (|\mathcal{A}_X| - 1) \text{ or } |\mathcal{A}| + \# L_2^{\text{trip}} = 1 + \sum_{X \in L_2^{\text{trip}}} |\mathcal{A}_X|.$ It follows that the matrix $\overline{M'}$ has one more column than row; so the maximal minors are obtained by deleting a column of $\overline{M'}$. We may assume that the deleted column corresponds to some $X \in L_2^{\text{trip}}$. Since \overline{G} is a tree, an orientation of \overline{G} satisfying that each vertex has at most one incoming edge is equivalent to a choice of root for the tree. This in turn is equivalent to choosing a maximal minor of M (leave out the column corresponding to the root). The maximal minor chosen in this way has determinant

$$\prod_{H\to X} \overline{\theta}_X(\alpha_H),$$

where the product is taken over directed edges $H \to X$ in the directed tree \overline{G} . This expression is a non-zero constant if and only if $\overline{\theta}_X(\alpha_H)$ is a non-zero constant (equivalently $\theta_X(\alpha_H) = \alpha_H^{\mathbf{m}(H)}$ up to constant multiple) for every directed edge $H \to X$. Since \mathcal{A}_X is not boolean for any $X \in L_2^{\text{trip}}$, we see by Lemma B.2 that $(\mathcal{A}_X, \mathbf{m}_X)$ cannot have an exponent smaller than $\mathbf{m}(H)$, so this is in turn equivalent to $(\mathcal{A}_X, \mathbf{m}_X)$ having an exponent of $\mathbf{m}(H)$ for every directed edge $H \to X$. This proves the first characterization.

We now show the second characterization in terms of supersolvable filtrations is equivalent to the first. Given an orientation of \overline{G} , we can build the required filtration by setting X_1 equal to the root vertex and inductively selecting X_{i+1} to satisfy 1) X_i and X_{i+1} are both adjacent to some $H \in \overline{G}$ and 2) $X_i \to H \to X_{i+1}$ is a directed path with respect to the chosen orientation on \overline{G} . Conversely, given such a supersolvable filtration, we may orient \overline{G} by taking X_1 to be the root.

Example 6.7. Suppose \mathcal{A} is defined by xyz(x-y)(y-z) (this is the graphic arrangement corresponding to a four-cycle with a chord). Then \overline{G} consists of two vertices corresponding to the triple points X_1 and X_2 defined by xy(x-y) and yz(y-y)z), respectively. Clearly \mathcal{A} is a supersolvable TF_2 arrangement. By Theorem 6.6, (\mathcal{A},\mathbf{m}) is free if and only if either $D(X_1,\mathbf{m}_{X_1})$ or $D(X_2,\mathbf{m}_{X_2})$ has an exponent equal to $\mathbf{m}(y)$.

If K has characteristic zero, this happens if and only if $\mathbf{m}(y) > \mathbf{m}(x) + \mathbf{m}(x-y) - 1$ or $\mathbf{m}(y) \geq \mathbf{m}(z) + \mathbf{m}(y-z) - 1$ (by [33]), which recovers Abe's classification in [2]. In fact Abe's classification has a natural extension to any graphic TF_2 arrangement (these correspond to chordal graphs with two-dimensional clique complex). For instance, suppose \mathcal{A} is defined by xyzw(x-y)(y-z)(z-w). Then $\overline{G}(\mathcal{A})$ has three vertices and Theorem 6.6 combined with the classification in [33] yields that $(\mathcal{A}, \mathbf{m})$ is free if and only if

- $\mathbf{m}(y) \ge \mathbf{m}(x) + \mathbf{m}(x-y) 1$ and $\mathbf{m}(z) \ge \mathbf{m}(y) + \mathbf{m}(y-z) 1$ or
- $\mathbf{m}(y) \ge \mathbf{m}(z) + \mathbf{m}(y-z) 1$ and $\mathbf{m}(z) \ge \mathbf{m}(w) + \mathbf{m}(z-w) 1$ or
- $\mathbf{m}(y) \ge \mathbf{m}(x) + \mathbf{m}(x-y) 1$ and $\mathbf{m}(z) \ge \mathbf{m}(w) + \mathbf{m}(z-w) 1$.

Each of the three possibilities corresponds to a choice of root for \overline{G} .

By similar arguments it is not difficult to show that a constant multiplicity of value greater than one is never a free multiplicity on a graphic TF_2 arrangement of rank at least three over a field of characteristic zero. In fact, if the constant multiplicity is free on a graphic arrangement over a field of characteristic zero then it is a product of braid arrangements [15, Theorem 6.6]. In contrast, suppose K is a field of characteristic p. Then it is straightforward to check (using Saito's criterion), that

$$x^{p^k}\frac{\partial}{\partial x} + y^{p^k}\frac{\partial}{\partial y}$$
 and $x^{p^{k+1}}\frac{\partial}{\partial x} + y^{p^{k+1}}\frac{\partial}{\partial y}$

form a basis for the multi-arrangement defined by $x^{p^k}y^{p^k}(x-y)^{p^k}$ (here k is any positive integer). It follows from Theorem 6.6 that the constant multiplicity of value p^k is always free on a graphic TF_2 arrangement over a field of characteristic p. Ziegler [41] has shown that freeness of simple arrangements may also depend on the characteristic of the field.

Example 6.8 (Example 1.2, continued). Consider the arrangement $\mathcal{A}(\alpha, \beta)$ defined by $xyz(x - \alpha z)(x - \beta z)(y - z)$ where $\alpha, \beta \in \mathbb{K}$. This is a TF_2 arrangement with two rank two flats in L_2^{trip} : the flat X_1 defined by $xz(x - \alpha z)(x - \beta z)$ and the flat X_2 defined by yz(y - z). The reduced graph $\overline{G}(\mathcal{A})$ consists of the three vertices H, X_1, X_2 joined by the two edges $[H, X_1]$ and $[H, X_2]$. By Theorem 6.6 a multi-arrangement $(\mathcal{A}(\alpha, \beta), \mathbf{m})$ is free if and only if either $D(\mathcal{A}_{X_1}, \mathbf{m}_{X_1})$ or $D(\mathcal{A}_{X_2}, \mathbf{m}_{X_2})$ has an exponent of $\mathbf{m}(z)$. Example 1.2 continues the analysis for this multi-arrangement.

Remark 6.9. The characterization in Theorem 6.6 reduces the problem of determining free multiplicities on free TF_2 arrangements to the problem of determining when rank two multi-arrangements have an exponent which is equal to the multiplicity of one of its points, which is a difficult problem in general [34]. Somewhat surprisingly, free multiplicities on non-free TF_2 arrangements admit a complete description, at least in characteristic zero.

Suppose \mathcal{A} is a non-free TF_2 arrangement which admits a free multiplicity. As mentioned earlier, $|\mathcal{A}| = \sum_{X \in L_2^{\text{trip}}} (|\mathcal{A}_X| - 1)$ or $|\mathcal{A}| + \#L_2^{\text{trip}} = \sum |\mathcal{A}_X|$. Since $\overline{G}(\mathcal{A})$ is connected (see the proof of Proposition 6.1) and $\overline{G}(\mathcal{A})$ has as many vertices as edges, there is a unique cycle in $\overline{G}(\mathcal{A})$. Write $C = H_0, X_0, H_1, X_1, \ldots, H_{k-1}, X_{k-1}, H_0$ for this cycle, and let $\alpha_0, \ldots, \alpha_{k-1}$ be the corresponding linear forms to H_0, \ldots, H_{k-1} . We observe that the linear forms $\alpha_0, \ldots, \alpha_{k-1}$ must be linearly independent. To see this, define $\mathcal{A}' = \mathcal{A}_{X_0} \cup \mathcal{A}_{X_1} \cdots \cup \mathcal{A}_{X_{k-2}}$. Then \mathcal{A}' has rank k, contains all hyperplanes defined by $\alpha_0, \ldots, \alpha_{k-1}$, and every defining form of \mathcal{A}' is expressible using $\alpha_0, \ldots, \alpha_{k-1}$.

Theorem 6.10 (Free multiplicities on non-free TF_2 arrangements). Suppose \mathcal{A} is a non-free TF_2 arrangement (over a field of characteristic zero) which admits a free multiplicity. As above, let $C = H_0, X_0, H_1, X_1, \ldots, H_{k-1}, X_{k-1}, H_0$ be the unique cycle in $\overline{G} = \overline{G}(\mathcal{A})$. Then **m** is a free multiplicity on \mathcal{A} if and only if the following conditions are satisfied

- (1) $\mathbf{m}(H) = 1$ for every $H \in \mathcal{A}$ which is not a vertex of C
- (2) There is an integer n > 0 so that $\mathbf{m}(H) = n$ for every $H \in \mathcal{A}$ which is a vertex of C
- (3) There are $B_1, \ldots, B_k \in \mathbb{K}$ satisfying

- $B_1 \cdots B_k \neq 1$ and
- for every $H \in \mathcal{A}_{X_i} \setminus \{H_i, H_{i+1}\}$ (indices taken modulo k), α_H can be written (up to scalar multiple) as $\alpha_H = \alpha_i + \beta_i^H \alpha_{i+1}$ (indices taken modulo k) for some $\beta_i^H \in \mathbb{K}$ satisfying $(\beta_i^H)^{n-1} = B_i$

Proof. By Proposition 6.2, we have $|\mathcal{A}| = \sum_{X \in L_2^{\mathrm{trip}}} (|\mathcal{A}_X| - 1)$ or $|\mathcal{A}| + \#L_2^{\mathrm{trip}} = \sum_{Z_2} |\mathcal{A}_X|$. So for any choice of θ_X for every $X \in L_2^{\mathrm{trip}}$ the matrix $\overline{M'} = \overline{M'}(\theta_X \mid X \in L_2^{\mathrm{trip}})$ is a square matrix. We find its determinant. A term of $\det(\overline{M'})$ corresponds to an orientation of \overline{G} in which every vertex has exactly one incoming edge. Since \overline{G} has a unique cycle, such an orientation of \overline{G} is determined by an orientation of the cycle (every other edge must be directed 'away' from the cycle). Since there are only two choices of orientation for the cycle C which satisfy that every vertex has exactly one incoming edge, there are only two terms in $\det(\overline{M})$. In fact, if $C = H_0, X_0, H_1, X_1, \ldots, H_{k-1}, X_{k-1}, H_0$,

(1)
$$\det(\overline{M}) = \left(\prod_{i=0}^{k-1} \overline{\theta}_{X_i}(\alpha_i) - \prod_{i=0}^{k-1} \overline{\theta}_{X_i}(\alpha_{i+1})\right) \prod_{(H \to X) \notin C} \overline{\theta}_X(\alpha_H),$$

where the index i+1 is taken modulo k and the directed edge $H \to X$ is the unique direction 'away' from the cycle C. From Proposition 6.2, $(\mathcal{A}, \mathbf{m})$ is free if and only if there is a choice of θ_X for every $X \in L_2^{\text{trip}}$ so that the determinant (1) is a non-zero constant. We assume that we have such a choice of $\theta_X, X \in L_2^{\text{trip}}$, and deduce the form for $(\mathcal{A}, \mathbf{m})$ given in the theorem. Lemma B.2 guarantees that $\overline{\theta}_X(\alpha_H) \neq 0$ for any $X \in L_2^{\text{trip}}$ and H < X. Now, fixing an arbitrary X_i in the cycle C, we must have $\theta_{X_i}(\alpha_i) = s_i \alpha_i^{\mathbf{m}(\alpha_i)}$ and $\theta_{X_i}(\alpha_{i+1}) = t_i \alpha_{i+1}^{\mathbf{m}(\alpha_{i+1})}$ for some non-zero constants s_i and t_i . Hence $\mathbf{m}(\alpha_i) = \mathbf{m}(\alpha_{i+1}) = \deg(\theta_{X_i})$. Reading around the cycle C, we see that $\mathbf{m}(\alpha_0) = \mathbf{m}(\alpha_1) = \cdots = \mathbf{m}(\alpha_{k-1}) = n$ for some positive integer n, proving (2).

Next again fix an arbitrary X_i in the cycle C and consider the multi-arrangement $(\mathcal{A}_{X_i}, \mathbf{m}_{X_i})$. Since X_i has rank 2, we may assume $(\mathcal{A}_{X_i}, \mathbf{m}_{X_i})$ is defined by $\mathcal{Q}(\mathcal{A}_{X_i}, \mathbf{m}_{X_i}) = x^n y^n \prod_{j=1}^k (x-a_j y)^{m_j}$ for some integer $k \ge 1$ (since $X \in L_2^{\text{trip}}$) and some non-zero constants a_1, \ldots, a_k (we are writing m_j for $\mathbf{m}(x-a_j y)$). Notice that $m_j \le n$ for all $j = 1, \ldots, k$ since θ_{X_i} has degree n (this is easily seen by applying Lemma B.2). In particular, $(\mathcal{A}_X, \mathbf{m}_X)$ is balanced - i.e. $2n \le |\mathbf{m}_X| = 2n + \sum_{i=1}^k m_i$.

Next, a result of Abe [3, Theorem 1.6] shows that the exponents of a balanced 2-multi-arrangement differ by at most $|\mathcal{A}| - 2 = k$. Write $d_1^{X_i} \ge d_2^{X_i}$ for the exponents of $(\mathcal{A}_{X_i}, \mathbf{m}_{X_i})$, and remember that we are assuming $d_2^{X_i} = \deg(\theta_{X_i}) = n$. From Abe's result we get that $|d_1^{X_i} - d_2^{X_i}| = d_1^{X_i} - n \le k$, so $d_1^{X_i} \le n + k$. But $|\mathbf{m}_{X_i}| = 2n + \sum_{j=1}^k m_j = n + d_2^{X_i}$, so $d_2^{X_i} = n + \sum_{i=1}^k m_i \le n + k$ (this last inequality follows from the previous sentence). Since $m_j \ge 1$ for every j, we must have $m_j = 1$ for each $j = 1, \ldots, k$. Now, applying Lemma B.1 implies that $a_1^{n-1} = \cdots = a_k^{n-1}$. This yields the second bullet point under (3).

As remarked just prior to the statement of Theorem 6.10, $\alpha_0, \dots, \alpha_{k-1}$ are linearly independent. Change coordinates so that $\alpha_0 = x_0, \dots, \alpha_{k-1} = x_{k-1}$. Lemma B.1 again yields that the derivation θ_{X_i} has the form $\theta_{X_i} = x_i^n \frac{\partial}{\partial x_i} +$ $B_i x_{i+1}^n \frac{\partial}{\partial x_{i+1}}$. Plugging this into equation (1) yields

(2)
$$\det(\overline{M}) = \left(1 - \prod_{i=0}^{k-1} B_i\right) \prod_{(H \to X) \notin C} \overline{\theta}_X(\alpha_H),$$

yielding the first bullet point under (3) since this must be a *non-zero* constant.

Now we prove (1). If $H \in \mathcal{A}$ is not a vertex of C but there is some $X \in C$ so that H < X, then $H \in \mathcal{A}_X$ and $\mathbf{m}(H) = 1$ since $H \notin C$. So suppose $H \in \mathcal{A}$ but $H \not\leq X$ for any $X \in C$. Then H < X for some $X \in L_2^{\text{trip}}$, and $X \notin C$. Then there is a unique H' so that H' is closer to C than X as vertices of \overline{G} . Thus $H' \to X$ is a directed edge in any orientation of \overline{G} satisfying that every vertex has a unique incoming edge. Thus $\theta_X(\alpha_H)$ appears in the expression of Equation (2) and $\theta_X(\alpha_H) = \alpha_H^{\mathbf{m}(H)} = \alpha_H$ (up to constant multiple, since we assume the right hand side of Equation (1) is a non-zero constant). It follows from Lemma B.2 that (A_X, \mathbf{m}_X) is simple, i.e. $\mathbf{m}_X \equiv 1$. Hence $\mathbf{m}(H) = 1$ as well.

Finally, suppose \mathcal{A} is a non-free TF_2 arrangement and $(\mathcal{A}, \mathbf{m})$ has the form indicated in the statement of the theorem. Then clearly $det(\overline{M})$ is a non-zero constant by equation (2), so $(\mathcal{A}, \mathbf{m})$ is free by Proposition 6.2. \square

Example 6.11 (Example 1.3, revisited). Consider the arrangement $\mathcal{A}(\alpha, \beta)$ defined by $xyz(x - \alpha y)(x - \beta y)(y - z)(z - x)$, where $\alpha, \beta \in \mathbb{K}$. This is a non-free TF_2 arrangement with three rank two flats in L_2^{trip} : the flat X_0 defined by xy(x - x) αy) $(x - \beta y)$, the flat X_1 defined by yz(y - z), and the flat X_2 defined by xz(x - z). The reduced graph $\overline{G}(\mathcal{A})$ consists of the cycle $C = \{H_0, X_0, H_1, X_1, H_2, X_2, H_0\},\$ where $H_0 = V(x), H_1 = V(y)$, and $H_2 = V(z)$. By Theorem 6.6 the $(\mathcal{A}(\alpha, \beta), \mathbf{m})$ is free if and only if $\mathcal{Q}(\mathcal{A}, \mathbf{m})$ has the form

$$\mathcal{Q}(\mathcal{A},\mathbf{m}) = x^n y^n z^n (x - \alpha y) (x - \beta y) (y - z) (z - x),$$

where $\alpha^{n-1} = \beta^{n-1} \neq 1$.

6.5. Further counterexamples to Orlik's conjecture. In this section we consider the family of arrangements $\mathcal{A}_{r,t}$ with defining polynomial

$$\mathcal{Q}(\mathcal{A}_{r,t}) = x_0 \left(\prod_{i=1}^r (x_i^2 - x_0^2) \right) (x_1 - x_2) \cdots (x_{r-1} - x_r) (x_r - tx_1),$$

where $t \neq 0 \in \mathbb{K}$. Write $H_0 = V(x_0)$. The restriction $\mathcal{A}_{r,t}^{H^0}$ has defining polynomial

$$\mathcal{Q}(\mathcal{A}_{r,t}^{H_0}) = \left(\prod_{i=1}^r x_i\right) (x_1 - x_2) \cdots (x_{r-1} - x_r)(x_r - tx_1).$$

Ziegler's multi-restriction has the defining polynomial

$$\mathcal{Q}(\mathcal{A}^{H_0}, \mathbf{m}^{H_0}) = \left(\prod_{i=1}^r x_i^2\right) (x_1 - x_2) \cdots (x_{r-1} - x_r)(x_r - tx_1)$$

Proposition 6.12. If $t \neq 1$ and \mathbb{K} has characteristic zero, the arrangement $\mathcal{A}_{r,t}$ satisfies

- (1) $(\mathcal{A}_{r,t}^{H_0}, \mathbf{m}^{H_0})$ is free for $t \neq 0, 1$, (2) $\mathcal{A}_{r,t}$ is free if and only if t = -1,

A HOMOLOGICAL CHARACTERIZATION FOR FREENESS OF MULTI-ARRANGEMENTS 29

(3) The minimal free resolution of $D(\mathcal{A}_{r,t}^{H_0})$ is a twisted and truncated Koszul complex, reg $(D(\mathcal{A}_{r,t}^{H_0})) = 3$, and $pdim(D(\mathcal{A}_{r,t}^{H_0})) = r - 2$ (the maximum).

Proof. Write $X_{r,t}$ for $\mathcal{A}_{r,t}^{H_0}$, α_i for x_i $(i = 1, \ldots, r)$, β_i for $x_i - x_{i+1}$ $(i = 1, \ldots, r-1)$, and β_r for $x_r - tx_1$. The space of all relations on the linear forms of X_r is an rdimensional space. Write Y_i for the 'triple flat' of codimension two given by the vanishing of the forms $\alpha_i, \alpha_{i+1}, \beta_i$ for $i = 1, \ldots, r-1$, and write Y_r for the flat determined by $\alpha_1, \alpha_r, \beta_r$. Clearly $L_2^{\text{trip}} = \{Y_1, \ldots, Y_r\}$ and it is not difficult to see that each Y_i contributes one relation to the relation space and they are all linearly independent, hence $X_{r,t}$ is a TF_2 arrangement. Since $\#L_2^{\text{trip}} = r$, the rank of $X_{r,t}$, it follows from Theorem 6.10 that \mathbf{m}^{H_0} is a free multiplicity on $X_{r,t}$, proving (1).

For (2), we use Theorem 2.6. We already have $(\mathcal{A}_{r,t}^{H_0}, \mathbf{m}^{H_0})$ free by (1), so we consider local freeness of $\mathcal{A}_{r,t}$ along H_0 . If $t \neq -1$, then the closed sub-arrangement with defining equation

$$(x_1^2 - x_0^2)(x_r^2 - x_0^2)(x_r - tx_1)x_0$$

is not free, so neither is $\mathcal{A}_{r,t}$. So we need to prove local freeness when t = -1. The closed sub-arrangements of $\mathcal{A}_{r,-1}$ along H_0 are isomorphic to $A_1 \times A_1 \times A_1, A_1 \times A_2, A_3$ with a hyperplane removed (the *deleted* A_3 arrangement), or A_3 . Since these are all free, $\mathcal{A}_{r,-1}$ is free by Theorem 2.6.

For (3), we use the presentation from Proposition 6.2. We consider only the case $\mathbf{m} \equiv 1$. As in Proposition 6.2, write formal symbols [H] (or $[\alpha_H]$) for the generator of $J(H) = \langle \alpha_H \rangle$ and [X, H] (or $[X, \alpha_H]$) for the generator of J(H) inside the direct sum $\bigoplus_{X \in L_2^{\mathrm{trip}}} \bigoplus_{H < X} J(H)$. In the case of $X_{r,t}$, the map ι : $\bigoplus J(H) \to \bigoplus_{X,H} J(H)$ has the form $\iota([\alpha_i]) = [Y_i, \alpha_i] + [Y_{i+1}, \alpha_i]$ for $i = 1, \ldots, r-1, \iota([\alpha_r]) = [Y_r, \alpha_r] + [Y_r, \alpha_1]$, and $\iota([\beta_i]) = [Y_i, \beta_i]$. Hence in coker (ι) , we may disregard the generators corresponding to $[Y_i, \beta_i]$ and we can choose generators $[Y_1, \alpha_1], \cdots, [Y_r, \alpha_r]$ with $[Y_2, \alpha_1] = -[Y_1, \alpha_1]$, etc. With this choice of basis, we determine that the map $\sum \overline{\psi_X} : \oplus D(\mathcal{A}_X, \mathbf{m}_X) \to \operatorname{coker}(\iota)$ is given on $\theta \in D(\mathcal{A}_{Y_1}, \mathbf{m}_{Y_1})$ by $\theta \to \overline{\theta}(\alpha_1)[Y_1, \alpha_1] + \overline{\theta}(\alpha_2)[Y_1, \alpha_2] = \overline{\theta}(\alpha_1)[Y_1, \alpha_1] - \overline{\theta}(\alpha_2)[Y_2, \alpha_2]$, where $\overline{\theta}(\alpha_i) = \theta(\alpha_i)/\alpha_i$ (and similarly for $\theta \in D(\mathcal{A}_{Y_i}, \mathbf{m}_{Y_i}), i > 1$). Thus we may represent the map $\sum \overline{\psi_X}$ by the matrix

Now, for $i = 1, ..., r, D(\mathcal{A}_{Y_i})$ is generated by the derivations

$$\theta_{i} = x_{i} \frac{\partial}{\partial x_{i}} + x_{i+1} \frac{\partial}{\partial x_{i+1}}$$
$$\upsilon_{i} = x_{i}^{2} \frac{\partial}{\partial x_{i}} + x_{i+1}^{2} \frac{\partial}{\partial x_{i+1}}$$

for $i = 1, \ldots, r - 1$ and $D(Y_r)$ is generated by

$$\theta_r = x_r \frac{\partial}{\partial x_r} + x_1 \frac{\partial}{\partial x_1}$$
$$v_r = x_r^2 \frac{\partial}{\partial x_r} + tx_1^2 \frac{\partial}{\partial x_1}$$

So the above matrix simplifies to

$$M = \begin{bmatrix} Y_1, \alpha_1 \\ [Y_2, \alpha_2] \\ [Y_3, \alpha_3] \\ \vdots \\ [Y_r, \alpha_r] \end{bmatrix} \begin{pmatrix} 1 & x_1 & 0 & 0 & \cdots & -1 & -tx_1 \\ -1 & -x_2 & 1 & x_2 & \cdots & 0 & 0 \\ 0 & 0 & -1 & -x_3 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 1 & x_r \end{pmatrix}$$

Notice that in coker(M), the Euler derivations $\theta_1, \ldots, \theta_r$ identify all basis elements $[Y_1, \alpha_1], \cdots, [Y_r, \alpha_1]$ to a single basis element. Hence

$$\operatorname{coker}(M) \cong H^{2}(\mathcal{J}^{\bullet}) \cong \frac{S(-1)}{\langle x_{1} - x_{2}, x_{2} - x_{3}, \dots, x_{r-1} - x_{r}, x_{r} - tx_{1} \rangle},$$

where the S(-1) encodes the fact that the degrees of $[Y_i, \alpha_i]$ are all one. Since $t \neq 0, 1, H^2(\mathcal{J}^{\bullet}) \cong S/\mathfrak{m}$, where \mathfrak{m} is the maximal ideal of S.

Now, applying the snake lemma to the diagram in Figure 6 and using the fact that ι is injective (see the proof of Proposition 6.2), we get the four-term exact sequence

$$0 \to D(X_{r,t}) \to \bigoplus_{Y \in L_{\alpha}^{\operatorname{trip}}} D((X_{r,t})_Y, \mathbf{m}_Y) \xrightarrow{M} S(-1)^{\kappa} \to H^2(\mathcal{J}(X_{r,t})) \to 0,$$

where $S(-1)^{\kappa} = \operatorname{coker}(\iota)$. Above we noticed this prunes down to

$$0 \to D(X_{r,t}) \to S(-1) \oplus S(-2)^r \xrightarrow{T} S(-1) \to \frac{S}{\mathfrak{m}} \to 0,$$

where $T = \begin{bmatrix} 0 & x_1 - x_2 & \cdots & x_r - tx_1 \end{bmatrix}$. It follows that

$$D(X_{r,t}) \cong S(-1) \oplus K_2(\mathfrak{m})(-1),$$

where $K_2(\mathfrak{m})(-1)$ is the module of second syzygies of \mathfrak{m} , twisted by -1. It is wellknown that $K_2(\mathfrak{m})$ has $\binom{r}{2}$ generators of degree 2, so $D(X_{r,t})$ is generated by the Euler derivation along with $\binom{r}{2}$ generators of degree 3. Its minimal free resolution is given by truncating the Koszul complex at $K_2(\mathfrak{m})$, so it is linear of length r-2, the maximum possible. Since the resolution is linear, $reg(D(X_{r,t})) = 3$, where regdenotes Castelnuovo-Mumford regularity. This completes the proof of (3).

Remark 6.13. If $t \neq 1$, then the only non-boolean generic flats of $X_{r,t}$ are the obvious ones of rank two corresponding to the closed circuits of length three. Hence the bound on $pdim(X_{r,t})$ given by Corollary 3.15 is zero, while $pdim(X_{r,t}) = r - 2$. If t = 1 then we can see that β_1, \ldots, β_r forms a closed circuit of length r, in which case $pdim(D(X_{r,1}, \mathbf{m})) \geq r - 3$ by Corollary 3.15. In fact, if we introduce the extra variable x_0 and change coordinates by the rule $x_i \to x_i - x_0$, we see that $X_{r,1}$ is the graphic arrangement corresponding to a wheel with r spokes. From [15, Example 7.1], $pdim(D(X_{r,1}, \mathbf{m})) = r - 3$ for any multiplicity \mathbf{m} .

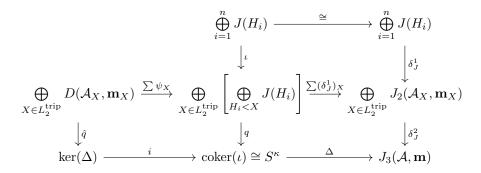


FIGURE 7. Diagram for Proposition 7.1

7. The case of line arrangements

It is well-known that $D(\mathcal{A})$ may be identified with the module of syzygies on the Jacobian ideal $Jac(\mathcal{A})$ of the defining polynomial of \mathcal{A} ; hence \mathcal{A} is free if and only if $Jac(\mathcal{A})$ is codimension two and Cohen-Macaulay. In this section we show that, for rank three arrangements, $D(\mathcal{A}, \mathbf{m})$ may be identified with potentially higher syzygies of a less geometric object. We use this to give another formulation of Terao's conjecture for lines in \mathbb{P}^2 .

First, suppose \mathcal{A} is a TF_2 arrangement and consider the diagram in Figure 6. Since ι is injective (see the proof of Proposition 6.2) and $H^1(\mathcal{J}^{\bullet}) \cong D(\mathcal{A}, \mathbf{m})$, the full snake lemma applied to this diagram yields the exact sequence

$$0 \to D(\mathcal{A}, \mathbf{m}) \to \bigoplus_{X \in L_2^{\mathrm{trip}}} D(\mathcal{A}_X, \mathbf{m}_X) \to S^{\kappa} \to H^2(\mathcal{J}^{\bullet}) \to 0,$$

where the inclusion $D(\mathcal{A}, \mathbf{m}) \to \bigoplus D(\mathcal{A}_X, \mathbf{m}_X)$ is the sum of the restriction maps $D(\mathcal{A}, \mathbf{m}) \to D(\mathcal{A}_X, \mathbf{m}_X)$ (recall that the isomorphism $D(\mathcal{A}, \mathbf{m}) \cong H^1(\mathcal{J})$ is given by the map $\psi(\theta) = \sum_{H \in L} \theta(\alpha_H)$). By Theorem 1.1, $D(\mathcal{A}, \mathbf{m})$ is free if and only if

$$0 \to D(\mathcal{A}, \mathbf{m}) \to \bigoplus_{X \in L_{2}^{\mathrm{trip}}} D(\mathcal{A}_{X}, \mathbf{m}_{X}) \xrightarrow{\sum \overline{\psi_{X}}} S^{\kappa} \to 0$$

is a short exact sequence. Hence if $D(\mathcal{A}, \mathbf{m})$ is free we may identify it with the syzygies on a (necessarily non-minimal) set of generators for the free module S^{κ} .

Now suppose \mathcal{A} is rank three, irreducible and totally formal but not TF_2 , so $\mathcal{S}^3(\mathcal{A}) = S_3(\mathcal{A}) \neq 0$. We can set up (see Figure 7) a very similar diagram to the one in Figure 6. All maps in the top two rows of Figure 7 are the same as in Figure 6; in particular $\kappa = \sum_{X \in L_2^{\mathrm{trip}}} |\mathcal{A}_X| - |\mathcal{A}|$ just as in Proposition 6.2. The chain complex $\mathcal{J}^{\bullet}(\mathcal{A}, \mathbf{m})$ appears as the right-most column. The map labeled q is the quotient map. The existence of the bottom right horizontal map $\Delta : \operatorname{coker}(\iota) \to J_3(\mathcal{A}, \mathbf{m})$ follows from the commutativity of the upper right square; furthermore Δ is surjective since δ_J^1 and $\sum (\delta_J^1)_X$ are both surjective. The lower left map $i : \ker(\Delta) \to S^{\kappa}$ is the inclusion and the map \hat{q} is lifted from q in the obvious way.

Proposition 7.1. Let \mathcal{A} be an essential, irreducible, formal arrangement of rank 3 which is not TF_2 . Then

$$H^{2}(\mathcal{J}) \cong coker\left(\bigoplus_{X \in L_{2}^{trip}} D(\mathcal{A}_{X}, \mathbf{m}_{X}) \xrightarrow{\hat{q}} ker(\Delta)\right).$$

and $D(\mathcal{A}, \mathbf{m})$ is free if and only if \hat{q} is surjective. Moreover, $D(\mathcal{A}, \mathbf{m})$ is free if and only if

$$0 \to D(\mathcal{A}, \mathbf{m}) \to \bigoplus_{X \in L_2^{trip}} D(\mathcal{A}_X, \mathbf{m}_X) \xrightarrow{\iota \circ q} S^{\kappa}$$

is exact in the first two positions and $coker(i \circ \hat{q}) = J_2(\mathcal{A}, \mathbf{m})$; i.e. the above sequence is a free resolution for $J_2(\mathcal{A}, \mathbf{m})$. Moreover, the left-most inclusion of $D(\mathcal{A}, \mathbf{m})$ into $\bigoplus D(\mathcal{A}_X, \mathbf{m}_X)$ is given by the sum of natural restriction maps.

Proof. The identification of $H^2(\mathcal{J})$ with coker (\hat{q}) follows from a long exact sequence in homology. More precisely, the rows of the diagram in Figure 7 are all exact. Hence we may view this diagram as a short exact sequence of chain complexes; the chain complexes are the columns of the diagram. As we saw in the proof of Proposition 6.2, the map ι is injective so the middle column is exact. Thus the long exact sequence in homology splits into three isomorphisms. The first isomorphism yields $H^1(\mathcal{J}) \cong \ker(\hat{q})$; which we may read as $D(\mathcal{A}, \mathbf{m}) \cong \ker(\hat{q})$ $(H^1(\mathcal{J}) \cong D(\mathcal{A}, \mathbf{m})$ since \mathcal{A} is essential). The second isomorphisms yields $H^2(\mathcal{J}) \cong$ coker (\hat{q}) , which is the first statement of the proposition. The third isomorphism yields $H^3(\mathcal{J}) = 0$. Hence by Theorem 1.1, $D(\mathcal{A}, \mathbf{m})$ is free if and only if $H^2(\mathcal{J}) = 0$, if and only if coker $(\hat{q}) = 0$.

If \hat{q} is surjective (if and only if $D(\mathcal{A}, \mathbf{m})$ is free), then $\operatorname{im}(\hat{q}) = \operatorname{ker}(\Delta)$; by our previous identification of $D(\mathcal{A}, \mathbf{m})$ with $\operatorname{ker}(\hat{q})$ we have freeness of $D(\mathcal{A}, \mathbf{m})$ if and only if the sequence

$$0 \to D(\mathcal{A}, \mathbf{m}) \to \bigoplus_{X \in L_2^{\operatorname{trip}}} D(\mathcal{A}_X, \mathbf{m}) \xrightarrow{\iota \circ \dot{q}} S^{\kappa} \xrightarrow{\Delta} J_3(\mathcal{A}, \mathbf{m}) \to 0$$

is exact. Chasing the diagram in Figure 7, and using that the map $D(\mathcal{A}, \mathbf{m}) \rightarrow \bigoplus J(H)$ is given by $\psi(\theta) = \sum \theta(\alpha_H)$, yields that the left-most inclusion is given by the sum of natural restriction maps, so we are done.

Given a matrix for Δ in the natural choice of basis, we can identify the columns of Δ with a (often non-minimal) set of generators for $J_3(\mathcal{A}, \mathbf{m})$. Thus ker(Δ) can be identified with syzygies on this set of generators, which we denote by syz(Δ). In this language, we have the following corollary.

Corollary 7.2. $D(\mathcal{A}, \mathbf{m})$ is free if and only if $\sum_{X \in L_2^{trip}} (i \circ \hat{q}) (D(A_X, \mathbf{m}_X))$ generates $syz(\Delta)$.

Remark 7.3. Proposition 7.1 and Corollary 7.2 generalize Theorem 3.16 and Corollary 6.3 of [13], where the corresponding statements are worked out for A_3 multi-braid arrangements.

Now consider the case $\mathbf{m} \equiv 1$, which is the setting of Terao's question of whether freeness of \mathcal{A} is combinatorial. In this case a special role is again played by the Euler derivations in $D(\mathcal{A}_X)$. In terms of corollary 7.2, Euler derivations represent syzygies

of degree one, which in turn express redundant generators of $J_3(\mathcal{A})$ (just like $J_2(\mathcal{A})$, $J_3(\mathcal{A})$ is generated in degree one). Write $\overline{D}(\mathcal{A})$ for $D(\mathcal{A})$ modulo the summand generated by the Euler derivation. Then, for $X \in L_2^{\text{trip}}$, $\overline{D}(\mathcal{A}_X) \cong S(-|\mathcal{A}_X|+1)$, as a graded S-module. Also write e for the rank of the free module spanned by the image of the Euler derivations of $D(\mathcal{A}_X, \mathbf{m}_X)$ inside of S^{κ} . Once we have pruned away the Euler derivations, the chain complex from proposition 7.1 (written as a graded complex of S-modules) becomes

(3)
$$0 \to \overline{D}(\mathcal{A}) \to \bigoplus_{X \in L_2^{\mathrm{trip}}} S(-|\mathcal{A}_X|+1) \to S(-1)^{\kappa-e} \to J_3(\mathcal{A}) \to 0,$$

and the first two maps are now minimal (matrices for these maps will have no constants other than 0). Since it is shown in Proposition 6.1 that freeness of TF_2 arrangements is combinatorial, Terao's question for line arrangements reduces to:

Question 7.4 (Terao's question for line arrangements). If \mathcal{A} is a line arrangement in \mathbb{P}^2 which is not TF_2 , is exactness of the chain complex (3) combinatorial?

Example 7.5 (A_3 braid arrangement). For $\mathcal{A} = A_3$ braid arrangement defined by the forms $x, y, z, x - y, x - z, y - z, J_3(A_3) = \langle x, y, z, x - y, x - z, y - z \rangle$. The A_3 arrangement has four triple points. The image of the Euler derivations $D(\mathcal{A}_X)$, $X \in L_2^{\text{trip}}$ inside of $S^{\kappa} = S^{12-6} = S^6$ has rank 3, corresponding to the three redundant generators of $J_3(\mathcal{A})$. Pruning off the Euler derivations yields the chain complex

$$0 \to \overline{D}(\mathcal{A}) \to S(-2)^4 \to S(-1)^3 \to J_3(\mathcal{A}) \to 0,$$

which is exact since the Koszul syzygies among x, y, z are obtained from the non-Euler derivations on $D(\mathcal{A}_X)$, $X \in L_2^{\text{trip}}$. This is not minimal since $D(\mathcal{A})$ has a generator of degree 2 which expresses a relation among the four non-Euler derivations around triple points. Once this generator of degree 2 is pruned off we obtain the Koszul complex resolving $J_3(\mathcal{A})$,

$$0 \to S(-3) \to S(-2)^3 \to S(-1)^3 \to J_3(\mathcal{A}) \to 0.$$

As expected, $D(\mathcal{A})$ is free with exponents 1, 2, 3 (the generators of degree 1, 2 were pruned off to produce the minimal resolution).

8. Concluding remarks

We have implemented construction of the chain complexes $\mathcal{J}^{\bullet}, \mathcal{S}^{\bullet}, \mathcal{D}^{\bullet}$ in Macaulay2. Instructions for loading the functions and detailed examples may be found at http://math.okstate.edu/people/mdipasq/ under the Research tab.

So far, we have not studied the behavior of the chain complex $\mathcal{D}^{\bullet}(\mathcal{A}, \mathbf{m})$ under deletion and restriction. In particular, we have the following question.

Question 8.1. Is there a short exact sequence of complexes $0 \to \mathcal{D}^{\bullet}(\mathcal{A}', \mathbf{m}') \to \mathcal{D}^{\bullet}(\mathcal{A}, \mathbf{m}) \to \mathcal{D}^{\bullet}(\mathcal{A}'', \mathbf{m}^*) \to 0$ corresponding to a triple $(\mathcal{A}', \mathcal{A}, \mathcal{A}'')$ of arrangements (in the sense of [23, Definition 1.14]), where \mathbf{m}^* is the Euler multiplicity [7]?

The main difficulty here is to construct the maps between these chain complexes. Constructing such maps would provide a tight relationship to the addition-deletion theorem of [7]. We also are not aware of any relationships between the chain complex $\mathcal{D}^{\bullet}(\mathcal{A}, \mathbf{m})$ and the characteristic polynomial of $(\mathcal{A}, \mathbf{m})$ or a supersolvable filtration of \mathcal{A} .

References

- T. Abe. Deletion theorem and combinatorics of hyperplane arrangements. ArXiv e-prints, September 2017.
- Takuro Abe. Free and non-free multiplicity on the deleted A₃ arrangement. Proc. Japan Acad. Ser. A Math. Sci., 83(7):99–103, 2007.
- [3] Takuro Abe. Chambers of 2-affine arrangements and freeness of 3-arrangements. J. Algebraic Combin., 38(1):65-78, 2013.
- [4] Takuro Abe. Divisionally free arrangements of hyperplanes. Invent. Math., 204(1):317–346, 2016.
- [5] Takuro Abe, Koji Nuida, and Yasuhide Numata. Signed-eliminable graphs and free multiplicities on the braid arrangement. J. Lond. Math. Soc. (2), 80(1):121–134, 2009.
- [6] Takuro Abe, Hiroaki Terao, and Max Wakefield. The characteristic polynomial of a multiarrangement. Adv. Math., 215(2):825–838, 2007.
- [7] Takuro Abe, Hiroaki Terao, and Max Wakefield. The Euler multiplicity and addition-deletion theorems for multiarrangements. J. Lond. Math. Soc. (2), 77(2):335–348, 2008.
- [8] Takuro Abe, Hiroaki Terao, and Masahiko Yoshinaga. Totally free arrangements of hyperplanes. Proc. Amer. Math. Soc., 137(4):1405–1410, 2009.
- [9] Takuro Abe and Masahiko Yoshinaga. Free arrangements and coefficients of characteristic polynomials. *Math. Z.*, 275(3-4):911–919, 2013.
- [10] Louis J. Billera. Homology of smooth splines: generic triangulations and a conjecture of Strang. Trans. Amer. Math. Soc., 310(1):325–340, 1988.
- [11] Louis J. Billera and Lauren L. Rose. A dimension series for multivariate splines. Discrete Comput. Geom., 6(2):107–128, 1991.
- [12] K. A. Brandt and H. Terao. Free arrangements and relation spaces. Discrete Comput. Geom., 12(1):49–63, 1994.
- [13] M. DiPasquale, C. A. Francisco, J. Mermin, and J. Schweig. Free and Non-free Multiplicities on the A₃ Arrangement. ArXiv e-prints, September 2016.
- [14] M. DiPasquale and M. Wakefield. Free Multiplicities on the moduli of X_3 . J. Pure Appl. Algebra, to appear.
- [15] Michael DiPasquale. Generalized splines and graphic arrangements. J. Algebraic Combin., 45(1):171–189, 2017.
- [16] Paul H. Edelman and Victor Reiner. A counterexample to Orlik's conjecture. Proc. Amer. Math. Soc., 118(3):927–929, 1993.
- [17] Paul H. Edelman and Victor Reiner. Free hyperplane arrangements between A_{n-1} and B_n . Math. Z., 215(3):347–365, 1994.
- [18] Anthony V. Geramita and Henry K. Schenck. Fat points, inverse systems, and piecewise polynomial functions. J. Algebra, 204(1):116–128, 1998.
- [19] Daniel R. Grayson and Michael E. Stillman. Macaulay2, a software system for research in algebraic geometry. Available at http://www.math.uiuc.edu/Macaulay2/.
- [20] Joseph P. S. Kung and Hal Schenck. Derivation modules of orthogonal duals of hyperplane arrangements. J. Algebraic Combin., 24(3):253–262, 2006.
- [21] Hideyuki Matsumura. Commutative ring theory, volume 8 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, second edition, 1989. Translated from the Japanese by M. Reid.
- [22] Peter Orlik. Introduction to arrangements, volume 72 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1989.
- [23] Peter Orlik and Hiroaki Terao. Arrangements of hyperplanes, volume 300 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1992.
- [24] Kyoji Saito. Theory of logarithmic differential forms and logarithmic vector fields. J. Fac. Sci. Univ. Tokyo Sect. IA Math., 27(2):265–291, 1980.
- [25] Hal Schenck. A spectral sequence for splines. Adv. in Appl. Math., 19(2):183-199, 1997.
- [26] Hal Schenck. Hyperplane arrangements: computations and conjectures. In Arrangements of hyperplanes—Sapporo 2009, volume 62 of Adv. Stud. Pure Math., pages 323–358. Math. Soc. Japan, Tokyo, 2012.

- [27] Hal Schenck and Mike Stillman. Local cohomology of bivariate splines. J. Pure Appl. Algebra, 117/118:535–548, 1997. Algorithms for algebra (Eindhoven, 1996).
- [28] Henry K. Schenck and Peter F. Stiller. Cohomology vanishing and a problem in approximation theory. Manuscripta Math., 107(1):43–58, 2002.
- [29] L. Solomon and H. Terao. A formula for the characteristic polynomial of an arrangement. Adv. in Math., 64(3):305–325, 1987.
- [30] R. P. Stanley. Supersolvable lattices. Algebra Universalis, 2:197–217, 1972.
- [31] Hiroaki Terao. Generalized exponents of a free arrangement of hyperplanes and Shepherd-Todd-Brieskorn formula. *Invent. Math.*, 63(1):159–179, 1981.
- [32] Stefan O. Tohăneanu. Topological criteria for k-formal arrangements. Beiträge Algebra Geom., 48(1):27–34, 2007.
- [33] Atsushi Wakamiko. On the exponents of 2-multiarrangements. Tokyo J. Math., 30(1):99–116, 2007.
- [34] Max Wakefield and Sergey Yuzvinsky. Derivations of an effective divisor on the complex projective line. Trans. Amer. Math. Soc., 359(9):4389–4403, 2007.
- [35] Masahiko Yoshinaga. Characterization of a free arrangement and conjecture of Edelman and Reiner. Invent. Math., 157(2):449–454, 2004.
- [36] Masahiko Yoshinaga. On the extendability of free multiarrangements. In Arrangements, local systems and singularities, volume 283 of Progr. Math., pages 273–281. Birkhäuser Verlag, Basel, 2010.
- [37] Sergey Yuzvinsky. Cohomology of local sheaves on arrangement lattices. Proc. Amer. Math. Soc., 112(4):1207–1217, 1991.
- [38] Sergey Yuzvinsky. The first two obstructions to the freeness of arrangements. Trans. Amer. Math. Soc., 335(1):231–244, 1993.
- [39] Sergey Yuzvinsky. Free and locally free arrangements with a given intersection lattice. Proc. Amer. Math. Soc., 118(3):745–752, 1993.
- [40] Günter M. Ziegler. Multiarrangements of hyperplanes and their freeness. In Singularities (Iowa City, IA, 1986), volume 90 of Contemp. Math., pages 345–359. Amer. Math. Soc., Providence, RI, 1989.
- [41] Günter M. Ziegler. Matroid representations and free arrangements. Trans. Amer. Math. Soc., 320(2):525–541, 1990.

APPENDIX A. THE MODULI SPACE OF AN ARRANGEMENT

In this appendix we briefly summarize the construction of the moduli space of a lattice over an algebraically closed field \mathbb{K} . Given the intersection lattice L of some central arrangement $\mathcal{A} \subset V \cong \mathbb{K}^{\ell}$ with n hyperplanes, we obtain the *moduli space* of L in the following steps:

- (1) Fix an ordering H_1, \ldots, H_n of the hyperplanes of \mathcal{A} . Then each flat $X \in L$ can be identified with the tuple of integers i_1, \ldots, i_j where $H_{i_s} < X$ for every $s = 1, \ldots, j$.
- (2) Let M be an $n \times \ell$ coefficient matrix of variables and $\mathbb{K}[M]$ the polynomial ring in these variables. The rows of M correspond to the hyperplanes H_1, \ldots, H_n , in order.
- (3) Suppose the flat $X \in L_k$ is defined by hyperplanes H_{i_1}, \ldots, H_{i_j} , with j > k. Then the $(k + 1) \times (k + 1)$ minors of the submatrix of M formed by the rows i_1, \ldots, i_j must all vanish. Let $I \subset \mathbb{K}[M]$ be the radical of the ideal generated by all of these minors for all flats $X \in L$.
- (4) Now let \mathcal{B} be the set of all possible tuples of ℓ hyperplanes which intersect in only the origin. Each tuple in \mathcal{B} gives rise to an $\ell \times \ell$ sub-matrix of Mwhose determinant must not vanish. Let J be the principal ideal generated by the product of all of these determinants.

- (5) The quasi-affine variety $\mathcal{V} = \mathcal{V}(L) = V(I) \setminus V(J) \subset \mathcal{M}$, endowed with the Zariski topology, corresponds to coefficient matrices of hyperplane arrangements with intersection lattice L.
- (6) Since the correspondence between a coefficient matrix and a hyperplane arrangement is not one-to-one, the moduli space $\mathcal{M}(L)$ of L is obtained from $\mathcal{V}(L)$ by quotienting out by the action of scaling rows of M and a changing coordinates in V.

A property of an arrangement \mathcal{A} is *combinatorial* if it can be determined from its lattice; equivalently if the property holds for all $\mathcal{A}' \in \mathcal{M}(L(\mathcal{A}))$. One of the key open questions in the theory of arrangements (posed by Terao), is whether freeness of arrangements is combinatorial. Yuzvinsky [39] has shown that free arrangements with intersection lattice L form a Zariski open subset of $\mathcal{M}(L)$. It is not difficult to show that a similar condition holds for totally formal arrangements.

Lemma A.1. If \mathcal{A} is an essential and totally formal arrangement then rank($\mathcal{S}^{i}(\mathcal{A})$) is determined by L for every i. Moreover, the set of essential totally formal arrangements with intersection lattice L is a Zariski open set in $\mathcal{M}(L)$.

Proof. The arrangement \mathcal{A} is essential and totally formal if and only if \mathcal{S}^{\bullet} is exact (see Corollary 4.8). Since $\mathcal{S}^k(\mathcal{A}) = \bigoplus_{X \in L_k} \mathcal{S}^k(\mathcal{A}_X)$, it suffices to show inductively that $\operatorname{rk}(\mathcal{S}^k(\mathcal{A}_X))$ is determined from $L(\mathcal{A}_X)$ for $k = \operatorname{rk}(X)$. If $X \in L(\mathcal{A})$ has rank one, then $\operatorname{rk} \mathcal{S}^1(\mathcal{A}_X) = 1$. Now the result follows inductively on the rank of \mathcal{A}_X , using the Euler characteristic of $\mathcal{S}^{\bullet}(\mathcal{A}_X)$. See also Remark 4.12.

Now decompose $\mathcal{V}(L)$ into its irreducible components $\mathcal{V}(L) = \mathcal{V}_1 \cup \cdots \cup \mathcal{V}_k$; algebraically, this corresponds to a prime decomposition $I = P_1 \cap P_2 \cdots \cap P_k$ (recall I is radical) where $\mathcal{V}_i = V(P_i) \setminus V(J)$. Fix a component \mathcal{V}_i of $\mathcal{V}(L)$ and work in its coordinate ring $R = \mathbb{K}[M]/P_i$. In other words, we consider an arrangement \mathcal{A} whose coefficient matrix has entries in the integral domain R. By Lemma 5.6 the differentials of the chain complex $\mathcal{S}^{\bullet}(\mathcal{A})$ (equivalently the differentials of \mathcal{R}_{\bullet}) are elements of the rational function field $K = \operatorname{frac}(R)$. By the first statement, we see that the conditions for \mathcal{A}_X to be k-formal for every $2 \leq i \leq r(X) - 1$ and every $X \in L$ are finitely many maximal rank conditions on the differentials $\delta_{S,X}^i$ for $\mathcal{S}^{\bullet}(\mathcal{A}_X)$. Since maximal rank conditions are given by the non-vanishing of certain minors, this shows that there are finitely many rational functions in K that should not vanish if \mathcal{A} and all its closed sub-arrangements are to be k-formal for every k. Lifting this back to R by considering numerators and denominators gives the result for $\mathcal{V}(L)$. Since the determinants in question are multi-homogeneous in the row variables and quotienting by coordinate changes amounts to determining a scalar value for certain variables, this descends to the moduli space $\mathcal{M}(L)$.

Remark A.2. For a rank three arrangement, the condition to be formal is expressed by the non-vanishing of a maximal rank minor of the δ_S^2 differential. Example 6.5 shows that the ranks of the free modules in $\mathcal{S}^{\bullet}(\mathcal{A})$ are not combinatorial, and that the condition to be totally formal can be non-trivial. For Example 6.5, it can be shown that, aside from the polynomials determining the lattice structure, there is a single irreducible quadratic in the coefficients of the forms of \mathcal{A} whose non-vanishing determines formality.

Appendix B. Two lemmas for multi-arrangements of points in \mathbb{P}^1

In this appendix we collect two simple lemmas for multi-arrangements of points in \mathbb{P}^1 . The first may also be found in [34], in slightly less generality.

Lemma B.1. Let n be a positive integer and $(\mathcal{A}, \mathbf{m})$ a muli-arrangement of $k + 2 \leq n+2$ points in \mathbb{P}^1 with $Q(\mathcal{A}, \mathbf{m}) = x^n y^n \prod_{i=1}^k (x - a_i y)$. Then $(\mathcal{A}, \mathbf{m})$ has exponents (n, n+k) if and only if a_1, \ldots, a_k are distinct (n-1)st roots of a non-zero complex number β . In this case, the derivation of degree n has the formula $\theta = x^n \frac{\partial}{\partial x} + \beta y^n \frac{\partial}{\partial y}$.

Proof. It is straightforward to check that $\theta \in D(\mathcal{A}, \mathbf{m})$ under the conditions of the lemma, so $(\mathcal{A}, \mathbf{m})$ has exponents (n, n+k) if a_1, \ldots, a_k are distinct roots of β . Now suppose that there is a derivation $\theta \in D(\mathcal{A}, \mathbf{m})$ of degree n. This corresponds to a syzygy of degree n on the columns of the matrix M from Example 5.7. Hence there exist constants A, B and polynomials G_1, \ldots, G_k (of degree n-1) so that

$$Ax^n - Ba_iy^n + G_i(x - a_iy) = 0$$

for every i = 1, ..., k. Dividing through by A and setting $\beta = B/A, \gamma_i = -G_i/A$ yields $x^n - \beta a_i y^n = \gamma_i (x - a_i y)$; hence $a_i^n - \beta a_i = 0$, or $a_i^{n-1} = \beta$. Since this holds for every i = 1, ..., k, the lemma is proved.

Lemma B.2. Suppose $(\mathcal{A}, \mathbf{m})$ is a multi-arrangement of k + 2 points in \mathbb{P}^1 defined by forms $\alpha_1, \ldots, \alpha_{k+2}$. Suppose that, for some $1 \leq j \leq k+2$, $\theta \in D(\mathcal{A}, \mathbf{m})$ satisfies that $\theta(\alpha_j) = \alpha_j^{\mathbf{m}(\alpha_j)}$ (up to multiplication by a constant). If \mathcal{A} is not boolean, then $\theta(\alpha_i) \neq 0$ for all $i = 1, \ldots, k+2$.

Proof. Without loss of generality, suppose $\theta(\alpha_2) = 0$ and $\theta(\alpha_1) = \alpha_1^{\mathbf{m}(\alpha_1)}$. Changing coordinates, we may assume $\alpha_1 = x$ and $\alpha_2 = y$. Write $\theta = f \frac{\partial}{\partial x} + g \frac{\partial}{\partial y}$ and let $d = \deg(\theta)$. Since $\theta(x) = x^d$ and $\theta(y) = 0$, $f = x^d$ and g = 0. Any other α_j has the form $x + a_j y$ for some non-zero constant a_j ; thus we have $\theta(\alpha_j) = x^d$. Since $\theta \in D(\mathcal{A}, \mathbf{m})$, we must have $\alpha_j \mid x^d$, a contradiction unless \mathcal{A} is boolean.