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Abstract

Complex analysis in one complex variable is the calculus student’s dream come true. No
annoying pathological cases, no annoying extra hypotheses to theorems, things just work, some-
times even better than one thinks they should. And it gets better in several variables, including
even more surprising results. In this talk I will talk about the Hartogs Phenomenon, a theorem
with a coolness factor at least double that of the Maximum Principle. In particular it will
tell us something about how the zero sets of holomorphic (analytic) functions behave when we
have more than one complex variable. It says that holomorphic functions simply extend across
compact sets (no more isolated singularities). I will define holomorphic functions (both in one
and several variables), give you enough to understand the theorem and even give a sketch of the
proof (the d-bar equation makes an appearance). Only very basic knowledge of analysis will be
required to enjoy the talk.

1 Introduction

The field of Several Complex Variables (SCV) lies at the intersection of several
other fields. There are deep connections to Partial Differential Equations, Func-
tional Analysis, Complex Dynamics, Algebraic Geometry (both real and complex),
Pluripotential Theory, Differential Geometry, and of course One Complex Variable.
There are even connections to Combinatorics, Commutative Algebra, or Represen-
tation Theory. Basically any time you talk about several variables, you often find
they can be treated as complex numbers, and we arrive at SCV.

Whereas in basic real analysis one sees things go wrong in almost every way
imaginable, complex analysis deals with incredibly well-behaved objects. Often it
is more likely that in complex analysis you are surprised that some simple minded
idea works all too well, rather than being surprised that an entirely reasonable idea
breaks spectacularly. One can vaguely think of complex analysis as the “study of
polynomials of infinite degree,” and we all know how wonderful polynomials are.

We will go over a very fundamental theorem that will illustrate how several com-
plex variables is a very different field from one complex variable. Let us however
first start with one complex variable from the point of view of an SCV person. . .
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2 Holomorphic Functions in One Variable

In complex analysis, we study holomorphic (or analytic) functions. We identify C
with R2 as z = x+iy. The complex conjugate is then z̄ = x−iy. We start by defining
the following formal differential operators (the so-called Wirtinger operators)

∂

∂z
=

1

2

(
∂

∂x
− i ∂

∂y

)
,

∂

∂z̄
=

1

2

(
∂

∂x
+ i

∂

∂y

)
.

A function on C is really a function defined on R2 as identified above and hence
it is a function of x and y. Writing x = z+z̄

2 and y = z−z̄
2i , we can think of it as a

function of two complex variables z and z̄. Here we pretend for a moment as if z̄ did
not depend on z. The formal differential operators work as if z and z̄ really were
independent variables. For example:

∂

∂z

[
z2z̄3 + z10

]
= 2zz̄3 + 10z9 and

∂

∂z̄

[
z2z̄3 + z10

]
= z2(3z̄2) + 0.

A holomorphic function is a function not depending on z̄.

Definition 1. Let U ⊂ C be open and f : U → C continuously differentiable. We
say f is holomorphic if it satisfies the Cauchy-Riemann equations :

∂f

∂z̄
= 0.

Examples of holomorphic functions are polynomials in z or elementary functions
such as sin, cos, or exp. Combining holomorphic functions algebraically or composing
holomorphic functions yields again holomorphic functions.

Holomorphic functions have a power series representation in z at each point a:

f(z) =
∞∑
j=0

cj(z − a)j.

Notice there is no z̄ necessary there since ∂f
∂z̄ = 0.

A basic problem in complex analysis of one variable is the classification of the
isolated singularities of holomorphic functions. That is, you can have a holomorphic
function defined everywhere but a single point, for example:

f(z) =
1

z
, or even worse, g(z) = e1/z.

A related problem is to study sets where f(z) is zero. A holomorphic function is
locally just

(z − a)kh(z)

where h is nonzero and holomorphic. In other words in one dimension, all zeros are
isolated.
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3 Several Variables

The questions of singularities and zeros get a lot more interesting in several variables.
We first need to define what do we mean by holomorphic functions. The definition
could not be simpler. In Cn, we use the notation z = (z1, z2, . . . , zn).

Definition 2. Let U ⊂ Cn be open. A function f : U → C is holomorphic if it is
holomorphic in each variable separately. That is, if

ζ 7→ f(z1, . . . , zk−1, ζ, zk+1, . . . , zn)

is holomorphic wherever it makes sense. Or in other words if for all k

∂f

∂z̄k
= 0.

Examples are similar (polynomials, etc. . . ) except now we allow n variables
instead of just one. We also have the power series representation of functions. For
example in two variables, a power series at the origin looks like

∞∑
j,k=0

ajkz1
jz2

k

where ajk are complex numbers.
An important property of holomorphic functions (one or several variables) arising

from the power series representation is that if a holomorphic function f : U → C is
zero on an open subset of U then the function is identically zero everywhere in U ,
provided U is connected.

We say f : U → C has a holomorphic extension f̃ to a larger domain Ũ where
U ⊂ Ũ if f̃ : Ũ → C is holomorphic and is equal to f on U . By the uniqueness
property above, this extension is unique provided Ũ is connected. To see this fact,
note that if we have another extension on Ũ , say f̂ , then f̂ − f̃ is holomorphic on Ũ
and identically zero on U . This uniqueness will be important in a moment.

4 Hartogs’ Phenomenon

The Hartogs’ phenomenon theorem tells us something even more fascinating about
extending functions, and also it tells us a fundamental thing about the domains we
use to define holomorphic functions.

Theorem 1. Let n ≥ 2, U ⊂ Cn be an open connected set (a domain), and let
K ⊂ U be a compact set (closed and bounded) such that U \K is connected. Every
holomorphic f : U \K → C extends uniquely to a holomorphic function on U .
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UK

The setup for Hartogs Phenomenon.

The result is not true in one complex dimension: Let U = C and K = {0}. Then
let f(z) = 1

z . Clearly f does not extend through the origin (it blows up).
The theorem tells us something about the zero set of a holomorphic function: in

several variables the set {z ∈ Cn : f(z) = 0} cannot be compact. If it were, we
could look at the function 1

f(z) and try to extend this function. Therefore the zero
set must “go all the way to the boundary,” or perhaps “off to infinity.” So in some
sense zero sets of holomorphic functions in more than one variable are in some sense
“large.” Similarly singular sets cannot be compact.

A more fundamental, and perhaps surprising, consequence of the theorem is that
not every domain is a natural domain for a holomorphic function if n ≥ 2. In
one variable, on any domain we can cook up a function which does not extend to
anything larger. In two or more variables, there are domains (for example domains
with compact holes) where every holomorphic function extends to a larger domain.

It is the geometry of the boundary that makes the difference. Intuitively what
happens is that near the “hole” (think K being a closed ball or similar) the domain
must be “concave” somewhere. Therefore convexity enters the picture, although in
a weaker and more complicated form, we call it pseudoconvexity, let us not define
that concept here however.

Let us sketch the general outline of the proof. We solve the differential equation

∂̄ψ = g,

and use the solution to construct the needed extension. The equation is called the
inhomogeneous ∂̄ (pronounced d-bar) equation. Well I am cheating, I did not define
the notation. The ψ is some smooth function, and g is a differential form, but we can
simply think of it being n different smooth functions: g1 through gn. The equation
above is really n equations

∂ψ

∂z̄k
= gk,

where the functions gk satisfy the compatibility conditions

∂gk
∂z̄`

=
∂g`
∂z̄k

.
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The compatibility conditions simply mean that partial derivatives are supposed to
commute, and the equation cannot be solved without them. Note that where g = 0,
ψ is holomorphic. So for a general g, what we are doing is finding a function that is
not holomorphic in a very specific way.

For Hartogs’ theorem, let us assume that all the gk have compact support. Then
these equations always have a solution ψ (many solutions in fact), and if n ≥ 2, then
we can find ψ that has compact support. We obtain a solution explicitly in fact:

ψ(z) =
1

2πi

∫
C

g1(ζ, z2, . . . , zn)

ζ − z1
dζ ∧ dζ̄ =

1

2πi

∫
C

g1(ζ + z1, z2, . . . , zn)

ζ
dζ ∧ dζ̄. (1)

Here dζ ∧ dζ̄ is just a fancy way to write the area measure on C up to a funny
constant and we really think of C as R2 for the integral. Note the singularity, and
think why the integral still makes sense. Hint: because we integrate in R2, use polar
coordinates and note the r in r dr dθ.

To check we have the solution we have to do a bit of work. Let us just give some
hints for the intrepid reader to fill in. Using the compatibility condition we get

∂ψ

∂z̄j
(z) =

1

2πi

∫
C

∂g1
z̄j

(ζ + z1, z2, . . . , zn)

ζ
dζ ∧ dζ̄

=
1

2πi

∫
C

∂gj
z̄1

(ζ + z1, z2, . . . , zn)

ζ
dζ ∧ dζ̄ = gj(z).

The last equality follows by the generalized Cauchy formula (itself a version of
the generalized Stokes theorem). Let ϕ be any smooth function (not necessarily
holomorphic), then

ϕ(z) =
1

2πi

∫
|ζ|=R

ϕ(ζ)

ζ − z
dζ +

1

2πi

∫
|ζ|≤R

∂ϕ
∂z̄ (ζ)

ζ − z
dζ ∧ dζ̄.

The computation above uses ϕ(·) = gj(·, z2, . . . , zn) and a large enough R so that ϕ
is zero when |ζ| = R.

That ψ has compact support follows because g1 has compact support and analytic
continuation. In particular note that ψ is holomorphic for very large z and it is
identically zero when z2, . . . , zn are large.

Let us move onto the actual proof of the theorem. First find a smooth function ϕ
that is 1 in a neighbourhood of K and is compactly supported in U . Let f0 = (1−ϕ)f
on U \K and f0 = 0 on K. The function f0 is smooth on U and it is holomorphic and
equal to f near the boundary of U , where ϕ is 0. We let g = ∂̄f0, that is gk = ∂f0

∂z̄k
.

Let’s see why gk is compactly supported. The only place to check is on U \ K as

5



elsewhere we have 0 automatically. Note that f is holomorphic and compute

∂f0

∂z̄k
=

∂

∂z̄k

(
(1− ϕ)f

)
=
∂f

∂z̄k
− ϕ ∂f

∂z̄k
− ∂ϕ

∂z̄k
f = − ∂ϕ

∂z̄k
f.

And ∂ϕ
∂z̄k

must be compactly supported in U . And now we apply the above solution

(1) to find a compactly supported function ψ such that ∂̄ψ = g. We set f̃ = f0−ψ.
Let’s check that f̃ is the desired extension. Let’s check it’s holomorphic:

∂f̃

∂z̄k
=
∂f0

∂z̄k
− ∂ψ

∂z̄k
= gk − gk = 0.

It almost feels like we’re cheating doesn’t it? OK, but does it extend f . A bit of
thought and the fact that U \ K is connected reveals that ψ must be compactly
supported in U . This means that f̃ agrees with f near the boundary (in particular
on an open set) and thus everywhere in U since U is connected.

And that is how using sheep’s bladders can prevent earthquakes![6]
. . . any questions?

References

[1] Boggess, Albert. CR manifolds and the tangential Cauchy-Riemann complex,
CRC Press, Boca Raton, Florida, 1991.

[2] Conway, John B. Functions of One Complex Variable I. Springer-Verlag, New
York, New York, 1978.

[3] D’Angelo, John P. Several complex variables and the geometry of real hypersur-
faces, CRC Press, Boca Raton, Florida, 1993.
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