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Piecewise Polynomials

Spline

A piecewise polynomial function, continuously differentiable to some order.
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Univariate Splines

Most widely studied case: approximation of a function f (x) over an
interval ∆ = [a, b] ⊂ R by C r piecewise polynomials.

Subdivide ∆ = [a, b] into subintervals:
∆ = [a0, a1] ∪ [a1, a2] ∪ · · · ∪ [an−1, an]

Find a basis for the vector space C r
d(∆) of C r piecewise polynomial

functions on ∆ with degree at most d (B-splines!)

Find best approximation to f (x) in C r
d(∆)
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Two Subintervals

∆ = [a0, a1] ∪ [a1, a2] (assume WLOG a1 = 0)

(f1, f2) ∈ C r
d(∆) ⇐⇒ f

(i)
1 (0) = f

(i)
2 (0) for 0 ≤ i ≤ r

⇐⇒ x r+1|(f2 − f1)

⇐⇒ (f2 − f1) ∈ 〈x r+1〉

Even more explicitly:

f1(x) = b0 + b1x + · · ·+ bdx
d

f2(x) = c0 + c1x + · · ·+ cdx
d

(f0, f1) ∈ C r
d(∆) ⇐⇒ b0 = c0, . . . , br = cr .

dimC r
d(∆) =

{
d + 1 if d ≤ r
(d + 1) + (d − r) if d > r

Note: dimC r
d(∆) is polynomial in d for d > r .
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Univariate Dimension Formula

Suppose I is a subdivision of an interval with v0 interior vertices and e
edges. Then

dimC r
d(I ) =

{
d + 1 d < r + 1
e(d + 1)− v0(r + 1) d ≥ r + 1

Basis for C r
d(I ) is given by B-splines.

B-spline basis for C 1
2 (I ) where I consists of two subintervals
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Higher Dimensions

More General Problem: Compute dimC r
d(∆) where ∆ ⊂ Rn is

a polytopal complex

pure n-dimensional

a pseudomanifold H-1,-1L H1,-1L

H1,1LH-1,1L

H-2,-2L H2,-2L

H2,2LH-2,2L

A polytopal complex Q
(Algebraic) Spline Criterion:

For τ ∈ ∆n−1, lτ = affine form vanishing on affine span of τ

Collection {fσ}σ∈∆n glue to F ∈ C r (∆) ⇐⇒ for every pair of
adjacent facets σ1, σ2 ∈ ∆n with σ1∩σ2 = τ ∈ ∆n−1, l r+1

τ | (fσ1 − fσ2)
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Algebraic structure of splines

C r (∆) is an algebra over the polynomial ring R = R[x1, . . . , xn].

R lives inside of C r (∆) as global polynomial functions on ∆

Given F ,G ∈ C r (∆), F + G ∈ C r (∆) and F · G ∈ C r (∆), where
addition and multiplication are defined pointwise.

-x

y

x

-y

1 x

x

x

x

x -x2

xy

x2

-xy

x

F ∈ C 0
1 (Q) x ∈ C 0

1 (Q) xF ∈ C 0
2 (Q)
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Who Cares?

1 Computation of dimC r
d(∆) for higher dimensions initiated by

[Strang ‘73] in connection with finite element method

2 Data fitting in approximation theory

3 [Farin ‘97] Computer Aided Geometric Design (CAGD) - building
surfaces by splines.

4 [Payne ‘06] Toric Geometry - Equivariant cohomology rings of toric
varieties are rings of continuous splines on the fan (under appropriate
conditions).
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Part I: Continuous Splines and (some) C 1 Splines
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Prelude: Coning Construction

∆̂ ⊂ Rn+1 denotes the cone over ∆ ⊂ Rn.

Q Q̂

C r (∆̂) is a graded module over S = R[x0, . . . , xn] (every spline can
be written as a sum of homogeneous splines)

F (x0, . . . , xn) ∈ C r (∆̂)→ F (1, x1, . . . , xn) ∈ C r (∆)

In fact C r
d(∆) (splines of degree at most d)∼= C r (∆̂)d (splines of

degree exactly d) [Billera-Rose ‘91].
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Coning example
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Piecewise Linear Functions

If ∆ ⊂ R2 is a triangulation with v vertices, then dimC 0
1 (∆) = v .

Proof by picture: PL function on ∆ uniquely determined by value at
vertices.
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Tent Functions

A basis for C 0
1 (∆) is given by Courant functions Tv , which take a value of

1 at a chosen vertex v and 0 at all other vertices.
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Face Rings of Simplicial Complexes

Face Ring of ∆

∆ a simplicial complex.

A∆ = R[xv |v a vertex of ∆]/I∆,

where I∆ is the ideal generated by monomials corresponding to non-faces.

2

3

4

1

Nonfaces are
{1, 2, 3, 4}, {2, 3, 4}
I∆ = 〈x2x3x4〉
A∆ = R[x1, x2, x3, x4]/I∆
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C 0 simplicial splines

C 0 for Simplicial Splines [Billera ‘89]

C 0(∆̂) ∼= A∆, the face ring of ∆.

Map is Tv → xv (v not the cone vertex)
Consequences:

dimC 0
d (∆) =

n∑
i=0

fi

(
d − 1

i

)
for d > 0, where fi = #i-faces of ∆.

If ∆ is homeomorphic to a disk, then C 0(∆̂) is free as a
S = R[x0, . . . , xn] module.

If ∆ is shellable, then degrees of free generators for C 0(∆̂) as
S-module can be read off the h-vector of ∆.
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Nonsimplicial Case

dimC 0
d (∆) depends on combinatorics of ∆ (number of faces, edges,

vertices, etc.) and its geometry.

C 0
1 (∆) usually doesn’t have ‘local’ basis

H-1,-1L H1,-1L

H1,1LH-1,1L

H-2,-2L H2,-2L

H2,2LH-2,2L

H-1,-1L H1,-1L

H1,1LH-1,1L

H-2,-2L H2,-2L

H2,3L

H-2,2L

dimC 0
1 (Q) = 4 dimC 0

1 (Q′) = 3

Relationship to polyhedral surfaces makes dimC 0
1 (∆) geometric in nature.
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Comparing Perturbations

S = R[x , y , z ]

P(d) = 5
(d+2

2

)
− 8
(d+1

1

)
+ 4 = 1

2

(
5d2 − d + 2

)
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H1,-1L

H-1,1L

H-1,-1L

dimC 0
d =

{
1 d = 0
P(d) + 1 d ≥ 1

P(d) d ≥ 0


1 d = 0
4 d = 1
P(d) d ≥ 2

C 0(Q̂) is

Free S-module Free S-module NOT free S-module
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C 1 simplicial splines

C 1
d (∆) depends both on combinatorics and geometry.

S = R[x , y , z ]

P(d) = 4
(d+2

2

)
− 8
(d+1

1

)
+ 7 = 2d2 − 2d + 3

dimC 1
d (T ) =


1 d = 0
3 d = 1
P(d) + 1 d ≥ 2

dimC 1
d (T ′) =

{
1 d = 0
P(d) d ≥ 2

Both C 1(T̂ ) and C 1(T̂ ′) are free S-modules.
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Morgan-Scott triangulation

S = R[x , y , z ]

P(d) = 7
(d+2

2

)
− 18

(d+1
1

)
+ 7 =

1

2
(7d2 − 15d + 14)

dimC 1
d (T ) =


1 d = 0
3 d = 1
7 d = 2
P(d) d ≥ 3

dimC 1
d (T ′) =


1 d = 0
3 d = 1
6 d = 2
P(d) d ≥ 1
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Part II: Hilbert Polynomials and Regularity
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Some Graded Commutative Algebra

Given a finitely generated graded S = R[x1, . . . , xn]-module M (like
C r (∆̂)).

HF (M, d) := dimMd is the Hilbert function of M.

If d >> 0, HF (M, d) = HP(M, d), where HP(M, d) is the Hilbert
polynomial of M.

Upshot: dimC r
d(∆) = dimC r (∆̂)d is eventually polynomial in d (in

fact, linear combination of binomial coefficients)
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The Good News and the Bad News

Good news: HP(C r (∆̂), d) has been computed for ∆ ⊂ R2.

∆ simplicial: [Alfeld-Schumaker ‘90, Hong ‘91],
[Ibrahim-Schumaker ‘91]

∆ nonsimplicial: [McDonald-Schenck ‘09]

Bad news: dimC r
d(∆) is still a mystery for small d .

dimC 1
3 (∆) still unknown for ∆ ⊂ R2!

Michael DiPasquale Piecewise Polynomials and Algebraic Geometry 22 / 30



The Good News and the Bad News

Good news: HP(C r (∆̂), d) has been computed for ∆ ⊂ R2.

∆ simplicial: [Alfeld-Schumaker ‘90, Hong ‘91],
[Ibrahim-Schumaker ‘91]

∆ nonsimplicial: [McDonald-Schenck ‘09]

Bad news: dimC r
d(∆) is still a mystery for small d .

dimC 1
3 (∆) still unknown for ∆ ⊂ R2!

Michael DiPasquale Piecewise Polynomials and Algebraic Geometry 22 / 30



Planar Hilbert Polynomials

Planar Simplicial Dimension [Alfeld-Schumaker ‘90]

If ∆ ⊂ R2 is a simply connected triangulation and d ≥ 3r + 1, then

dimC r
d(∆) =

(
d + 2

2

)
+

(
d − r + 1

2

)
f 0
1 −

((
d + 2

2

)
−
(
r + 2

2

))
f 0
0 +σ,

f 0
i is the number of interior i-dimensional faces.

n(vi ) = # distinct slopes at an interior vertex vi .

σi =
∑

j max{(r + 1 + j(1− n(vi ))), 0}.
σ =

∑
σi .

Conjecture [Schenck ‘97]

Above formula holds for d ≥ 2r + 1.
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Planar Hilbert Polynomials

Planar Simplicial Dimension [Alfeld-Schumaker ‘90]
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Planar Hilbert Polynomials

∆ ⊂ R2 a simply connected polytopal complex

[McDonald-Schenck ‘09] give formulas for coefficients of
HP(C r (∆̂), d)

HP(C 0(∆̂), d) =
5

2
d2 − 1

2
d + 2 HP(C 0(∆̂), d) =

5

2
d2 − 1

2
d + 1

How large does d have to be for dimC r
d(∆) = HP(C r (∆̂), d)?

In simplicial case, d ≥ 3r + 1 suffices.
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A Positive Result

Agreement of Hilbert Function and Polynomial [D. ‘14]

∆ ⊂ R2 a planar polytopal complex. Let F = maximum number of edges
of a polygon of ∆. Then

HP(C r (∆̂), d) = dimC r
d(∆) for d ≥ (2F − 1)(r + 1)− 1

This is the first such result for nonsimplicial complexes.

HP(C 0(∆̂), d)

=
5

2
d2 − 1

2
d + 2

F = 4

=⇒ dimC 0
d (∆) =

5

2
d2 − 1

2
d + 2 for d ≥ 6

However, dimC 0
d (∆) =

5

2
d2 − 1

2
d + 2

for d ≥ 1
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The Technique: Regularity

Set S = R[x1, . . . , xn]

A graded S-module M has a graded minimal free resolution:

0→ Fδ → Fδ−1 → · · ·F0 → M → 0, where Fi ∼=
⊕

j S(−aij)

Projective dimension pdim(M) := δ

Castelnuovo-Mumford Regularity reg(M) := max
i ,j

(aij − i)

Note: M ∼= ⊕jS(−aj) =⇒ reg(M) = max{aj}

reg(M) governs when HF (M, d) = HP(M, d) [Eisenbud ‘05]:

HF (M, d) = HP(M, d) for d ≥ reg(M) + pdim(M)− n + 1

Results on previous slide follow from bounding reg(C r (∆̂)).
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Obtaining the Regularity Bound

Two key properties:

1 Regularity of any module in 0→ A→ B → C → 0 can be bounded
by regularity of other two.

2 If A ⊂ B is a submodule and pdim(B) < codim(B/A), then
reg(B) ≤ reg(A).

Regularity bound obtained by finding an approximation
LS r ,1(∆̂) ⊂ C r (∆̂) satisfying property 2.

LS r ,1(∆̂) is the subalgebra of C r (∆̂) generated by splines supported
on the union of two adjacent facets.

Property 1 used to break bounding reg(LS r ,1(∆̂)) down into a local
problem by fitting into exact complexes.

Local problem solved directly
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Thank You!
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