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Ia(Λ) := 〈{ℓi1 · · · ℓia |1 ≤ i1 < · · · < ia ≤ n}〉.

The Generalized Star Configuration Variety (GSCV) of size a and
support Λ is the projective subvariety of Pk−1 with defining ideal
√

Ia(Λ), denoted Va(Λ).

Important:
√

Ia(Λ) =
⋂

1≤i1<···<in−a+1≤n

〈ℓi1 , . . . , ℓin−a+1〉.

So GSCV’s are union of linear subspaces; i.e., subspace
arrangements.
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MAIN GOAL: Show that every subspace arrangement is a GSCV.

Suppose K is an infinite field. Let V = V1 ∪ · · · ∪ Vm ⊂ P
k−1
K

be a
subspace arrangement of m irreducible components such that
V1 ∩ · · · ∩ Vm = ∅ (i.e., essential). Let ci := codim(Vi ), i = 1, . . . ,m.

Find Λ = (ℓ1, . . . , ℓn) ⊂ R, and find a ∈ {1, . . . , n} such that
V = Va(Λ).

1. For each i ∈ {1, . . . ,m}, let Λi be a collection of

ℵ := 1 +

m
∑

i=1

(ci − 1) linear forms such that each ci of them generate

I(Vi ). Since K is infinite, Λi ’s exist.

2. Let Λ :=

m
⋃

i=1

Λi be the collection of all these n := |Λ| ≤ mℵ linear

forms.

3. Let a = n − ℵ+ 1.
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Example 1:

Let V be the subspace arrangement with defining ideal
I(V ) = 〈x , z,w〉 ∩ 〈x , y〉 ⊂ R := C[x , y , z,w ].

m = 2, c1 = 3, c2 = 2, hence ℵ = 4.

We can pick

Λ1 = {x , z,w , x + z + w} and Λ2 = {x , y , x + y , x − y}.

Any three of the linear forms in Λ1 generate 〈x , z,w〉, and any two of
the linear forms in Λ2 generate 〈x , y〉.

With Λ = {x , z,w , x + z + w , y , x + y , x − y} and a = 7 − 4 + 1 = 4,
and conclude

V = V4(Λ).

Observe that in the previous slide and in this example Λ is a set and
not a collection, so the linear forms cannot repeat.
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Application 1: Building linear codes with prescribed projective
codewords of minimum weight.
• Linear Code C: image of a K−linear map (encoding) φ : Kk −→ Kn.
Elements of C are called codewords.
•Generating matrix G: the matrix of the map above, usually in
standard bases. Assume rank(G) = k and that G has no zero
columns. n is called the length of C, and k is called the dimension of
C.
•Minimum (Hamming) distance d : The weight, wt(v), of v ∈ K

n is the
number of nonzero entries of v.

d := min{wt(c)|c ∈ C \ {0}}.

• A c ∈ C with wt(c) = d is called a codeword of minimum weight; a
projective codeword of minimum weight is the equivalence class
under nonzero scalar multiplication of a codeword of minimum weight.

Question: Given V := {P1, . . . ,Pm} distinct points in Pk−1, find a
linear code such that all its projective codewords of minimum weight
are φ(P1), . . . , φ(Pm).
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2. Through each Pi pick ℵ hyperplanes such that any k − 1 of them
are linearly independent, and no hyperplane through Pi will contain a
Pj , j 6= i. So n, the number of hyperplanes, is n := mℵ.

3. Let C be the linear code with generating matrix G, of size k × n,
with columns dual to the defining linear forms of the chosen
hyperplanes. The minimum distance is d = n − ℵ.

Example 2. Let V = {[0, 0, 1], [0, 1, 1], [0, 2, 1], [1, 0, 1], [1, 1, 1]} ⊂ P2.

Through each of the 5 points pick 6 lines (so 5 pencils of lines), such
that no point of V belongs to the pencil of lines of another point of V .

So n = 30 distinct lines forming a line arrangement, say A.

The points of V are the the singularities of A of maximum multiplicity
(equal to 6), so they correspond to projective codewords of minimum
weight.

Quite messy, but it does the trick.
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Application 2: A (better) interpolation of points in P2.

Above we did not take into account the underlying geometry of the
points, and we did not allow repetitions of the linear forms
considered. Now, we will do both.

The main idea is to construct a multiarrangement of lines in P2, such
that its points of maximum multiplicity are precisely the given set of
points.

1. Suppose V = {P1, . . . ,Pm} ⊂ P2.

2. For 1 ≤ i < j ≤ m consider the line ℓi,j connecting the points Pi and
Pj .

3. If such a line has s points of V on itself, we consider this line s − 1
times.

We construct, say, p distinct lines L1, . . . , Lp, and for k ∈ {1, . . . , p}, if
each line Lk has rk + 1 ≥ 2 points of V on it, then it is considered
rk ≥ 1 times.
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Λ = (x , x , x − z, x − y , y , x + y − z, y − z, 2x + y − 2z, x + y − 2z).

Dually, G =





1 1 1 1 0 1 0 2 1
0 0 0 −1 1 1 1 1 1
0 0 −1 0 0 −1 −1 −2 −2



 , is

generating matrix of a linear code with minimum distance
d = 9 − 4 = 5.
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Example 3 (continued).
There are 5 projective codewords of minimum weight d .

[

0 0 1
]

G =
[

0 0 −1 0 0 −1 −1 −2 −2
]

[

0 1 1
]

G =
[

0 0 −1 −1 1 0 0 −1 −1
]

[

0 2 1
]

G =
[

0 0 −1 −2 2 1 1 0 0
]

[

1 0 1
]

G =
[

1 1 0 1 0 0 −1 0 −1
]

[

1 1 1
]

G =
[

1 1 0 0 1 1 0 1 0
]

.
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THANK YOU!


