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Spline (or piecewise polynomial) functions

e For a pure d-dimensional simplicial complex A c RY
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e The space C’(A) of splines is the set of all C’-continuous functions
f: A~ R such that f|, to each maximal simplex ¢ is a real polynomial.

e The set C'(A) is a vector space over R.
One would like to find the dimension and a basis for each of the
subspaces Cy(A) of elements of degree at most k ...

e Additionally, C"(A) forms a ring under pointwise multiplication.

®» What is the ring structure of C"(A)? geometric interpretations? 1



The algebra of continuous splines

e Suppose v, . .., v, are the vertices of the simplicial complex A.

e Let Y; be the unique piecewise linear function on A defined by
Yi(v;) = o0; the Kronecker delta.

Then Y, ..., Yy, form a basis for C(A) as a real vector space (the
Courant functions on A).

®» They generate C°(A) as an R-algebra, and

COA) = AN/(Yo+ -+ Ya—1)

where Aj is the face ring of A
Ar =R[Yo, ..., Yol/Ia,

with I is the monomial ideal generated by the products Yj, - - - Y such
that {v;,...,v;} is not a face of A. 2



Example: spline space C°(A) and face ring Ax

e For A C R? with vertices vy, ..., vs,
The Stanley—Reisner ring

Anr = R[Yo, Y1, Yo, Y3, Y4]/In
with Ta = (Y1 Y3, YaYs).
e The spline space:
COA) =2 AN/ (Yo+ -+ Ya—1).
o |[f we "homogenize" A then
C°(A) = Aa.
e It is known [Bruns—Gubeladze]

that if two simplicial complexes
have isomorphic Stanley—Reisner rings,

then they are themselves isomorphic.
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Affine Stanley-Reisner rings

e Identify Y; with the Courant (hat) function at v; and extending by
linearity >, Y; =1, and

AA/(Z Y — 1) =~ C0(A)
i
is called the affine Stanley-Reisner ring of A.
e Then
Spec(C°(A)) = Spec(Aa) N Z(Z Y — 1) CAg=R"
i

and the points that have non-negative coordinates, give a model of A.



Example (d = 1):

Let A be a one-dimensional simplicial complex with three vertices
Vo, Vq, Vo € R, and assume vp < vq < Vo.

We have:

COA) = An/(X2, Yi—1) = R[Y, Yy, Yal /(Yo Yo, Yo+ Vi + Ya—1)

Spec(CO(A)) = Z(Yo, Y1+ Ya— 1)U Z(Ya, Yo+ Yy —1) CR®

The segments of these two lines contained in the positive octant
mimic the two 1-faces of A, and they intersect transversally.



Subalgebras of the Stanley-Reisner ring

e Consider --- C C"(A) C C'(A) C C%(A) =An/ (X Yi—1).

e The diagram is commutative and exact

R & ® R/
0— C'(a) R o
hi ‘GBBJ l@BU
r A, /B, (£
00— ker(\ll’) — @ Ag —>w ‘ri.é','ﬁa/ l/ /( T )
o€lg gj < 0j 0i<0j

If oiNoj=rthen 3'(f,...,fn)|, =fi—f in R/¢7" and,

V(£ fon)le = £, — Boyo(£5,) I Ay /By, (€2,
eThe ring A, is related to C"(A) by the inclusion: 4, . Ax — @ A,
0 if vido =g

defined by ®(Y;) =
7 {x,rf if veo.

» FecAxr/(3;Yi—1)is an element of C'(A) < W'(d(F)) = 0 [Schenck]. 6



Trivial splines in A,

o For a simplicial complex A ¢ RY, set
Hi=vijYi 4+ Vn;Ys forj=1,....d
and Hgiq1 := Y1+ -+ Yy, where v, = (Vi1,...,Viq).
e Then H; is equal to the j-th coordinate function on A  R9, and so
R[Hs,...,Hq] € C"(A)
is the subring of trivial splines.

Example: H; := v Yo + v4 Y7 + W2 Ys is the trivial spline.

In fact, Hy(x) = x for any point x € A, and R[H;] C C"(A), for any r > 0.



Generators of C'(A) for d = 1

e In the case

also Y{*" and Y; " correspond to elements in C"(A).
® Infact: C'(A) = R[H, Y/H/(Y; Vs, Vi + Yo+ Vs —1).
On the other hand, Hy — vi = (vo — v1) Yo + (4 — Vo) Ya.
Consider the map
or: Rlyo, y1, ¥o] = R[ Yo, Y1, Yol /(Yo Y2, Yo+ Yi+ Yo — 1)
o) = Hr, o) =((vo—vi)Yo)™,
o(2) =((vi — o) Ya) ™"
Then, Im(yr) = C"(A) and ker(¢r) = (Yoyz, Yo+ y2 — (y1 + t2)™").
» Spec(C'(A)) = Z(yo, Y2 — (y1 = v1)™ ) U Z(y2, ¥0 — (y1 — v1)™*).



Geometric realization of C’(A)

» Hence C"(A) = R[yo, ¥1, Y2l /(Yoo Yo + ¥ — (y1 — va)r + 1), and
Spec(C'(A)) = Z(Yo,¥2 — (1 — v1) ™)) U Z(y2, Yo — (y1 — vi)"™7)

® For r > 1, both curves have the
y1 — vq line as tangent at their point
of intersection (the origin),
and the tangent intersects

each curve with multiplicity r + 1.



The local spline ring geometric description

Let A be a (general) d-dimensional simplicial complex consisting
of two d-simplices intersecting in a (d — 1)-simplex.

Then we can realize Spec(C’(A)) ¢ R9*2 as the union of two
smooth d-dimensional varieties V; and V. intersecting along a
linear (d — 1)-dimensional space L, such that V4 and V, have
the same d-dimensional linear space T as tangent space at each
point of L and such that V; and T have order of contact r + 1 at
each point of L.

10



Idea of the proof

e Wehave H; = vo ;Yo + - - + Vg1, Yaqq fOorj=1,...,d, where
Vi = (Ve1, ..., Vea) € RY are the vertices of A.

e Let cy =detM, and ¢y = det M,..

e Define F := ¢y Yy + Cq11Yai1, Which is a trivial spline on A and therefore,

F=uH +-- +Ug1Hayr forug,- - Uasr € R
o Notice that (co Yo)™" + (Cys 1 Y&ﬂ) — Fr+1.

e Define the map
Pr: R[y07"'7yd+1] ﬁR[YO»'--,YdH]/(YOYd-Q—h Z,‘ \/I_ 1) by
cY) ' forj=0,d+1,
) = (i) |
H; for j=1,...,d.

e Then C'(A) = R[Hy, ..., Hy1, YSH1/ (Yo Yart, 200 Vi — 1) implies
Im(¢,) = CT(A).

o ker(er) = (Vo Yar1, Yo+ Yast — (5 Ui + tgr) ™). 11



Geometric realization

Thus, for A = ¢ Uo C RY:

Spec(C'(A)) =Z (Yo, Ya+1 — (U1ys + -+ + UgYd + Ug1) ) U
Z(Yat1, Yo — (U1 + - + Ugya + Ua) ).

Example: Inthe case d = 2, each V; is a 2-dimensional variety in
a 4-dimensional space. We have F = det M, Yy + det M, Y5. The

matrix of the edge 7 = o N o’
M= [V Va2 1
=
V2 U3 Vo1 Voo 1

leads to uy = vio — Vo q,
Up = —(Vy,1 — Va,1),
Uz = Vi1Voo — Vi2V2 1,

(o) U1 and uiHy + UsHo + usH3z = F.
12



Example (d = 2)

» Spec(C'(A)) =
Z(Yo, Y3 — (thys + Uayz + Us) ) U Z(y3, Yo — (Ut Y1 + toyz + us) ™).

e The intersection of these surfaces is the line Z(yo, y3, U1 y1 + Uy + Us).

e The plane Z(yo, y3) is the tangent plane to both surfaces at all points of
their line of intersection. The intersection of this tangent plane and each
surface is the line, with multiplicity r + 1. 13



Generators of C'(A) as a ring: shellable triangulations
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Generators of the ring C’(A): shellable triangulations

For any given 1-shellable triangulation A with m interior edges,
there is a set of linearly independent polynomials Ly, ...,Ln € Aa
of degree 1, such that each Lf“ corresponds in C°(A) to a
C’-continuous non-trivial spline on A, and

C'(A) = R[Hy, Ha, Ha, LT, Lgﬂ/(IA, ST Y- 1>.
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Triangulations with interior vertices

~

For quadrilateral triangulated by its two diagonals C"(A) =
R[Hs, Ho, Ha, YT Y5 /(Y1 Y, YaYa, 1 — (Yo + Vi + Yo+ Y3+ Ya)).

Vg v3 V4 V3

V1 V1

Similarly as before, there is a map
Pr IR[y(h s 7}/5] - IR[YO? R Y4]/(\/1 Y3, Y2 Y47 Z?:O \/I - 1) such that
Im(pr) 2= C"(A) and y1 + s — (t1yo + tays + Us)™" and

Yo+ ya — (Ujyo + Ubys + uy)™" are in ker(ipr).
16



Interior vertices

® Spec(C'(A)) =
Z(y1,ys — (1Yo + Uzys + Us) ™) U Z(ya, y1 — (thyo + tays + ug) 1)U
Z(y2, ¥a — (Ui Yo + Usys + U3) ™) U Z(ya, Yo — (Ui Yo + Upys + ug)™)
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Dual graph with cycles

For A a generic triangulation with 5 vertices, C'(A) is generated as a
subring of C°(A) by Hy, Hy, Hz, S, T, where Sis a (nontrivial) quadratic
spline, and T is linear (syzygy).

v4 v3 v4 v3 V4 U3
0 V0 )
‘ g1 \ Z{ } \ !{ § \
V1 2y U2 4q V2

A similar proposition holds for triangulations whose dual graph is a cycle.
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Final remarks and references

A natural next step is to consider a 2-dimensional A and

(i) find a geometric realization for the space of splines on simplices
meeting whose dual graph is a tree,

(i) and study the generators and geometric realizations in the case of
generic simplices with interior vertices. Particularly, the role of the
syzygies as elements of the Stanley-Reisner ring.
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