Smooth Splines on Surfaces with General Topology

Bernard Mourrain
INRIA Méditerranée, Sophia Antipolis
Bernard.Mourrain@inria.fr

4 August 2017, SIAM AAG, Altanta

Motivations

- Shapes are not always rectangular.
- Uniform description of shapes: avoid trimmed patches, impose regularity conditions across edges.
- Shape representation resistant to deformation: optimisation, fitting, isogeometric analysis, ...

A topological structure

► A polyhedral complex *M* :

A topological structure

► A polyhedral complex *M* :

We will consider \square rectangular cells and Δ triangular cells.

A sheaf structure

- ▶ A poset $L = \{(\delta, \sigma) \text{ with } \sigma \in \mathcal{M}_2, \delta \in \partial \sigma\}$ with $(\delta, \sigma) < (\delta', \sigma')$ if $\delta \supset \delta'$ and $\delta' \subset \sigma \cap \sigma'$.
- ▶ Rings of functions: for $(\delta, \sigma) \in L$, $\mathcal{F}(\delta, \sigma) = \mathcal{R}/\mathcal{I}^{r+1}(\delta, \sigma)$ where $\mathcal{I}^{r+1}(\tau, \sigma) = (I_{\tau}^{r+1})$ and $\mathcal{I}^{r+1}(\gamma, \sigma) = \sum_{(\tau', \sigma') < (\gamma, \sigma)} \rho_{\sigma, \gamma}^*(I_{\tau}^{r+1})$.
- ► Restriction maps:

$$\rho_{(\delta,\sigma),(\delta',\sigma')}: f \in \mathcal{F}/\mathcal{I}^{r+1}(\delta,\sigma) \to f \circ \rho_{\sigma,\sigma'} \in \mathcal{F}/\mathcal{I}^{r+1}(\delta',\sigma').$$
Transition maps:

$$\rho_{(\tau,\sigma),(\tau,\sigma')}: f \in \mathcal{F}/\mathcal{I}^{r+1}(\tau,\sigma) \to f \circ \phi_{\sigma,\sigma'} \in \mathcal{F}/\mathcal{I}^{r+1}(\tau,\sigma').$$

Global sections $\Gamma(L, \mathcal{F})$ ⇔ Splines of M

Studied cases:

- Regularity: r = 1

Splines on \mathcal{M}

Definition (Regularity)

A polynomial vector $[f_\sigma]_{\sigma\in\mathscr{M}_2}$ is C^r across the edge au shared by σ , σ' iff

$$J^r(f_{\sigma}) = J^r(f_{\sigma'} \circ \phi_{\sigma',\sigma})$$
 around τ .

Equivalently: $f_{\sigma} - f_{\sigma'} \circ \phi_{\sigma',\sigma} \in I^{r+1}(\tau,\sigma)$

Splines on \mathcal{M}

Definition (Regularity)

A polynomial vector $[f_\sigma]_{\sigma\in\mathscr{M}_2}$ is C^r across the edge au shared by σ , σ' iff

$$J^r(f_{\sigma}) = J^r(f_{\sigma'} \circ \phi_{\sigma',\sigma})$$
 around τ .

Equivalently: $f_{\sigma} - f_{\sigma'} \circ \phi_{\sigma',\sigma} \in I^{r+1}(\tau,\sigma)$

Definition $(S_k^r(\mathcal{M})$ spline space over $\mathcal{M})$

A spline f of "degree" $\leq k$ and regularity C^r over \mathcal{M} is given by a collection of polynomials $f = [f_{\sigma}]_{\sigma \in \mathcal{M}_2}$ of degree (resp. bi-degree) $\leq k$ (resp. $\leq (k,k)$) on triangles (resp. rectangles), which are " C^r across the edge.

Transition maps (r=1)

$$\phi_{\sigma_2,\sigma_1}:(u_1,v_1)\longrightarrow (u_2,v_2)=\begin{pmatrix}v_1\,\mathfrak{b}_{\tau,\gamma}(u_1)+\mathcal{O}(v_1^2)\\u_1+v_1\,\mathfrak{a}_{\tau,\gamma}(u_1)+\mathcal{O}(v_1^2)\end{pmatrix}$$

We assume rational maps: $\mathfrak{a}(u) = \frac{a(u)}{c(u)}$, $\mathfrak{b}(u) = \frac{b(u)}{c(u)}$, with $a, b, c \in \mathbb{R}[u]$.
Glueing data: [a(u), b(u), c(u)].

Transition maps (r=1)

$$\phi_{\sigma_2,\sigma_1}:(u_1,v_1)\longrightarrow (u_2,v_2)=\begin{pmatrix}v_1\,\mathfrak{b}_{\tau,\gamma}(u_1)+\mathcal{O}(v_1^2)\\u_1+v_1\,\mathfrak{a}_{\tau,\gamma}(u_1)+\mathcal{O}(v_1^2)\end{pmatrix}$$

We assume rational maps: $\mathfrak{a}(u) = \frac{a(u)}{c(u)}$, $\mathfrak{b}(u) = \frac{b(u)}{c(u)}$, with $a, b, c \in \mathbb{R}[u]$.
Solutions Glueing data: [a(u), b(u), c(u)].

Example:

$$\phi_{\sigma',\sigma}(u,v) = (-v + \mathcal{O}(v^2), u + v(\delta(u)\cos(\frac{2\pi}{n_{\gamma'}}) - \delta'(u)\cos(\frac{2\pi}{n_{\gamma'}})) + \mathcal{O}(v^2)).$$

Compatibility conditions

 $J_r(\phi_{\sigma_1,\sigma_n}) \circ \cdots \circ J(\phi_{\sigma_2,\sigma_1}) = Id.$

$$\prod_{i=1}^{F} \left(\begin{array}{cc} 0 & 1 \\ \mathfrak{b}_{i}(0) & \mathfrak{a}_{i}(0) \end{array} \right) = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right).$$

Example: construction from a fan $\mathbf{u}_1, \dots, \mathbf{u}_{F'} \in \mathbb{R}^2$ around $\gamma = (0,0)$:

$$\mathbf{u}_{i-1} = \mathfrak{a}_i(0)\mathbf{u}_i + \mathfrak{b}_i(0)\mathbf{u}_{i+1} \tag{1}$$

- ▶ Ample space splines: at every point γ of a face σ of \mathcal{M} , the space of values and differentials at γ , namely $\left[f(\gamma), \partial_{u_{\sigma}}(f)(\gamma), \partial_{v_{\sigma}}f(\gamma)\right]$ for $f \in \mathcal{S}_{k}^{r}(\mathcal{M})$, is of dimension 3. $\mathfrak{a}_{i}(0) = 0$ for all edges \Rightarrow constraints between $\mathfrak{a}_{i}^{r}(0), \mathfrak{b}_{i}^{r}(0), \mathfrak{b}_{i}^{r}(0)$.
- ▶ Topological restriction. Preserve orientation across edges, $\mathfrak{b}(u) < 0$.

G^1 -splines across an edge τ

If τ defined by v=0 on σ_1 , u=0 on σ_2 , (f_1,f_2) G^1 -regular across τ iff $J^1(f_2\circ\phi_{\sigma_2,\sigma_1})=J^1(f_1)$

iff

$$\begin{pmatrix} f_1(u_1, v_1) \\ f_2(u_2, v_2) \end{pmatrix} = \begin{pmatrix} c + \int_0^{u_1} A(t)dt - v_1 C(u_1) + v_1^2 K_1(u_1, v_1) \\ c + \int_0^{v_2} A(t)dt - u_2 B(v_2) + u_2^2 K_2(u_2, v_2) \end{pmatrix}$$

with a(u)A(u) + b(u)B(u) + c(u)C(u) = 0.

G^1 -splines across an edge τ

If
$$au$$
 defined by $v=0$ on σ_1 , $u=0$ on σ_2 , (f_1,f_2) G^1 -regular across au iff
$$J^1(f_2\circ\phi_{\sigma_2,\sigma_1})=J^1(f_1)$$

iff

$$\begin{pmatrix} f_1(u_1, v_1) \\ f_2(u_2, v_2) \end{pmatrix} = \begin{pmatrix} c + \int_0^{u_1} A(t)dt - v_1 C(u_1) + v_1^2 K_1(u_1, v_1) \\ c + \int_0^{v_2} A(t)dt - u_2 B(v_2) + u_2^2 K_2(u_2, v_2) \end{pmatrix}$$

with

$$a(u)A(u)+b(u)B(u)+c(u)C(u)=0.$$

Syzygies:

$$Syz_{\mathcal{R}}(a, b, c) = \{ [A, B, C] \in \mathcal{R}^3 \mid a(u)A(u) + b(u)B(u) + c(u)C(u) = 0 \}$$

- ① Syz(a, b, c) is a free $\mathbb{R}[u_1]$ -module of rank 2.
- 2 It is generated by vectors (A_1, B_1, C_1) , (A_2, B_2, C_2) of coefficient degree μ and $\nu = n \mu + 1 + F_{\Delta} e 2m$ where μ is the smallest possible coefficient degree, $n = \max(\deg(a), \deg(b), \deg(c))$, $e = \min(n \deg(a) + 1, n \deg(b) + F_{\Delta}(\sigma_2), n \deg(c) + F_{\Delta}(\sigma_1), m = \min(F_{\Delta}(\sigma_1), F_{\Delta}(\sigma_2))$.
- **3** For $k \in \mathbb{N}$, the dimension of $\operatorname{Syz}(a,b,c)_k$ as a vector space over \mathbb{R} is

$$d_{\tau}(k) = (k - \mu - m + 1)_{+} + (k - n + \mu + m - F_{\Delta} + e)_{+}$$

where $t_+ = \max(0, t)$ for $t \in \mathbb{Z}$.

• The generators (A_1, B_1, C_1) , (A_2, B_2, C_2) of Syz(a, b, c) can be chosen so that

$$(a, b, c) = (B_1C_2 - B_2C_1, C_1A_2 - C_2A_1, A_1B_2 - A_2B_1).$$

(Hilbert-Burch theorem)

Syzygies of splines

$$\mathcal{U}^r := \{g : [0,1] \to \mathbb{R} \text{ s.t. } g_{|[0,\frac{1}{2}]}, g_{|[\frac{1}{2},1]} \in \mathbb{R}[u] \text{ and } g \text{ is } C^r \text{ at } \frac{1}{2}\}$$

For $a = [a_1,a_2], b = [b_1,b_2], c = [c_1,c_2] \in \mathcal{U}^r$, we have the exact sequence:

$$0 \longrightarrow \operatorname{Syz}_{\mathcal{U}'}(a,b,c) \longrightarrow \operatorname{Syz}(a_1,b_1,c_1) \times \operatorname{Syz}(a_2,b_2,c_2) \xrightarrow{\phi} \mathcal{Q}' \times \mathcal{Q}' \times \mathcal{Q}' \xrightarrow{\psi} \mathcal{Q}' \longrightarrow 0$$

where $Q^r = \mathbb{R}[u]/(1-2u)^{r+1}$.

Syzygies of splines

$$\mathcal{U}^r := \{g: [0,1] \to \mathbb{R} \text{ s.t. } g_{|[0,\frac{1}{2}]}, g_{|[\frac{1}{2},1]} \in \mathbb{R}[u] \text{ and } g \text{ is } C^r \text{ at } \frac{1}{2}\}$$
For $a = [a_1,a_2], b = [b_1,b_2], c = [c_1,c_2] \in \mathcal{U}^r$, we have the exact sequence:
$$0 \longrightarrow \operatorname{Syz}_{\mathcal{U}^r}(a,b,c) \longrightarrow \operatorname{Syz}(a_1,b_1,c_1) \times \operatorname{Syz}(a_2,b_2,c_2) \xrightarrow{\phi} \mathcal{Q}^r \times \mathcal{Q}^r \times \mathcal{Q}^r \xrightarrow{\psi} \mathcal{Q}^r \longrightarrow 0$$

where $Q^r = \mathbb{R}[u]/(1-2u)^{r+1}$.

▶ Generators as an $\mathbb{R}[u]$ -module:

$$\{(0,(2u-1)^{r+1}p_2),(0,(2u-1)^{r+1}q_2),(\tilde{p}_2,p_2),(\tilde{q}_2,q_2),$$

$$((2u-1)^{r+1}q_1,0),((2u-1)^{r+1}p_1,0)\}$$

where p_1, q_1 (resp. p_2, q_2) are free generators of Syz_1 (resp. Syz_2).

Dimension formula:

$$\tilde{d}_{\tau}(k,r) = \dim(\operatorname{Syz}_{k}^{r}) = (k - \mu_{1} + 1)_{+} + (k - n_{1} + \mu_{1} + e_{1})_{+} + (k - \mu_{2} + 1)_{+} + (k - n_{2} + \mu_{2} + e_{2})_{+} - \min(r + 1, k) - (r + 1).$$

Dimension formula for G^1 -splines

Theorem

For $k \geq \mathfrak{s}^*$,

$$\begin{array}{ll} \dim \mathcal{S}_k^1(\mathscr{M}) & = & (k-3)^2 F_{\square} + \frac{1}{2}(k-4)(k-5) F_{\Delta} \\ & & + \sum_{\tau \in \mathscr{M}_1} d_{\tau}(k) + 4 F_{\square} + 3 F_{\Delta} - 9 F_1 + 3 F_0 + F_+ \end{array}$$

where

- ▶ F_{\square} is the number of quadrangular cells, F_{\triangle} is the number of triangular cells,
- ▶ F₁ is the number of edges,
- ▶ F_0 (resp. F_+) is the number of (resp. crossing) vertices.

For splines in $\mathcal{U}_k^r \times \mathcal{U}_k^r$,

$$\dim S^1_{k,r}(\mathcal{M}) = (2k - r - 3)^2 F_2 + \sum_{\tau \in \mathcal{M}} \tilde{d}_{\tau}(k,r) + 4F_2 - 9F_1 + 3F_0 + F_+$$

Crossing edges: For $\gamma \in \mathcal{M}_0$ and $\sigma_1, \ldots, \sigma_{N(\gamma)}$ the $N(\gamma)$ cells around γ

- $\mathfrak{c}_{\tau}(\gamma) = 1$ if τ is a **crossing edge** $(\mathfrak{a}(0) = 0)$ and 0 otherwise.
- ho $c_+(\gamma) = 1$ if all edges are crossing edges and 0 otherwise.

For $k > \mathfrak{s}$.

- ▶ Vertex functions at γ : $3 + F(\gamma) \sum_{\tau \ni \gamma} \mathfrak{c}_{\tau}(\gamma) + \mathfrak{c}_{+}(\gamma)$
- ▶ Edge functions at τ : $d_k(\tau) 9 + \mathfrak{c}_{\tau}(\gamma) + \mathfrak{c}_{\tau}(\gamma')$,
- ▶ Face functions at σ : $(k-3)^2$ if \Box , $\frac{1}{2}(k-4)(k-5)$ if Δ

A round corner

Symmetric gluing data at γ and at the crossing boundary vertices δ_i . Transition maps across the interior edge τ_i : [a, b, c] = [(u-1), -1, 1]. Syzygies generators: $Z_1 = [0, 1, 1], Z_2 = [1, u, 1].$ Dimension of \mathcal{S}_4^1 : 48.

The number of basis functions attached to

- $ightharpoonup \gamma$: 6 = 1 + 2 + 3.
- δ_i : 4 = 1 + 2 + 2 1.
- ϵ_i : 4 = 1 + 2 + 1.
- ▶ the interior edge τ_i : 2 × 4 − 7 = 1.
- ▶ the boundary edges: 2(4-3) = 2.
- a face σ_i : $(4-3)^2 = 1$.

Examples of bi-cubic G^1 surfaces

Open questions

- Dimension formula and basis for lower degree splines.
- \triangleright Extension to G^k splines.
- \triangleright Extension to G^k splines with T-junctions.
- ▶ Extension to general planar subdivisions, volume subdivisions.
- **.**..

Open questions

- Dimension formula and basis for lower degree splines.
- \triangleright Extension to G^k splines.
- \triangleright Extension to G^k splines with T-junctions.
- ▶ Extension to general planar subdivisions, volume subdivisions.
- **.**..

Open questions

- Dimension formula and basis for lower degree splines.
- \triangleright Extension to G^k splines.
- \triangleright Extension to G^k splines with T-junctions.
- ▶ Extension to general planar subdivisions, volume subdivisions.
- **.**..

Thank you for your attention.