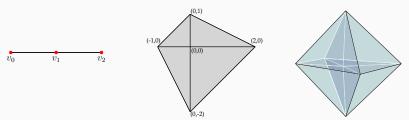
Geometric Realizations of the Space of Splines on Simplicial Complexes

Nelly Villamizar Swansea University, UK

SIAM Conference on Applied Algebraic Geometry Atlanta, USA, July 31 – August 2, 2017

Spline (or piecewise polynomial) functions

ullet For a pure d-dimensional simplicial complex $\Delta\subset\mathbb{R}^d$



- The space $C^r(\Delta)$ of **splines** is the set of all C^r -continuous functions $f: \Delta \mapsto \mathbb{R}$ such that $f|_{\sigma}$ to each maximal simplex σ is a real polynomial.
- The set $C^r(\Delta)$ is a vector space over \mathbb{R} . One would like to find the dimension and a basis for each of the subspaces $C_k^r(\Delta)$ of elements of degree at most k...
- Additionally, $C^r(\Delta)$ forms a ring under pointwise multiplication.
- \blacktriangleright What is the **ring structure** of $C'(\Delta)$? **geometric interpretations**?

The algebra of continuous splines

- Suppose v_0, \ldots, v_n are the vertices of the simplicial complex Δ .
- Let Y_i be the unique piecewise linear function on Δ defined by $Y_i(v_j) = \delta_{ij}$ the Kronecker delta.

Then Y_1, \ldots, Y_m form a basis for $C_1^0(\Delta)$ as a real vector space (the Courant functions on Δ).

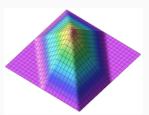
lacktriangle They generate $C^0(\Delta)$ as an \mathbb{R} -algebra, and

$$C^0(\Delta) \cong A_{\Delta}/(Y_0 + \cdots + Y_n - 1)$$

where A_{\triangle} is the **face ring** of \triangle

$$A_{\Delta} = \mathbb{R}[Y_0, \ldots, Y_n]/I_{\Delta},$$

with I_{Δ} is the monomial ideal generated by the products $Y_{i_1} \cdots Y_{i_j}$ such that $\{v_{i_1}, \dots, v_{i_i}\}$ is not a face of Δ .



Example: spline space $C^0(\Delta)$ and face ring A_{Δ}

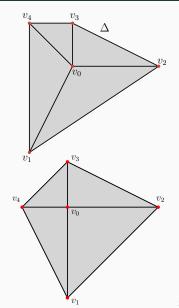
• For $\Delta \subset \mathbb{R}^2$ with vertices v_1, \dots, v_5 , The Stanley–Reisner ring

$$A_{\Delta} = \mathbb{R}[Y_0, Y_1, Y_2, Y_3, Y_4]/I_{\Delta}$$
 with $I_{\Delta} = (Y_1 Y_3, Y_2 Y_4)$.

• The spline space:

$$C^0(\Delta) \cong A_{\Delta}/(Y_0 + \cdots + Y_4 - 1).$$

- ullet If we "homogenize" Δ then $C^0(\hat{\Delta})\cong A_{\Delta}.$
- It is known [Bruns–Gubeladze] that if two simplicial complexes have isomorphic Stanley–Reisner rings, then they are themselves isomorphic.



Affine Stanley-Reisner rings

• Identify Y_i with the Courant (hat) function at v_i and extending by linearity $\sum_i Y_i = 1$, and

$$A_{\Delta}/\bigg(\sum_{i}Y_{i}-1\bigg)\cong C^{0}(\Delta)$$

is called the affine Stanley-Reisner ring of Δ .

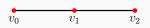
Then

$$\operatorname{Spec} \left(C^0(\Delta) \right) = \operatorname{Spec} \left(A_\Delta \right) \cap Z \left(\sum_i Y_i - 1 \right) \subset \mathbb{A}^n_{\mathbb{R}} = \mathbb{R}^n$$

and the points that have non-negative coordinates, give a model of Δ .

Example (d = 1):

Let Δ be a one-dimensional simplicial complex with three vertices $v_0, v_1, v_2 \in \mathbb{R}$, and assume $v_0 < v_1 < v_2$.



We have:

$$C^{0}(\Delta) = A_{\Delta}/(\sum_{i=1}^{3} Y_{i}-1) = \mathbb{R}[Y_{0}, Y_{1}, Y_{2}]/(Y_{0}Y_{2}, Y_{0}+Y_{1}+Y_{2}-1)$$

$$\operatorname{Spec}(C^0(\Delta)) = Z(Y_0, Y_1 + Y_2 - 1) \cup Z(Y_2, Y_0 + Y_1 - 1) \subset \mathbb{R}^3$$

The segments of these two lines contained in the positive octant mimic the two 1-faces of Δ , and they intersect transversally.

Subalgebras of the Stanley-Reisner ring

- Consider $\cdots \subseteq C^r(\Delta) \subseteq C^1(\Delta) \subseteq C^0(\Delta) = A_{\Delta}/(\sum Y_i 1)$.
- The diagram is commutative and exact

$$0 \longrightarrow C^{r}(\Delta) \longrightarrow \bigoplus_{\sigma \in \Delta_{d}} R \xrightarrow{\partial^{r}} \bigoplus_{\substack{\tau = \sigma_{i} \cap \sigma_{j} \\ \sigma_{i} \prec \sigma_{j}}} R/\ell_{\tau}^{r+1}$$

$$\downarrow i \qquad \qquad \downarrow \oplus B_{\sigma} \qquad \qquad \downarrow \oplus B_{\sigma}$$

$$0 \longrightarrow \ker(\Psi^{r}) \longrightarrow \bigoplus_{\sigma \in \Delta_{d}} A_{\sigma} \xrightarrow{\Psi^{r}} \bigoplus_{\substack{\tau = \sigma_{i} \cap \sigma_{j} \\ \sigma_{i} \prec \sigma_{j}}} A_{\sigma_{i}}/B_{\sigma_{i}}(\ell_{\tau}^{r+1})$$

If
$$\sigma_i \cap \sigma_j = \tau$$
 then $\partial^r (f_1, \dots, f_m)|_{\tau} = f_i - f_j$ in R/ℓ_{τ}^{r+1} and,
$$\Psi^r (f_{\sigma_1}, \dots, f_{\sigma_m})|_{\tau} = f_{\sigma_i} - B_{\sigma_j \sigma_i}(f_{\sigma_j}) \text{ in } A_{\sigma} / B_{\sigma_i}(\ell_{\tau}^{r+1}).$$

•The ring A_{Δ} is related to $C^r(\Delta)$ by the inclusion: $\Phi:A_{\Delta} \to \bigoplus A_{\sigma}$ defined by $\Phi(Y_i) = \begin{cases} 0 & \text{if } v_i \notin \sigma \\ X_i^{\sigma} & \text{if } v_i \in \sigma \end{cases}$

$$ightharpoonup F \in A_{\Delta}/(\sum_i Y_i - 1)$$
 is an element of $C^r(\Delta) \Leftrightarrow \Psi^r(\Phi(F)) = 0$ [Schenck].

Trivial splines in A_{\triangle}

• For a simplicial complex $\Delta \subset \mathbb{R}^d$, set

$$H_j := v_{1,j} Y_1 + \cdots + v_{n,j} Y_n, \quad \text{for } j = 1, \dots, d$$

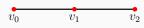
and
$$H_{d+1} := Y_1 + \cdots + Y_n$$
, where $v_i = (v_{i,1}, \dots, v_{i,d})$.

• Then H_j is equal to the j-th coordinate function on $\Delta \subset \mathbb{R}^d$, and so

$$\mathbb{R}[H_1,\ldots,H_d]\subseteq C^r(\Delta)$$

is the subring of trivial splines.

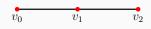
Example: $H_1 := v_0 Y_0 + v_1 Y_1 + v_2 Y_2$ is the trivial spline.



In fact, $H_1(x) = x$ for any point $x \in \Delta$, and $\mathbb{R}[H_1] \subseteq C^r(\Delta)$, for any $r \ge 0$.

Generators of $C^r(\Delta)$ for d=1

In the case



also Y_1^{r+1} and Y_3^{r+1} correspond to elements in $C^r(\Delta)$.

▶ In fact: $C^r(\Delta) \cong \mathbb{R}[H, Y_1^{r+1}]/(Y_1Y_3, Y_1 + Y_2 + Y_3 - 1).$

On the other hand, $H_1 - v_1 = (v_0 - v_1)Y_0 + (v_1 - v_2)Y_2$.

Consider the map

$$\varphi_r \colon \mathbb{R}[y_0, y_1, y_2] \to \mathbb{R}[Y_0, Y_1, Y_2] / (Y_0 Y_2, Y_0 + Y_1 + Y_2 - 1)$$

$$\varphi(y_1) = H_1, \quad \varphi(y_0) = ((v_0 - v_1) Y_0)^{r+1},$$

$$\varphi(y_2) = ((v_1 - v_2) Y_2)^{r+1}$$

Then, $Im(\varphi_r) \cong C^r(\Delta)$ and $ker(\phi_r) = (y_0y_2, y_0 + y_2 - (y_1 + u_2)^{r+1}).$

$$\Rightarrow \operatorname{Spec}(C^r(\Delta)) = Z(y_0, y_2 - (y_1 - v_1)^{r+1}) \cup Z(y_2, y_0 - (y_1 - v_1)^{r+1}).$$

Geometric realization of $C^r(\Delta)$

- ▶ Hence $C'(\Delta) \cong \mathbb{R}[y_0, y_1, y_2]/(y_0y_2, y_0 + y_2 (y_1 v_1)r + 1)$, and $\operatorname{Spec}(C'(\Delta)) = Z(y_0, y_2 (y_1 v_1)^{r+1})) \cup Z(y_2, y_0 (y_1 v_1)^{r+1})$
- For $r \ge 1$, both curves have the $y_1 v_1$ line as tangent at their point of intersection (the origin), and the tangent intersects each curve with multiplicity r + 1.

The local spline ring geometric description

Let Δ be a (general) *d*-dimensional simplicial complex consisting of two d-simplices intersecting in a (d-1)-simplex.

Then we can realize $\operatorname{Spec}(C^r(\Delta)) \subset \mathbb{R}^{d+2}$ as the union of two smooth d-dimensional varieties V_1 and V_2 intersecting along a linear (d-1)-dimensional space L, such that V_1 and V_2 have the same d-dimensional linear space T as tangent space at each point of L and such that V_i and T have order of contact r+1 at each point of L.

Idea of the proof

- We have $H_j = v_{0,j} Y_0 + \cdots + v_{d+1,j} Y_{d+1}$ for $j = 1, \dots, d$, where $v_t = (v_{t,1}, \dots, v_{t,d}) \in \mathbb{R}^d$ are the vertices of Δ .
- Let $c_0 = \det M_{\sigma}$ and $c_{d+1} = \det M_{\sigma'}$.
- Define $F := c_0 Y_0 + c_{d+1} Y_{d+1}$, which is a trivial spline on Δ and therefore, $F = u_1 H_1 + \cdots + u_{d+1} H_{d+1}$ for $u_1, \cdots, u_{d+1} \in \mathbb{R}$.
- Notice that $(c_0 Y_0)^{r+1} + (c_{d+1} Y_{d+1}^{r+1}) = F^{r+1}$.
- Define the map

$$\varphi_r \colon \mathbb{R}[y_0, \dots, y_{d+1}] \to \mathbb{R}[Y_0, \dots, Y_{d+1}] / (Y_0 Y_{d+1}, \sum_i Y_i - 1)$$
 by

$$\varphi_r(y_j) = \begin{cases} (c_j Y_j)^{r+1} & \text{for } j = 0, d+1, \\ H_j & \text{for } j = 1, \dots, d. \end{cases}$$

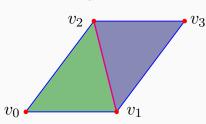
- Then $C^r(\Delta) \cong \mathbb{R}[H_1, \dots, H_{d+1}, Y_0^{r+1}] / (Y_0 Y_{d+1}, \sum_{i=0}^{d+1} Y_i 1)$ implies $\operatorname{Im}(\varphi_r) \cong C^r(\Delta)$.
- $\ker(\varphi_r) = (y_0 y_{d+1}, y_0 + y_{d+1} (\sum_i u_i y_i + u_{d+1})^{r+1}).$

Geometric realization

Thus, for $\Delta = \sigma \cup \sigma \subset \mathbb{R}^d$:

$$\begin{split} \operatorname{Spec}(C^r(\Delta)) = & Z \big(y_0, y_{d+1} - (u_1 y_1 + \dots + u_d y_d + u_{d+1})^{r+1} \big) \cup \\ & Z \big(y_{d+1}, y_0 - (u_1 y_1 + \dots + u_d y_d + u_{d+1})^{r+1} \big). \end{split}$$

Example: In the case d=2, each V_i is a 2-dimensional variety in a 4-dimensional space. We have $F=\det M_{\sigma}Y_0+\det M_{\sigma'}Y_3$. The matrix of the edge $\tau=\sigma\cap\sigma'$



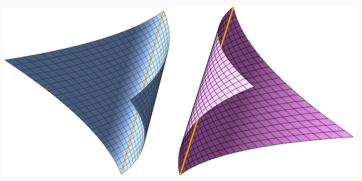
$$M_{\tau} = \begin{pmatrix} v_{1,1} & v_{1,2} & 1 \\ v_{2,1} & v_{2,2} & 1 \end{pmatrix}$$
 leads to $u_1 = v_{1,2} - v_{2,1}$,

$$u_2 = -(v_{1,1} - v_{2,1}),$$

$$u_3 = v_{1,1}v_{2,2} - v_{1,2}v_{2,1},$$
and $u_1H_1 + u_2H_2 + u_3H_3 = F.$

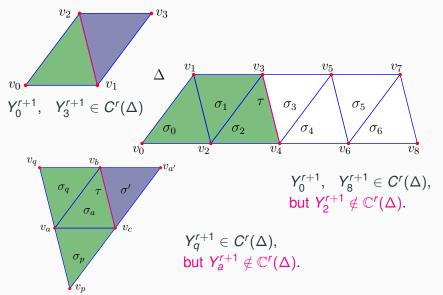
Example (d=2)

⇒ Spec($C^r(\Delta)$) = $Z(y_0, y_3 - (u_1y_1 + u_2y_2 + u_3)^{r+1}) \cup Z(y_3, y_0 - (u_1y_1 + u_2y_2 + u_3)^{r+1}).$



- The intersection of these surfaces is the line $Z(y_0, y_3, u_1y_1 + u_2y_2 + u_3)$.
- The plane $Z(y_0, y_3)$ is the tangent plane to both surfaces at all points of their line of intersection. The intersection of this tangent plane and each surface is the line, with multiplicity r+1.

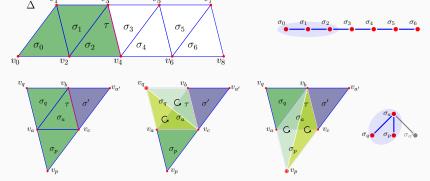
Generators of $C^r(\Delta)$ as a ring: shellable triangulations



Generators of the ring $C^r(\Delta)$: shellable triangulations

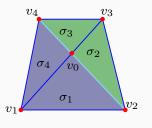
For any given 1-shellable triangulation Δ with m interior edges, there is a set of linearly independent polynomials $L_1,\ldots,L_m\in A_{\triangle}$ of degree 1, such that each L_i^{r+1} corresponds in $C^0(\Delta)$ to a C^r -continuous non-trivial spline on Δ , and

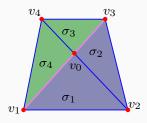
$$C^{r}(\Delta) \cong \mathbb{R}[H_1, H_2, H_3, L_1^{r+1}, \dots, L_m^{r+1}] / (I_{\Delta}, \sum_{i=1}^{n} Y_i - 1).$$



Triangulations with interior vertices

For quadrilateral triangulated by its two diagonals $C'(\Delta) \cong \mathbb{R}[H_1, H_2, H_3, Y_1^{r+1}, Y_2^{r+1}]/(Y_1Y_3, Y_2Y_4, 1 - (Y_0 + Y_1 + Y_2 + Y_3 + Y_4)).$





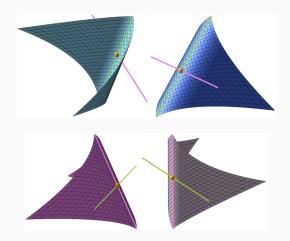
Similarly as before, there is a map

$$arphi_r \colon \mathbb{R}[y_0,\dots,y_5] o \mathbb{R}[Y_0,\dots,Y_4] / (Y_1Y_3,Y_2Y_4,\sum_{i=0}^4 Y_i - 1)$$
 such that $\mathrm{Im}(arphi_r) \cong C^r(\Delta)$ and $y_1 + y_3 - (u_1y_0 + u_2y_5 + u_3)^{r+1}$ and $y_2 + y_4 - (u_1'y_0 + u_2'y_5 + u_3')^{r+1}$ are in $\ker(arphi_r)$.

Interior vertices

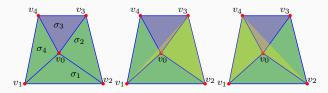
 $ightharpoonup \operatorname{Spec}(C^r(\Delta)) =$

$$Z(y_1, y_3 - (u_1y_0 + u_2y_5 + u_3)^{r+1}) \cup Z(y_3, y_1 - (u_1y_0 + u_2y_5 + u_3)^{r+1}) \cup Z(y_2, y_4 - (u_1'y_0 + u_2'y_5 + u_3')^{r+1}) \cup Z(y_4, y_2 - (u_1'y_0 + u_2'y_5 + u_3')^{r+1})$$

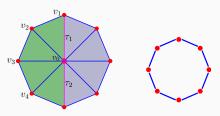


Dual graph with cycles

For Δ a generic triangulation with 5 vertices, $C^1(\Delta)$ is generated as a subring of $C^0(\Delta)$ by H_0, H_1, H_2, S, T , where S is a (nontrivial) quadratic spline, and T is linear (syzygy).



A similar proposition holds for triangulations whose dual graph is a cycle.



Final remarks and references

A natural next step is to consider a 2-dimensional Δ and

- (i) find a geometric realization for the space of splines on simplices meeting whose dual graph is a tree,
- (ii) and study the generators and geometric realizations in the case of generic simplices with interior vertices. Particularly, the role of the syzygies as elements of the Stanley-Reisner ring.
- L. Billera, The algebra of continues piecewise polynomials, Advances in Mathematics, **76**: 170–183, 1989.
- H. Schenck, Subalgebras of the Stanley–Reisner Ring, Discrete & Computational Geometry, 21: 551–556, 1999.
 - R. Piene, Algebraic Spline Geometry: Some Remarks, SAGA– Advances in ShApes, Geometry, and Algebra, Geometry and Computing, **10**, Springer, pp. 169–175, 2014.