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Oyervin: of fit together

@ Classically, splines are C" piecewise polynomial functions
defined over tetrahedral or polytopal subdivisions in R”
(Myself, Tatyana Sorokina, Nelly Villamizar; numerical
analysis)

@ However, non-polynomial functions may be used (Cesare
Bracco; numerical analysis)

@ Or the cells of the subdivision could be semi-algebraic sets,
defined by arbitrary polynomial inequalities (Peter Stiller,
Frank Sottile; numerical analysis and algebraic geometry)
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@ Or the polynomials could glue via geometric continuity to
form splines on arbitrary topological spaces (Bernard
Mourrain, Katharina Birner; isogeometric analysis,
geometric design)

Overview of

Minisympo-

@ Dually, the domains could be considered as vertices of a
graph (even infinite!) with algebraic gluing condition
across edges (Julianna Tymoczko; equivariant
cohomology)

@ Other work related to splines in this mini: Algebraic
geometry and commutative algebra, with applications to
interpolation problems (Stefan Tohaneanu, Boris
Shekhtman)
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Underlying space for a spline function
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Spline Tk e H H
Bl \Work over a subdivision A C R” which is:

@ A polytopal complex

@ Pure n-dimensional

Motivating @ A pseudomanifold

questions for
classical
splines

A polytopal complex
Notation:
@ A, : faces of dimension i (i-faces)
e A7 : interior i-faces
o If T € A,_1, £; = linear form cutting out affine span of 7
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Splines (classical definition, algebraically speaking)

b C" spline on A: collection F = (F,) of polynomials

Methods in

LR F, € R=R[xy,...,xy], for every o € A, so that if
onNo' =7¢€A,_1 then (¢;) Y (F, — F,).

y

Motivating

questions for

classical

splines —X 1 X
-y

S"(A): R-module of all C" splines on A
Si(A): vs. of F e S"(A) with deg(F,) < d forall 0 € A,
S"(A)g: vs. of F € S"(A) with deg(F,) = d for all 0 € A,,.
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Rizeliete A c R™1 denotes cone over A C R".

Methods in
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Motivating
questions for
classical
splines

A A

@ /~is the homogenization of /. for 7 € A,
o S(A) = S"(A)g (as vs.)

0 S"(A) = @y0 S (A)g is a graded R-module
e Call A centra_/ if 0 € o for every o € A,
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(1) (Holy grail) Find dim S(A) (equiv. dim S"(A)4)
(2) (Holier grail) Find a basis for S;(A) (equiv. 5"(A)qg)

e r =0, A simplicial, (1),(2) known for all n (Billera '89)
Motivating

questions for e r =0, A polyhedral, (1) and (2) unknown even for
e n = 2,3 (topic of this talk)
e r>0,AcCR? simplicial,
o dim S/ (A) known for d > 3r + 1 (Alfeld-Schumaker '93)
o dim S/ (A) unknown in general for r +1 < d < 3r
o Conjectured that dim S/ (A) given by Schumaker’s lower
bound for d > 2r + 1 (Schenck '97)

o Even dim S}(A) is unknown! (generically given by
Schumaker’s lower bound (Billera,Whiteley'88))
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Freeness questions (Numerical analysis, topology)

Algebraic . 0
Methods in S"(A) is a free R-module if:
Spline Theory

3F1, ..., Fx € S"(A) so that every F € S"(A) can be written
as fozl f;F; for a unique choice of polynomials fi, ..., f.

(3) (Less holy grail) Determine whether S"(A) is a free
R-module.

(4) (Pretty holy grail) Find generators for S"(A) as an

s of R-module (particularly when S"(A) is free).

spline modules
~

@ Schenck ('97): A simplicial and S"(A) free
= dim S/(A) determined by local data

@ We focus on (3) for r =0

@ For (4): analogue of Saito's criterion from arrangement
theory identifies when a set of splines forms a free basis for

s'(A)
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M

If A C R" is simplicial then:
o S9(A) isomorphic to Stanley-Reisner ring of A (Billera
‘89)
o If |A| is homeomorphic to an n-ball then S%(A) is a free
Freeness of R-module.

spline modules

o dim SY(A) completely determined by combinatorics of A
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ey Nonfreeness for Polytopal Complexes [D. ‘12]

Spline Theory

S9(A) need not be free if A has nonsimplicial faces.

(*27 3)

1) (1,

Freeness of
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( 7_1) (17 -
(—2,-2) (2,-2)
SO%(A) is a free R[x, y, z]-module
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Crosscut Partitions

el A partition of a planar domain D is called a crosscut partition if

Sl the union of its two-cells are the complement of a line
arrangement.

Freeness of

spline modules

@ Basis for S}(A) and dim S} (A) (Chui-Wang ‘83): uniform
constructions based on combinatorial data

o S"(A) is also free for any r (Schenck ‘97)

@ Extends to so-called quasi-crosscut partitions
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Three dimensional crosscut partitions?

Algebraic
Methods in
Spline Theory

Hi, ..., Hi linear subspaces of R3
A=UHi

A is a central hyperplane arrangement

A 4 = polyhedral complex whose maximal polytopes are
closures of connected components of R3\ A (chambers of A)

Freeness of
spline modules

Is dim S°(A 4)y4 (or freeness of S°(A 4)) combinatorial?

Answer: In general, no.
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Example: Ziegler's pair

Algebraic
Methods in
Spline Theory

A = union of hyperplanes defined by the vanishing of the
forms (t is considered a parameter):

X  X+y+z 2x+y+z
y 2x+3y+z 2x+3y+4z
z  (14t)x+(34+t)z  (1+t)x+(2+t)y+(3+t)z
Write A for A 4,.
@ Combinatorics of A; is constant for t close to 0
o S9(Ay) is not free
o SO(A,) is free for t # 0 near zero
o dim S°(Ag); = dim S°(A;)1 + 1 for t # 0 near zero

Freeness of
spline modules
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o A; is formal except when t = 0 (Yuzvinsky '93)
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