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This class is really the vector calculus that you haven’t really gotten to in Calc III. Let us start
with a very quick review of the concepts from Calc III that we will need—a crash course if you will.
We won’t cover nearly everything needed in this quick overview, just the very basics. You should
look back at your Calc III textbook.

1 Vectors

In calculus, one deals with R, the real numbers, a one-dimensional space, or the line. In vector
calculus, we consider the two dimensional cartesian space R2, the plane; three dimensional space
R3; and in general the n-dimensional cartesian space Rn. A point in R2,R3, or Rn is simply a tuple,
a 3-tuple, or an n-tuple (respectively) of real numbers. For example, the following are points in R2

(1,−2), (0, 1), (−1, 10), etc . . .

The following are points in R3

(1,−2, 3), (0, 0, 1), (−1,−1, 10), etc . . .

Of course, Rn includes R2 and R3, and even R = R1, as n can always be 1, 2, or 3. The coordinates
used in calculus are x for R, then (x, y) for R2, and (x, y, z) for R3. In general in Rn, we run out of
letters so generally use something like subscripts (x1, x2, . . . , xn). But other letters are sometimes
used. We mostly focus on R3 (and R2 to some extent) in this course.

Now that we have points, another object is a vector. When we talk about vectors, we wish
to give them names. People use ~v or v, although mathematicians often just write v and simply
remember that v is a vector. On the board I write ~v although the book uses v (it is difficult to
write bold on the board ). A vector is an object that describes a direction and a magnitude. It
is simply an arrow in space, although it does not really care as to where the arrow starts, it only
cares about its direction and its magnitude. The best way to think about it is thinking of a moving
particle in space. A point describes the position of a particle, while a vector describes velocity, that
is, the direction the object is traveling, and its speed. Forces and displacements are also described
by vectors. That is a vector can say how to go from point A to point B (start in this direction and
go this far). In fact such a vector is often written ~AB.

A space Rn has one special point O = (0, 0, . . . , 0), the origin. We can describe a vector ~v via
a point A in space if the vector describes the displacement from O to A, so ~v = ~OA. Then we can
say that ~v is the position vector of A. Of course, this means that a vector can be described by 3
numbers just like a point. We don’t necessarily want to use the same notation as for points, to
distinguish a common notation for vectors is

〈a, b, c〉,
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which is the position vector of the point (a, b, c) in R3. Even though both point and vector are
represented by 3 numbers in R3, we distinguish them. As far as computations are concerned, they
are often just 3 numbers, but they are different things. Just like say temperature and speed are two
very different things which are described by a single number, so we don’t want to confuse speed
and temperature.

The analogue of the origin is the zero vector ~0, for example,

~0 = 〈0, 0, 0〉

in R3. It is the single vector which does not have a well-defined direction, and has a zero magnitude.
If you go distance zero, then it doesn’t matter in which direction you traveled.

There are a certain number of special vectors called the standard basis vectors. In R2 and R3

they have special names. In R2:
ı̂ = 〈1, 0〉, ̂ = 〈0, 1〉.

In R3:
ı̂ = 〈1, 0, 0〉, ̂ = 〈0, 1, 0〉, k̂ = 〈0, 0, 1〉

Why are hats used instead of arrows above the ijk? Because these vectors are unit vectors, that is
vectors of magnitude 1, and it is common to write a hat instead of arrow for such vectors (see also
below) Hats are more common than arrows if you can’t have bold for these vectors.

The convenient way to write vectors is using the standard basis. That is, in R2 write,

〈a, b〉 = aı̂+ b̂, e.g. 〈3, 4〉 = 3ı̂+ 4̂.

In R3 write,
〈a, b, c〉 = aı̂+ b̂+ ck̂, e.g. 〈3, 4,−2〉 = 3ı̂+ 4̂− 2k̂.

We also allow arithmetic with vectors. First, scalar multiplication. Real numbers are called
scalars when vectors are around, because they are used to “scale” the vectors. If α is a scalar and
~v is a vector then the product α~v is the vector with the same direction as ~v (as long as α ≥ 0) and
magnitude multiplied by α. if α < 0, then the direction is reversed and the magnitude is multiplied
by |α|. It turns out that

α(aı̂+ b̂+ ck̂) = αaı̂+ αb̂+ αck̂ e.g. 2(3ı̂+ 4̂− 2k̂) = 6ı̂+ 8̂− 4k̂.

We can also add vectors. Vector addition is defined by using the displacement interpretation of
vectors. If ~v and ~w are vectors then ~v+ ~w is the vector where we travel along ~v first and then along
~w. It turns out that

(aı̂+ b̂+ ck̂) + (dı̂+ ê+ fk̂) = (a+ d)̂ı+ (b+ e)̂+ (c+ f)k̂

e.g.
(̂ı+ 2̂+ 3k̂) + (5ı̂+ ̂− 3k̂) = 6ı̂+ 2̂+ 0k̂ = 6ı̂+ 2̂.

We write the magnitude of ~v as |~v|. The following formulas compute the magnitude of a vector.
In R2:

|aı̂+ b̂| =
√
a2 + b2

and in R3:
|aı̂+ b̂+ ck̂| =

√
a2 + b2 + c2

Often when given a vector ~r, its magnitude is written as simply r.
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The direction of ~v written v̂ is then the vector

v̂ =
1

|~v|
~v =

~v

|~v|
.

Although we’ll try to state explicitly that v̂ is the direction of ~v. Notice again that we put a hat
instead of an arrow on unit vectors. It is relatively common to use v̂ for a unit vector skipping
writing ~v altogether.

All of these notions are generalized to Rn in the obvious manner. Higher number of dimensions
do occur naturally. For example, if t is time, then time-space can have the coordinates (x, y, z, t),
that is R4. Similarly, the space of all configurations of two particles in 3-space is really R6, that
is (x1, y1, z1, x2, y2, z2), where (x1, y1, z1), is the position of the first particle and (x2, y2, z2) is the
position of the second.

2 Products of vectors

We saw one product, that is product of a scalar and a vector

α~v

Another type of product is the so called dot product

(aı̂+ b̂+ ck̂) · (dı̂+ ê+ fk̂) = ad+ be+ cf.

e.g.
(3ı̂+ ̂− 2k̂) · (−2ı̂+ 5̂+ k̂) = −6 + 5− 2 = −3

This product is easy to generalize to any number of dimensions in the obvious way. Notice that
the result of this product is a scalar and not a vector. For this reason it is sometimes called the
scalar product. Notice also that

|~v|2 = ~v · ~v.

Geometrically in R2 or R3, this product is

~v · ~w = |~v||~w| cos θ

where θ is the angle between ~v and ~w. So the dot product can be used to compute the angle. We
saw that it also computes the magnitude. Note that it doesn’t matter if you think of the angle
between ~v and ~w or vice-versa, as we are taking the cosine here. Also there are two ways you could
define the angle depending which direction you start in, but because of the cosine you get the same
dot product. Two vectors are orthogonal (at right angle, perpendicular) if their dot product is zero.

The dot product is bilinear (if something is called a product, usually people want it to be
bilinear):

(α~v + β ~w) · ~uα(~v · ~u) + β(~w · ~u)

and
~u · (α~v + β ~w) = α(~u · ~v) + β(~u · ~w)

It is also commutative (not all products are commutative):

~v · ~w = ~w · ~v
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Another type of product which really only exists in R3 is the so called cross product, or sometimes
the vector product. This product results in a vector. Geometrically

~v × ~w = |~v||~w|(sin θ)n̂

Where θ is the angle going from ~v to ~w in the plane spanned by them (now the order matters), and
n̂ is the normal vector to that plane oriented according to the right hand rule. The orientation can
be figured out from the formula

ı̂× ̂ = k̂

That is k̂ is the normal vector to the xy-plane using the right hand rule.
There are a bunch of ways to compute the cross product, though perhaps the easiest to remember

is using algebra. First, the cross product is bilinear:

(α~v + β ~w)× ~uα(~v × ~u) + β(~w × ~u)

and
~u× (α~v + β ~w) = α(~u · ~v) + β(~u× ~w)

And also anti-commutative:
~v × ~w = −~w × ~v.

From this we find
~v × ~v = ~0

And finally you use the identities:

ı̂× ̂ = k̂, ̂× k̂ = ı̂, k̂ × ı̂ = ̂

All three identities list ı̂, ̂, k̂ in the same order, if you go in the opposite order you get a minus
sign.

Example:

(3ı̂+ k̂)× (̂+ 2k̂) = 3ı̂× ̂+ (3 · 2)̂ı× k̂ + k̂ × ̂+ 2k̂ × k̂ = 3k̂ + 6(−̂) + (−ı̂) + 2~0 = −ı̂− 6̂+ 3k̂.

A very important property of the cross product is that it is orthogonal to both of the vectors.
In terms of the dot product:

~v · (~v × ~w) = 0, ~w · (~v × ~w) = 0.

It is a useful easy to compute way to find the orthogonal vector to a plane.

3 Functions and partial derivatives

A function is simply an assignment of inputs to some output. A function of 3 real variables can be
written as

w = f(x, y, z)

That is, given numbers x, y, and z, the function f returns the number f(x, y, z). For example,
the temperature in a room where x, y, z are some coordinates on the room, then the temperature
T (x, y, z) is a function. Sometimes this is called a “scalar function” or a “scalar field”.
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If we keep y and z fixed, then the assignment that takes x to f(x, y, z) is a function of one
variable. Its derivative is the so-called partial derivative with respect to x, written ∂f

∂x . That is

∂f

∂x
(x, y, z) = lim

h→0

f(x+ h, y, z)− f(x, y, z)

h

We will not use the notation fx in this course for the partial derivative as it may get confusing; we
reserve the subscript for another concept. Similarly ∂f

∂y , ∂f
∂z and so on. These partial derivatives are

again functions of R3.
To compute partials we simply consider all other variables constant. For example, if f(x, y, z) =

x2yz + xy + z then

∂f

∂x
(x, y, z) = 2xyz + y,

∂f

∂y
(x, y, z) = x2z + x, and

∂f

∂z
(x, y, z) = x2y + 1.

As these are functions we may take the derivative again. Let us show a couple of examples,

∂2f

∂x∂y
(x, y, z) = 2xz + 1, and

∂2f

∂x2
(x, y, z) = 2yz.

The generalization to n variables is similar. E.g., if f(x1, x2, x3, x4) = x21x2x3 + x2x4 then

∂f

∂x1
(x1, x2, x3, x4) = 2x1x2x3, or

∂f

∂x2
(x1, x2, x3, x4) = x21x3 + x4

4 Multiple integrals

In the plane the area of a small rectangle with sides ∆x and ∆y is of area ∆A = ∆x∆y. Then if
we build a box of height c above this small rectangle, the volume of the box is c∆x∆y = c∆A.

Let R = [a, b] × [c, d] be a rectangle in R2. That is, all the points (x, y) such that a ≤ x ≤ b
and c ≤ y ≤ d. We divide R into a bunch of rectangles of area ∆A = ∆x∆y. In each of these
rectangles we pick a point (xj , yj) and then

f(xj , yj)∆A

is a reasonable approximation for the volume under the graph of f above the little rectangle. We
sum all these approximations ∑

j

f(xj , yj)∆A,

which is a reasonable approximation for the volume under the graph of f above the rectangle R.
Taking limit as ∆x and ∆y go to zero and therefore ∆A goes to zero we find the limit∫∫

R
f(x, y) dA

which we call the double integral of f over R. For a reasonable function (such as continuous), this
limit exists. The sum can be done column-wise or row-wise, in which case we have a double sum,
and taking the limits we find that∫∫

R
f(x, y) dA =

∫ d

c

∫ b

a
f(x, y) dx dy =

∫ b

a

∫ d

c
f(x, y) dy dx.
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Notice the units of this quantity. It is the units of f times the units of x times the units of y. So for
example if all three are meters, then the units of dA is m2 and the units of f(x, y) dA and therefore∫∫

R f(x, y) dA is m3 or volume.
For example, ∫∫

R
dA = A(R) = (b− a)(d− c)

the area of of R. Another example: Let R = [0, 1]× [0, 1]∫∫
R
xy dA =

∫ 1

0

∫ 1

0
xy dx dy =

∫ 1

0

1

2
y dy =

1

4
.

Similarly in R3, a little box of sides ∆x, ∆y, ∆z is of volume ∆V = ∆x∆y∆z. Let B =
[a, b]× [c, d]× [e, f ]. We follow the same procedure above to find for a function f(x, y, z)∫∫∫

B
f(x, y, z) dV =

∫ f

e

∫ d

c

∫ b

a
f(x, y, z) dx dy dz.

All the other orderings of dx, dy, and dz also work. Notice the units. If all dimensions are in
meters, then

∫∫∫
B f(x, y) dV is in units m4, or 4-dimensional volume.

Sometimes we might just write ∫∫∫
B
f dV

for simplicity.
We could generalize this further, given f(x1, . . . , xn) on Rn, we start with the n dimensional

volume element dVn or just dV , we integrate f , and obtain n + 1 dimensional volume “under the
graph”. Mathematicians sometimes do not make distinction for n = 1 and n = 2, and simply
call everything “volume”, so 1 dimensional volume is simply length, 2 dimensional volume is area,
etc. . . Mathematicians also often do not use

∫∫
and

∫∫∫
, and so on and simply use

∫
, as we all know

in what dimension we are integrating based on the nature of the element dV or dA or whatnot.
The integral is additive, that is if B is the disjoint union of B1 and B2, then∫∫∫

B
f dV =

∫∫∫
B1

f dV +

∫∫∫
B2

f dV.

Also the integral is linear, that is if α, β are real numbers and f and g are functions then∫∫∫
B
αf + βg dV = α

∫∫∫
B
f dV + β

∫∫∫
B
g dV.

Understanding the above development of the integral is important in applications for recogniz-
ing quantities computed by integration. In fact, because calculus is so powerful, sometimes the
approximation goes the other way. Instead of the sum being an approximation for the integral, the
integral can be computed to approximate a sum. In fact, in some sense this is always the case, as
our world is really composed on tiny bits rather than continuous unbroken things. But adding up a
finite but large number of bits tends to be far harder to do than “adding up infinitely many”, that
is, integrating. A recurring theme in mathematics is that by making a problem more complicated
(in just the right way), we make an impossible-to-solve problem into a tractable, solvable problem.
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