Severi’s theorem for codimension two CR singular submanifolds of \mathbb{C}^3
Let $\mathbb{R}^n \subset \mathbb{C}^n$ be the natural embedding (that is $\text{Im} \, z = 0$).

Suppose $M \subset \mathbb{R}^n$ is a domain and $f : M \to \mathbb{C}$ is real-analytic.

$\Rightarrow \exists$ a domain $V \subset \mathbb{C}^n$, $M \subset V$, and $F : V \to \mathbb{C}$ holomorphic such that $F|_M = f$. (We say f extends holomorphically)
Complexification

Let $\mathbb{R}^n \subset \mathbb{C}^n$ be the natural embedding (that is $\text{Im} \, z = 0$).

Suppose $M \subset \mathbb{R}^n$ is a domain and $f : M \to \mathbb{C}$ is real-analytic.

$\Rightarrow \exists$ a domain $V \subset \mathbb{C}^n$, $M \subset V$, and $F : V \to \mathbb{C}$ holomorphic such that $F \big|_M = f$. (We say f extends holomorphically)

May not work if M is another submanifold. Two examples:

(a) Consider $M = \{ z \in \mathbb{C}^2 \mid \text{Im} \, z_2 = 0 \}$, $f : M \to \mathbb{C}$ given by $f(z) = \text{Re} \, z_1$.

$\Rightarrow f$ does not extend holomorphically.

(b) Consider $M = \{ z \in \mathbb{C}^2 \mid z_2 = |z_1|^2 \}$, $f : M \to \mathbb{C}$ given by $f(z) = \bar{z}_1$.

$\Rightarrow f$ does not extend holomorphically.
Complexification

Let $\mathbb{R}^n \subset \mathbb{C}^n$ be the natural embedding (that is $\text{Im } z = 0$).

Suppose $M \subset \mathbb{R}^n$ is a domain and $f : M \to \mathbb{C}$ is real-analytic.

$\Rightarrow \exists$ a domain $V \subset \mathbb{C}^n$, $M \subset V$, and $F : V \to \mathbb{C}$ holomorphic such that $F|_M = f$. (We say f extends holomorphically)

May not work if M is another submanifold. Two examples:

(a) Consider $M = \{z \in \mathbb{C}^2 \mid \text{Im } z_2 = 0\}$, $f : M \to \mathbb{C}$ given by $f(z) = \text{Re } z_1$.

$\Rightarrow f$ does not extend holomorphically.

(b) Consider $M = \{z \in \mathbb{C}^2 \mid z_2 = |z_1|^2\}$, $f : M \to \mathbb{C}$ given by $f(z) = \bar{z}_1$.

$\Rightarrow f$ does not extend holomorphically.

Note: all my submanifolds are embedded, all issues considered are local, and everything is real-analytic.
Let \(M \subset \mathbb{C}^n \) be a submanifold, write

\[
T^{0,1}_p M = \left(\mathbb{C} \otimes T_p M \right) \cap \text{span}_\mathbb{C} \left\{ \frac{\partial}{\partial \bar{z}_1} \bigg|_p, \ldots, \frac{\partial}{\partial \bar{z}_n} \bigg|_p \right\}
\]

Def.: \(M \) is CR if

\[
T^{0,1} M = \bigcup_{p \in M} T^{0,1}_p M \quad \text{is a vector bundle.}
\]
Let \(M \subset \mathbb{C}^n \) be a submanifold, write

\[
T^{0,1}_p M = \left(\mathbb{C} \otimes T_p M \right) \cap \text{span}_\mathbb{C} \left\{ \frac{\partial}{\partial \bar{z}_1} \bigg|_p, \ldots, \frac{\partial}{\partial \bar{z}_n} \bigg|_p \right\}
\]

Def.: \(M \) is CR if

\[
T^{0,1} M = \bigcup_{p \in M} T^{0,1}_p M \quad \text{is a vector bundle.}
\]

E.g. every real hypersurface is a CR submanifold.
Let $M \subset \mathbb{C}^n$ be a submanifold, write

$$T_p^{0,1} M = \left(\mathbb{C} \otimes T_p M \right) \cap \text{span}_\mathbb{C} \left\{ \frac{\partial}{\partial \bar{z}_1} \big|_p, \ldots, \frac{\partial}{\partial \bar{z}_n} \big|_p \right\}$$

Def.: M is CR if

$$T^{0,1} M = \bigcup_{p \in M} T_p^{0,1} M$$

is a vector bundle.

E.g. every real hypersurface is a CR submanifold.

F is holomorphic $\Rightarrow \frac{\partial F}{\partial \bar{z}_j} = 0$.

\therefore if M is CR, $\Rightarrow L(F|_M) = 0 \ \forall L \in \Gamma(T^{0,1} M)$.
Let \(M \subset \mathbb{C}^n \) be a submanifold, write

\[
T^{0,1}_p M = \left(\mathbb{C} \otimes T_p M \right) \cap \text{span}_\mathbb{C} \left\{ \frac{\partial}{\partial \bar{z}_1} \bigg|_p, \ldots, \frac{\partial}{\partial \bar{z}_n} \bigg|_p \right\}
\]

Def.: \(M \) is CR if

\[
T^{0,1} M = \bigcup_{p \in M} T^{0,1}_p M \quad \text{is a vector bundle.}
\]

E.g. every real hypersurface is a CR submanifold.

\(F \) is holomorphic \(\Rightarrow \frac{\partial F}{\partial \bar{z}_j} = 0. \)

\[\therefore \text{if } M \text{ is CR, } \Rightarrow L(F|_M) = 0 \forall L \in \Gamma(T^{0,1} M). \]

Def.: \(f : M \rightarrow \mathbb{C} \) is CR if \(Lf = 0 \forall L \in \Gamma(T^{0,1} M) \).
Theorem (Severi)

Suppose $M \subset \mathbb{C}^n$ is a real-analytic CR submanifold and $f : M \to \mathbb{C}$ is a real-analytic CR function.
\Rightarrow f extends holomorphically.
Theorem (Severi)

Suppose $M \subset \mathbb{C}^n$ is a real-analytic CR submanifold and $f : M \rightarrow \mathbb{C}$ is a real-analytic CR function.
⇒ f extends holomorphically.

Idea of proof:
Severi’s theorem

Theorem (Severi)

Suppose $M \subset \mathbb{C}^n$ is a real-analytic CR submanifold and $f : M \to \mathbb{C}$ is a real-analytic CR function.

$\Rightarrow f$ extends holomorphically.

Idea of proof:

Step 1) Write everything in sight in terms of z and \bar{z} (both f and the defining functions for M).
Theorem (Severi)

Suppose $M \subset \mathbb{C}^n$ is a real-analytic CR submanifold and $f : M \to \mathbb{C}$ is a real-analytic CR function.

$\Rightarrow f$ extends holomorphically.

Idea of proof:

Step 1) Write everything in sight in terms of z and \bar{z} (both f and the defining functions for M).

Step 2) Use the defining functions of M to solve for as many of the \bar{z}s as possible, and plug that into the expression for f.
Severi’s theorem

Theorem (Severi)

Suppose $M \subset \mathbb{C}^n$ is a real-analytic CR submanifold and $f : M \to \mathbb{C}$ is a real-analytic CR function.

\Rightarrow f extends holomorphically.

Idea of proof:

Step 1) Write everything in sight in terms of z and \bar{z} (both f and the defining functions for M).

Step 2) Use the defining functions of M to solve for as many of the \bar{z}s as possible, and plug that into the expression for f.

Step 3) That f is killed by the CR vector fields magically means that f does not depend on the remaining \bar{z}s.
Severi’s theorem

Theorem (Severi)

Suppose $M \subset \mathbb{C}^n$ is a real-analytic CR submanifold and $f : M \to \mathbb{C}$ is a real-analytic CR function.

\Rightarrow f extends holomorphically.

Idea of proof:

Step 1) Write everything in sight in terms of z and \bar{z} (both f and the defining functions for M).

Step 2) Use the defining functions of M to solve for as many of the \bar{z}s as possible, and plug that into the expression for f.

Step 3) That f is killed by the CR vector fields magically means that f does not depend on the remaining \bar{z}s.

Step 4) ...
Severi’s theorem

Theorem (Severi)

Suppose $M \subset \mathbb{C}^n$ is a real-analytic CR submanifold and $f: M \to \mathbb{C}$ is a real-analytic CR function.

$\Rightarrow f$ extends holomorphically.

Idea of proof:

Step 1) Write everything in sight in terms of z and \bar{z} (both f and the defining functions for M).

Step 2) Use the defining functions of M to solve for as many of the \bar{z}s as possible, and plug that into the expression for f.

Step 3) That f is killed by the CR vector fields magically means that f does not depend on the remaining \bar{z}s.

Step 4) ...

Step 5) Profit!
Example:

Suppose $M \subset \mathbb{C}^2$ is a real-analytic real hypersurface.

Write M as

$$\bar{w} = \Phi(z, \bar{z}, w),$$

and consider a real-analytic CR function $f(z, \bar{z}, w, \bar{w})$. Treat \bar{z} and \bar{w} as independent.
Example:

Suppose $M \subset \mathbb{C}^2$ is a real-analytic real hypersurface. Write M as

$$\bar{w} = \Phi(z, \bar{z}, w),$$

and consider a real-analytic CR function $f(z, \bar{z}, w, \bar{w})$. Treat \bar{z} and \bar{w} as independent. ($\bar{z} \neq \bar{z}$, $\bar{w} \neq \bar{w}$)
Example:

Suppose $M \subset \mathbb{C}^2$ is a real-analytic real hypersurface.

Write M as

$$\bar{w} = \Phi(z, \bar{z}, w),$$

and consider a real-analytic CR function $f(z, \bar{z}, w, \bar{w})$. Treat \bar{z} and \bar{w} as independent. ($\bar{z} \neq \bar{z}, \bar{w} \neq \bar{w}$)

Write

$$F'(z, \bar{z}, w) = f(z, \bar{z}, w, \Phi(z, \bar{z}, w))$$

Find CR vector field:

$$L = \frac{\partial}{\partial \bar{z}} + \frac{\partial \Phi}{\partial \bar{z}} \frac{\partial}{\partial \bar{w}}$$

$L F = 0 \quad \Rightarrow \quad \frac{\partial}{\partial \bar{z}} F = 0.$
Suppose $M \subset \mathbb{C}^2$ is a real-analytic real hypersurface.

Write M as

$$\bar{w} = \Phi(z, \bar{z}, w),$$

and consider a real-analytic CR function $f(z, \bar{z}, w, \bar{w})$.
Treat \bar{z} and \bar{w} as independent. ($\bar{z} \neq z$, $\bar{w} \neq \bar{w}$)

Write

$$F(z, \bar{z}, w) = f(z, \bar{z}, w, \Phi(z, \bar{z}, w))$$

Find CR vector field:

$$L = \frac{\partial}{\partial \bar{z}} + \frac{\partial \Phi}{\partial z} \frac{\partial}{\partial \bar{w}}$$

$$LF = 0 \quad \Rightarrow \quad \frac{\partial}{\partial \bar{z}} F = 0.$$
Def.: If M is not CR, then M is CR singular.

Def.: $f: M \to \mathbb{C}$ is CR if $Lf = 0$ for all vector fields L that are CR ($L|_p \in T^{0,1}_p M \forall p \in M$).
Def.: If M is not CR, then M is CR singular.

Def.: $f: M \to \mathbb{C}$ is CR if $Lf = 0$ for all vector fields L that are CR ($L|_p \in T^{0,1}_p M \ \forall p \in M$).

A function $f: M \to \mathbb{C}$ is CR if and only if it is CR on the CR submanifold $M_{CR} \subset M$ ($M_{CR} = \text{“CR points of } M\text{”}$).
CR singular submanifolds

Def.: If M is not CR, then M is CR singular.

Def.: $f : M \to \mathbb{C}$ is CR if $Lf = 0$ for all vector fields L that are CR ($L|_p \in T^{0,1}_p M \forall p \in M$).

A function $f : M \to \mathbb{C}$ is CR if and only if it is CR on the CR submanifold $M_{CR} \subset M$ ($M_{CR} =$ “CR points of M”)

E.g. $M = \{w = |z|^2\} \subset \mathbb{C}^2$. $f = \bar{z}$ does not extend ($\frac{\partial}{\partial \bar{z}}|_0 f = 1 \neq 0$)
CR singular submanifolds

Def.: If M is not CR, then M is CR singular.

Def.: $f: M \to \mathbb{C}$ is CR if $Lf = 0$ for all vector fields L that are CR ($L|_p \in T_p^{0,1} M \forall p \in M$).

A function $f: M \to \mathbb{C}$ is CR if and only if it is CR on the CR submanifold $M_{CR} \subset M$ ($M_{CR} = $ “CR points of M”)

E.g. $M = \{w = |z|^2\} \subset \mathbb{C}^2$. $f = \bar{z}$ does not extend ($\frac{\partial}{\partial \bar{z}}|_0 f = 1 \neq 0$)

You could even take $f = \bar{z}^2$ to make $\frac{\partial}{\partial \bar{z}}|_0 f = 0$, but f still does not extend.
CR singular submanifolds

Def.: If M is not CR, then M is CR singular.

Def.: $f : M \to \mathbb{C}$ is CR if $Lf = 0$ for all vector fields L that are CR ($L|_p \in T_p^{0,1} M \forall p \in M$).

A function $f : M \to \mathbb{C}$ is CR if and only if it is CR on the CR submanifold $M_{CR} \subset M$ ($M_{CR} = \text{"CR points of } M\text{"}$)

E.g. $M = \{ w = |z|^2 \} \subset \mathbb{C}^2$. $f = \bar{z}$ does not extend ($\frac{\partial}{\partial \bar{z}}|_0 f = 1 \neq 0$)

You could even take $f = \bar{z}^2$ to make $\frac{\partial}{\partial \bar{z}}|_0 f = 0$, but f still does not extend.

There are no CR vector fields, and you can’t easily solve for \bar{z} and \bar{w} in terms of z and w:

$$\bar{z} = \frac{w}{z}, \quad \bar{w} = w$$

Extra conditions needed on f here (codimension 2 in \mathbb{C}^2).
Def.: If M is not CR, then M is CR singular.

Def.: $f : M \to \mathbb{C}$ is CR if $Lf = 0$ for all vector fields L that are CR ($L|_p \in T^{0,1}_p M \forall p \in M$).

A function $f : M \to \mathbb{C}$ is CR if and only if it is CR on the CR submanifold $M_{CR} \subset M$ ($M_{CR} = "CR\ points\ of\ M")$.

E.g. $M = \{w = |z|^2\} \subset \mathbb{C}^2$. $f = \bar{z}$ does not extend ($\left.\frac{\partial}{\partial \bar{z}}\right|_0 f = 1 \neq 0$)

You could even take $f = \bar{z}^2$ to make $\left.\frac{\partial}{\partial \bar{z}}\right|_0 f = 0$, but f still does not extend.

There are no CR vector fields, and you can’t easily solve for \bar{z} and \bar{w} in terms of z and w:

$$\bar{z} = \frac{w}{z}, \quad \bar{w} = w$$

Extra conditions needed on f here (codimension 2 in \mathbb{C}^2).

We will switch to \mathbb{C}^3, where there is an actual CR vector field.
Harris ('78) provides a complete (but difficult to apply) criterion for f on an arbitrary CR singular M to be a restriction of a holomorphic function in \mathcal{C}^∞ case.

In '11 we (L.–Minor–Shroff–Son–Zhang) proved that if a real-analytic CR singular manifold $M = \mathcal{N}'(\mathbb{N})$ for a real-analytic CR map $\mathcal{N}' : \mathbb{N} \rightarrow \mathbb{C}^n$ of a CR submanifold \mathcal{N}, and \mathcal{N}' is a diffeomorphism onto $\mathcal{N}'(\mathbb{N}) = M$, then there exists a real-analytic CR function on M that does not extend holomorphically.

In '16 we (L.–Noell–Ravisankar) proved that a real-analytic codimension 2 real-analytic CR singular manifold in $\mathbb{C}^n (n \geq 3)$ that is flat (subset of $\mathbb{C}^n \cap \mathbb{R}$) and nondegenerate has the extension property.
Some previous work

Harris (’78) provides a complete (but difficult to apply) criterion for f on an arbitrary CR singular M to be a restriction of a holomorphic function in C^ω case.

In ’11 we (L.–Minor–Shroff–Son–Zhang) proved that if a real-analytic CR singular manifold $M = \varphi(N)$ for a real-analytic CR map

$$\varphi: N \subset \mathbb{C}^n \rightarrow \mathbb{C}^n$$

of a CR submanifold N, and φ is a diffeomorphism onto $\varphi(N) = M$, then there exists a real-analytic CR function on M that does not extend holomorphically.
Harris (’78) provides a complete (but difficult to apply) criterion for f on an arbitrary CR singular M to be a restriction of a holomorphic function in C^ω case.

In ’11 we (L.–Minor–Shroff–Son–Zhang) proved that if a real-analytic CR singular manifold $M = \varphi(N)$ for a real-analytic CR map

$$\varphi: N \subset \mathbb{C}^n \to \mathbb{C}^n$$

of a CR submanifold N, and φ is a diffeomorphism onto $\varphi(N) = M$, then there exists a real-analytic CR function on M that does not extend holomorphically.

In ’16 we (L.–Noell–Ravisankar) proved that a real-analytic codimension 2 real-analytic CR singular manifold in \mathbb{C}^n ($n \geq 3$) that is flat (subset of $\mathbb{C}^{n-1} \times \mathbb{R}$) and nondegenerate has the extension property.
A CR singular submanifold of codimension 2 in \(\mathbb{C}^3 \) is written as (after a rotation by a unitary)

\[
\begin{align*}
 w &= \rho(z, \bar{z}) \\
 &= Q(z, \bar{z}) + E(z, \bar{z}) \\
 &= z^* A z + \bar{z}^t B z + z^t C z + E(z, \bar{z}),
\end{align*}
\]

\((z, w) \in \mathbb{C}^2 \times \mathbb{C}, \quad \rho \text{ is } O(||z||^2), \quad E \text{ is } O(||z||^3).\)

A, B, C, 2 \times 2 complex matrices,

z column vector,

B, C symmetric.
A CR singular submanifold of codimension 2 in \mathbb{C}^3 is written as
(after a rotation by a unitary)

$$w = \rho(z, \bar{z}) = Q(z, \bar{z}) + E(z, \bar{z}) = z^*Az + \bar{z}^tBz + z^tCz + E(z, \bar{z}),$$

$(z, w) \in \mathbb{C}^2 \times \mathbb{C}$, ρ is $O(||z||^2)$, E is $O(||z||^3)$.

A, B, C, 2×2 complex matrices,
z column vector,
B, C symmetric.

M can be parametrized by z (and \bar{z})
Adam Coffman (’09) has a normal form of Q up to local biholomorphisms (and it is a rather long list).

This was extremely useful.
Adam Coffman (’09) has a normal form of Q up to local biholomorphisms (and it is a rather long list).

This was extremely useful.

This might be a good place to note that normal forms for codimension 2 CR singular manifolds has a long history:

\mathbb{C}^2: Bishop ’65, Moser–Webster ’83, Moser ’85, Kenig–Webster ’82, Gong ’94, Huang–Krantz ’95, Huang–Yin ’09, Slapar ’16, etc...

Table 1. Normal forms for Theorem 7.1

<table>
<thead>
<tr>
<th>N</th>
<th>P</th>
<th>Conditions</th>
<th>Signatures</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\begin{pmatrix} 1 & 0 \ 0 & e^{i\theta} \end{pmatrix}$</td>
<td>$\begin{pmatrix} a & b \ b & d \end{pmatrix}$</td>
<td>$a > 0, d > 0, b \sim -b \in \mathbb{C}$</td>
<td>$+ - 0$</td>
</tr>
<tr>
<td>$0 < \theta < \pi$</td>
<td>$a = 0, b = 0$</td>
<td>$b \geq 0, d \geq 0$</td>
<td>$+ - 0$</td>
</tr>
<tr>
<td></td>
<td>$a = 0, b = 0$</td>
<td>$a > 0, b \geq 0$</td>
<td>$+ - 0$</td>
</tr>
<tr>
<td>$\begin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix}$</td>
<td>$\begin{pmatrix} a & 0 \ 0 & d \end{pmatrix}$</td>
<td>$0 \leq a \leq d$</td>
<td>$+ - 0$</td>
</tr>
<tr>
<td>$\begin{pmatrix} 1 & 0 \ 0 & -1 \end{pmatrix}$</td>
<td>$\begin{pmatrix} 0 & b \ b & 0 \end{pmatrix}$</td>
<td>$b > 0$</td>
<td>$+$</td>
</tr>
<tr>
<td></td>
<td>$\begin{pmatrix} 0 & 1 \ 1 & 1 \end{pmatrix}$</td>
<td>$b \geq 0, d \geq 0 +$</td>
<td>$+$</td>
</tr>
<tr>
<td></td>
<td>$\begin{pmatrix} 0 & 1 \ 1 & 0 \end{pmatrix}$</td>
<td>$a \geq 0 \leq d$</td>
<td>$+$</td>
</tr>
<tr>
<td></td>
<td>$\begin{pmatrix} 0 & 1 \ 0 & 0 \end{pmatrix}$</td>
<td>$a \geq 0 \not\in \mathbb{C}$</td>
<td>$+$</td>
</tr>
<tr>
<td>$\begin{pmatrix} 0 & 1 \ 1 & 0 \end{pmatrix}$</td>
<td>$\begin{pmatrix} a & b \ b & d \end{pmatrix}$</td>
<td>$b > 0,</td>
<td>a</td>
</tr>
<tr>
<td>$0 < \tau < 1$</td>
<td>$\begin{pmatrix} 0 & 1 \ 1 & 0 \end{pmatrix}$</td>
<td>$b > 0,</td>
<td>d</td>
</tr>
<tr>
<td></td>
<td>$\begin{pmatrix} 0 & 1 \ 0 & 0 \end{pmatrix}$</td>
<td>$b > 0$</td>
<td>$+ - 0$</td>
</tr>
<tr>
<td></td>
<td>$\begin{pmatrix} 1 & 1 \ 0 & 0 \end{pmatrix}$</td>
<td>$d \in \mathbb{C}$</td>
<td>$+$</td>
</tr>
<tr>
<td></td>
<td>$\begin{pmatrix} 1 & 1 \ 0 & 0 \end{pmatrix}$</td>
<td>$d \not\in \mathbb{C}$</td>
<td>$+$</td>
</tr>
<tr>
<td>$\begin{pmatrix} 0 & 1 \ 1 & 0 \end{pmatrix}$</td>
<td>$\begin{pmatrix} a & b \ b & d \end{pmatrix}$</td>
<td>$b > 0, a \in \mathbb{C}$</td>
<td>$+ - 0$</td>
</tr>
<tr>
<td></td>
<td>$\begin{pmatrix} a & 0 \ 0 & d \end{pmatrix}$</td>
<td>$a \sim a \not\in \mathbb{C}$</td>
<td>$+$</td>
</tr>
<tr>
<td>$\begin{pmatrix} 0 & 1 \ 0 & 0 \end{pmatrix}$</td>
<td>$\begin{pmatrix} 0 & a \ a & 0 \end{pmatrix}$</td>
<td>$a \geq 0$</td>
<td>$+$</td>
</tr>
<tr>
<td></td>
<td>$\begin{pmatrix} 0 & 1 \ 0 & 0 \end{pmatrix}$</td>
<td>$a \geq 0$</td>
<td>$+$</td>
</tr>
<tr>
<td>$\begin{pmatrix} 0 & 1 \ 0 & 0 \end{pmatrix}$</td>
<td>$\begin{pmatrix} a & 0 \ 0 & d \end{pmatrix}$</td>
<td>$a \geq 0 \not\in \mathbb{C}$</td>
<td>$+$</td>
</tr>
<tr>
<td></td>
<td>$\begin{pmatrix} 0 & 1 \ 0 & 0 \end{pmatrix}$</td>
<td>$a \geq 0$</td>
<td>$+$</td>
</tr>
</tbody>
</table>
\(M \subset \mathbb{C}^3, (z, w) \in \mathbb{C}^2 \times \mathbb{C} \)

\[M : w = \rho(z, \bar{z}) = Q(z, \bar{z}) + E(z, \bar{z}) = z^*Az + \bar{z}^tBz + z^tCz + E(z, \bar{z}) \]

Theorem (L.–Noell–Ravisankar)

Suppose

\[\text{null } A^* \cap \text{null } B = \{0\} \]

If \(f(z, \bar{z}) \) is real-analytic CR function defined near the origin, then \(f \) extends holomorphically near the origin. That is, \(\exists \ F(z, w) \) such that

\[f(z, \bar{z}) = F(z, \rho(z, \bar{z})). \]
Theorem (L.–Noell–Ravisankar)

Suppose \(M \subset \mathbb{C}^3 \) is a quadric given by

\[w = Q(z, \bar{z}) = z^* A z + \bar{z}^t B z + z^t C z \]

Assume \(\bar{\partial} Q \neq 0 \). TFAE:

(a) \(\text{null } A^* \cap \text{null } B = \{0\} \)

(b) For every CR polynomial \(f(z, \bar{z}) \),

\[\exists! \text{ holomorphic polynomial } F(z, w) \text{ such that } f(z, \bar{z}) = F(z, Q(z, \bar{z})). \]

If \(f \) is homogeneous, then \(F \) is weighted homogeneous.

(c) Every CR real-linear \(h(z, \bar{z}) \) is holomorphic

(\text{does not depend on } \bar{z}).
The difficulty

Consider $f(z, \bar{z})$ on

$$w = z_1^2 + z_2^2 + \bar{z}_1^2 + \bar{z}_2^2 \quad (B = I, A = 0, E = 0)$$

Solve for say \bar{z}_1:

$$\bar{z}_1 = \pm \sqrt{w - z_1^2 + z_2^2 + \bar{z}_2^2}$$

We can get rid of all but the first power of \bar{z}_1:

$$f = \alpha(z_1, z_2, w, \bar{z}_2) + \bar{z}_1 \beta(z_1, z_2, w, \bar{z}_2)$$
The difficulty

Consider \(f(z, \bar{z}) \) on

\[
w = z_1^2 + z_2^2 + \bar{z}_1^2 + \bar{z}_2^2 \quad (B = I, A = 0, E = 0)
\]

Solve for say \(\bar{z}_1 \):

\[
\bar{z}_1 = \pm \sqrt{w - z_1^2 + z_2^2 + \bar{z}_2^2}
\]

We can get rid of all but the first power of \(\bar{z}_1 \):

\[
f = \alpha(z_1, z_2, w, \bar{z}_2) + \bar{z}_1 \beta(z_1, z_2, w, \bar{z}_2)
\]

\(Lf = 0 \) (CR vector field) must get rid of not only the dependence on \(\bar{z}_2 \) in \(\alpha \), but also force \(\beta \equiv 0 \).
Fix Q, $\partial Q \neq 0$, and suppose $\text{null } A^* \cap \text{null } B \neq \{0\}$. Let

$$f = \bar{v}_2 \bar{z}_1 - \bar{v}_1 \bar{z}_2,$$

where (v_1, v_2) is a nonzero vector in $\text{null } A^* \cap \text{null } B$.

Then f is not a restriction to M of a holomorphic function (in any neighborhood of the origin)
As M is a graph of w over z:

$$w = \rho(z, \bar{z}),$$

write everything on M in terms of z.

A function on M is a function $f(z, \bar{z})$.

The CR vector field in terms of z as a parameter on M is

$$L = \rho_{\bar{z}_2} \frac{\partial}{\partial \bar{z}_1} - \rho_{\bar{z}_1} \frac{\partial}{\partial \bar{z}_2}$$
Everything in \(z \)

As \(M \) is a graph of \(w \) over \(z \):

\[
w = \rho(z, \bar{z}),
\]

write everything on \(M \) in terms of \(z \).

A function on \(M \) is a function \(f(z, \bar{z}) \).

The CR vector field in terms of \(z \) as a parameter on \(M \) is

\[
L = \rho_{\bar{z}_2} \frac{\partial}{\partial \bar{z}_1} - \rho_{\bar{z}_1} \frac{\partial}{\partial \bar{z}_2}
\]

Normally to complexify in \(\mathbb{C}^3 \): we consider \((z, \bar{z}, w, \bar{w})\) in \(\mathbb{C}^6 \).

But we only need to complexify into \(\mathbb{C}^5 \) and consider \((z, \bar{z}, w)\).
If $\bar{\partial}Q \equiv 0$, things can be complicated.
If $\bar{\partial} Q \equiv 0$, things can be complicated.

$E \equiv 0$) M is complex and every “CR function” extends holomorphically.
So for some E we may have extension.
If $\bar{\partial} Q \equiv 0$, things can be complicated.

$E \equiv 0$) M is complex and every “CR function” extends holomorphically.
So for some E we may have extension.

$E = ||z||^4$) M is given by

$$w = ||z||^4 = (|z_1|^2 + |z_2|^2)^2$$

and

$$f(z, \bar{z}) = ||z||^2 = |z_1|^2 + |z_2|^2$$

is CR but equal to \sqrt{w} on M, so does not extend. So for some E we do not have extension.
null $A^* \cap \text{null } B \neq \{0\}$

Suppose $\text{null } A^* \cap \text{null } B \neq \{0\}$.

$E \equiv 0$) Extension does not hold. E.g. if

$$w = \bar{z}_1 z_2$$

then \bar{z}_1 is CR as the CR vector field is $L = -z_2 \frac{\partial}{\partial \bar{z}_2}$

Note: The theorem is an if-and-only-if when $E \equiv 0$.

null $A^* \cap \text{null } B \neq \{0\}$

Suppose $null A^* \cap \text{null } B \neq \{0\}$.

$E \equiv 0$) Extension does not hold. E.g. if

$$w = \bar{z}_1 z_2$$

then \bar{z}_1 is CR as the CR vector field is $L = -z_2 \frac{\partial}{\partial \bar{z}_2}$

Note: The theorem is an if-and-only-if when $E \equiv 0$.

$E \not\equiv 0$) Extension may or may not hold depending on E. E.g. if

$$w = \bar{z}_1 z_2 + \bar{z}_2^3$$

then extension holds (explicit computation), but if

$$w = \bar{z}_1 z_2 + \bar{z}_1^3$$

then extension does not hold (\bar{z}_1 again).
The proof has the following outline:

Step 1) Prove theorem for homogeneous polys. and quadrics.
Step 2) Prove a formal extension theorem.
Step 3) Prove that in \mathbb{C}^2 a formal solution is convergent.
Step 4) Use this to prove convergence of F in \mathbb{C}^3.
Proof sketch for the quadrics I

Suppose $\bar{\partial} Q \neq 0$ and M is a quadric:

$$w = Q(z, \bar{z}) = z^* A z + z^t B z + z^t C z.$$

Suppose $f(z, \bar{z})$ is a homogeneous polynomial that is CR.
Suppose $\bar{\partial} \mathcal{Q} \neq 0$ and M is a quadric:

$$w = Q(z, \bar{z}) = z^* A z + z^t B z + z^t C z.$$

Suppose $f(z, \bar{z})$ is a homogeneous polynomial that is CR.

There are two cases:

$B \neq 0)$ Let’s tackle that one first.

$B = 0)$ Special case, needs to be handled differently.
Proof sketch for the quadrics II ($B \neq 0$)

If $B \neq 0$, then it can be diagonalized by a transformation in z:

$$Q(z, \bar{z}) = z^* A z + \bar{z}_1^2 + \epsilon \bar{z}_2^2 + z^t C z$$

where $\epsilon = 0, 1$.

Weierstrass division algorithm (using z_1) says

$$f(z, z^2) = h(z, z^2, w) Q(z, z) w + (z, z^2, w) z_1:$$

The remainder in Weierstrass is unique: Any equality on M, as long z_1 appears up to first power holds everywhere. f equals a holomorphic polynomial $g(z, w)$ if and only if $+ z_1 g 0$, or in other words if $+ 0; \text{ and } 0:.$
If $B \neq 0$, then it can be diagonalized by a transformation in z:

$$Q(z, \bar{z}) = z^* Az + \bar{z}_1^2 + \epsilon \bar{z}_2^2 + z^t Cz$$

where $\epsilon = 0, 1$.

Weierstrass division algorithm (using \bar{z}_1) says

$$f(z, \bar{z}) = h(z, \bar{z}, w)(Q(z, \bar{z}) - w) + \alpha(z, \bar{z}_2, w) + \beta(z, \bar{z}_2, w)\bar{z}_1.$$

The remainder in Weierstrass is unique: Any equality on M, as long \bar{z}_1 appears up to first power holds everywhere.
Proof sketch for the quadrics II ($B \neq 0$)

If $B \neq 0$, then it can be diagonalized by a transformation in z:

$$Q(z, \bar{z}) = z^* Az + \bar{z}_1^2 + \epsilon \bar{z}_2^2 + z^t Cz$$

where $\epsilon = 0, 1$.

Weierstrass division algorithm (using \bar{z}_1) says

$$f(z, \bar{z}) = h(z, \bar{z}, w)(Q(z, \bar{z}) - w) + \alpha(z, \bar{z}_2, w) + \beta(z, \bar{z}_2, w)\bar{z}_1.$$

The remainder in Weierstrass is unique: Any equality on M, as long \bar{z}_1 appears up to first power holds everywhere.

f equals a holomorphic polynomial $g(z, w)$ if and only if $\alpha + \beta\bar{z}_1 - g \equiv 0$, or in other words if

$$\alpha\bar{z}_2 \equiv 0, \quad \text{and} \quad \beta \equiv 0.$$
Proof sketch for the quadrics III ($B \neq 0$)

Solving $Lf = 0$ we get differential equations for α and β, in fact a single equation for β.

Then it is an almost-undergraduate-first-order-DE computation to find for which coefficients in A (and B) do we get a polynomial solution.
Solving $Lf = 0$ we get differential equations for α and β, in fact a single equation for β.

Then it is an almost-undergraduate-first-order-DE computation to find for which coefficients in A (and B) do we get a polynomial solution.

QED!
Proof sketch for the quadrics IV \((B = 0)\)

Let \(L\) be the CR vector field.

Proof outline.

Step 1) For each degree \(d\), compute \(L\) as a matrix taking homogeneous polynomials of fixed degree to themselves.

Step 2) Compute the dimension of the kernel of \(L\) for each \(d\).

Step 3) Compute the dimension of weighted homogeneous polynomials \(F(z, w)\) of degree \(d\).

Step 4) ... the two dimensions match! (if the nullspace condition is met)

Step 5) QED!
Matrix for L in degree 3

<table>
<thead>
<tr>
<th>z_1^3</th>
<th>$z_1^2z_2$</th>
<th>$z_1z_2^2$</th>
<th>z_2^3</th>
<th>$z_1^2z_1$</th>
<th>$z_1z_2z_2$</th>
<th>$z_2^2z_2$</th>
<th>z_1^3</th>
<th>$z_1^2z_2$</th>
<th>$z_1z_2^2$</th>
<th>z_2^3</th>
<th>$z_1^2z_1$</th>
<th>$z_1z_2z_2$</th>
<th>$z_2^2z_2$</th>
<th>z_1^3</th>
<th>$z_1^2z_2$</th>
<th>$z_1z_2^2$</th>
<th>z_2^3</th>
</tr>
</thead>
<tbody>
<tr>
<td>z_1^3</td>
<td>.</td>
</tr>
<tr>
<td>$z_1^2z_2$</td>
<td>.</td>
</tr>
<tr>
<td>$z_1z_2^2$</td>
<td>.</td>
</tr>
<tr>
<td>z_2^3</td>
<td>.</td>
</tr>
<tr>
<td>$z_1z_1^2$</td>
<td>.</td>
</tr>
<tr>
<td>$z_1z_2z_2$</td>
<td>.</td>
</tr>
<tr>
<td>$z_2z_2^2$</td>
<td>.</td>
</tr>
<tr>
<td>$z_2z_1z_2$</td>
<td>.</td>
</tr>
<tr>
<td>$z_2z_2^2$</td>
<td>.</td>
</tr>
<tr>
<td>$z_2^2z_1$</td>
<td>.</td>
</tr>
<tr>
<td>$z_2^2z_2$</td>
<td>.</td>
</tr>
<tr>
<td>$z_2z_1z_1$</td>
<td>.</td>
</tr>
<tr>
<td>$z_2z_2z_2$</td>
<td>.</td>
</tr>
<tr>
<td>$z_2z_1z_1$</td>
<td>.</td>
</tr>
<tr>
<td>$z_2z_2z_2$</td>
<td>.</td>
</tr>
<tr>
<td>$z_2z_1z_1$</td>
<td>.</td>
</tr>
<tr>
<td>$z_2z_2z_2$</td>
<td>.</td>
</tr>
<tr>
<td>$z_2z_1z_1$</td>
<td>.</td>
</tr>
<tr>
<td>$z_2z_2z_2$</td>
<td>.</td>
</tr>
<tr>
<td>$z_2z_1z_1$</td>
<td>.</td>
</tr>
<tr>
<td>$z_2z_2z_2$</td>
<td>.</td>
</tr>
</tbody>
</table>
One subblock, degree 9

	z_1	z_2	z_3	z_4	z_5	z_6	z_7	z_8	z_9	z_10	z_11	z_12	z_13	z_14	z_15	z_16	z_17	z_18	z_19	z_20	z_21	z_22	z_23	z_24	z_25	
z_1		#																								
z_2		#																								
z_3																										
z_4																										
z_5																										
z_6																										
z_7																										
z_8																										
z_9																										
z_10																										
z_11																										
z_12																										
z_13																										
z_14																										
z_15																										
z_16																										
z_17																										
z_18																										
z_19																										
z_20																										
z_21																										
z_22																										
z_23																										
z_24																										
z_25																										
Thanks for listening!